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In the framework of formation satellites, the periodic orbits of deputy satellite are analyzed when the chief satellite is moving in an
elliptical orbit. &is analysis is developed on 1- to 10-loop periodic orbits of the deputy satellite. &ese orbits along with their
associated loops are discussed under some specific initial position sets. &e effects of different initial velocities, initial true
anomalies, and eccentricities on the initial position and orbital period of periodic orbits of deputy satellite are investigated.

1. Introduction

&e periodic orbits have substantial and leading role in
exploring and understanding the behavior of dynamical
systems. At most, they define strange attractors, which lead
to chaotic dynamical systems. &e special solution of a
dynamical system, which repeats and generates itself in time,
is called periodic orbit. From the mathematical point of view,
the orbit is a set of points associated by the evolution
function of the proposed dynamical system.&ese points are
considered as a subset from the phase space, which are
covered by the dynamical system trajectory within frame of a
particular set from the initial conditions. Some recent works,
analyzing the periodic orbits, are addressed in [1–4].

&e sufficient condition for the existence of periodic
orbits is given when the Hamilton system is a function in the
action-angle variables; further, these obtained results are
applied to Hamiltonian of the perturbed Kepler problem in
[5]. Also, a geometric approach to asymptotically stabilize
with a phase of fixed periodic orbits for global Hamiltonian
dynamical system is established in [6]. While in [7], the new
families of periodic orbits analytically for the Hamilton
system are found, which characterize the local motion in the
region around the galaxy center. Furthermore, in [8], the

theory of averaging is applied to prove the existence of
twelve families of periodic orbits in a 3-dimension for a
galactic Hamiltonian dynamical system. Since we are in-
terested to evaluate the periodic orbits within frame of
formation satellites, we will give also an overview about the
literatures and importance of formation satellites in the
following paragraphs.

&e formation flying of small multiple satellites as a re-
placement of using single large satellite has shown great in-
terest for different defense- and science-based space missions.
Formation flying consists of a set of satellites, which have the
same dynamic state and governed by one control law.
Abundance and precision of the proposed system in terms of
formation satellites are more effective tools, which give a job
more accuracy than using a conventional large single satellite.
It also reduces themaintenance and launching costs, extremely
expands the surveillance area, and gives more resilience into
the design of space mission. For example, a sensor of ground
observation can be loaded on bunch of satellites flying in a
specified formation for increasing aperture size instead of
constructing a large single satellite with more expense. &ere
are chances of aborting the whole mission in the event of
satellite failure. Proper management of satellites cluster with
special planning and scheduling reduces the chances of failure.
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Using formation satellite in space-based missions has
many advantages, but at the expense of increased complexity
and different challenges like high-precision relative navi-
gation [9], distributed communication [10], stable formation
design [11], trajectory optimization and control [12], and
attitude synchronization [13]. In formation satellite, tra-
jectory optimization and control problem are two important
tasks to achieve a successful launching of satellites set in the
space. &ese tasks comprise maintaining the small satellites
in a stable formation within frame of enough accuracy
against different perturbations of orbit and maneuvering of
formation for guiding and performing control command for
reconfiguring from perturbed satellite formation to one
stable formation.

&e precise model of relative motion in order to analyze
satellites formation flying is a basic need which covers ac-
curate linear and nonlinear satellites models of relative
motion taking into account J2 perturbations. Different
relative dynamic models are proposed in the literature using
different assumptions with many methodologies. It is nec-
essary to make a comparative study to choose appropriate
models for specified missions with perturbation that should
be considered for definite applications.

A considerable work is accomplished into satellite for-
mation flying for libration point mission with different
models that characterize the relative motion satellites be-
tween two or more in low Earth orbit (LEO). &e major
fundamental of this work is carried out by Hill in [14]. While
the relative motion within frame of Clohessy–Wiltshire
equations is written in terms of a Cartesian or curvilinear
coordinates tracing a circular reference orbit around the
Earth and models by using orbit elements differences to
characterize relative orbits [15]. &e extended version of the
Hill equations was given in [16] that involves the influent of
the zonal harmonic parameter J2 using a force gradient
method to time-varying form. It was verified and applied to
linear quadratic regulator design and evaluated for the
station-keeping task in [17].

In [18], the force gradient modelling approach for sat-
ellite formation flying around the libration point L2 using
periodic halo motion as a reference is investigated. &e
optimal maneuver problem can be characterized as a state
transition problem based on Hill’s system and maximum
principle of Pontryagin. &e optimal solution can be ob-
tained by solving the state transition equations and per-
forming the simulation study [19]. In a formation satellite, a
magnetic field approach helps a large number of closely
located satellites in tracking each other in six degrees of
freedom without disturbing their positions and orientation
relative to each other (see [20, 21] for details).

&e relative motion control is an important task required
in the formation of the flying missions. Different control
methods without fuel consumption are of a specific interest. A
number of these methods based on atmosphere drag effects,
electrostatic magnetic field, and the Lorentz force have been
proposed, but exchanging mass between satellites is a novel
technique for formation flying relative motion control [22].

&is paper is organized into four sections. &e impor-
tance and applications of formation satellites are discussed

in Section 1 as a part of literature review. Model description
and derived governing equations of motion are covered in
Section 2. Analysis of the given sets of initial positions for
deputy satellite, which generate periodic orbits, is investi-
gated in Section 3.While in Section 4, we compare the effect
of variation in eccentricity of chief satellite’s orbit on pe-
riodic orbits of deputy satellite with number of loops. Fi-
nally, conclusion is drawn from the analysis becomes the
part of Section 5.

2. Model Description

Consider two spacecrafts orbiting a common primary and its
mass is m. Mainly, the motion of these two spacecrafts is
governed by the Kepler model or the dynamical system of two
bodies [23–26]. One of the spacecraft is termed as a chief
satellite, and the second is referred as a deputy satellite, where
their masses are m0 and m1, respectively. &en, the equations
of relative motion of deputy satellite with respect to chief
satellite under the setup of the Keplerian two-body problem
are obtained as follows: we consider a chief-fixed, local vertical
local horizontal (LVLH) rotating frame, also known as
EulerHill frame. Here, the origin is located at the position of
chief satellite, as shown in Figure 1.

From two-body problem, the motion of the chief and
deputy satellites around the primary (Earth or any planet) in
inertial frame of reference are given by

€r0 � −μ0
r0
r
3
0
,

€r1 � −μ1
r1
r
3
1
,

(1)

where μ0 � m + m0 and μ1 � m + m1, but m0, m1≪m; then,
we can approximate μ0 ≈ μ1 � μ. &ereby, the solutions of
equation (1) are controlled by

r0 �
a0 1 − e

2
0􏼐 􏼑

1 + e0 cosf0( 􏼁
,

r1 �
a1 1 − e

2
1􏼐 􏼑

1 + e1 cosf1( 􏼁
,

(2)

where a0(a1), e0(e1), and f0(f1) are the semimajor axis,
eccentricity, and true anomaly of chief (deputy) satellite’s
orbit, respectively.

Now, we assume that ρ is the position vector of deputy
satellite relative to chief satellite; hence, ρ � r1 − r0, and the
relative motion of deputy satellite is

€ρ � −μ
r0 + ρ
r0 + ρ

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
3 + μ

r0
r
3
0
, (3)

where r0 � [r0, 0, 0]T, ρ � [x, y, z]T, f0 � θ0 − ω, and ω is
the argument of periapsis. But ω is a constant. &ereby, we
can define the angular velocity vector Ω � [0, 0, θ0

.

]T.
&e general relation between the velocity and acceleration

in the inertial frame and the rotating by the angular velocityΩ
is controlled by
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_ρI � _ρR + Ω ∧ ρ,

€ρI � €ρR + 2 Ω ∧ _ρR + Ω ∧ (Ω ∧ ρ) + Ω
.

∧ ρ,
(4)

where

_ρR � _xir + _yiθ + _zih,

€ρR � €xir + €yiθ + €zih.
(5)

Utilizing equations (3)–(5) componentwise equations of
relative motion are given by

€x − 2θ
.

0 _y − θ
..

0y − _θ
2
0x � − r0 + x( 􏼁F x, y, z, r0( 􏼁 + G r0( 􏼁,

€y + 2θ
.

0 _x + θ
..

0x − _θ
2
0y � −yF x, y, z, r0( 􏼁, €z, � −zF x, y, z, r0( 􏼁,

(6)

where
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μ

r0 + x( 􏼁
2

+ y
2

+ z
2

􏽨 􏽩
3/2,

G r0( 􏼁 �
μ
r
2
0
.

(7)

&e system of equation (6) represents the general rel-
ative motion with respect to independent time variable. In
order to have docile analysis for these equations, we will
change the independent time variable by the true anomaly
and scale the relative positions by the chief satellite radius.
&ereby, we take x � x/r0, y � y/r0, z � z/r0; since v �

���
r
.
.r

.√

is the velocity, h � r20θ
.

0 � r20
_f0 and P � h2/μ is the semilatus

rectum; then with help of equation (2), the velocity and
accelerations components are controlled by

_x �
h0

P0
1 + e0 cosf0( 􏼁

dx

df0
+ x e0 sinf0( 􏼁􏼢 􏼣,

_y �
h0

P0
1 + e0 cosf0( 􏼁

dy

df0
+ y e0 sinf0( 􏼁􏼢 􏼣,

_z �
h0

P0
1 + e0 cosf0( 􏼁
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(8)
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where

Υ f0( 􏼁 � 1 + e0 cosf0( 􏼁. (10)

Substituting equations (8) and (9) into equation (6), we
get

d2x
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2
0

− 2
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�

1 + x

1 + e0 cosf0( 􏼁
[1 − Γ(x
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(11)
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Figure 1: Configuration of the LVLH frame.
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where

Γ(x, tyn, qz) �
1

(1 + x)
2

+ y
2

+ z
2

􏽨 􏽩
3/2. (12)

We will drop the subscript zero and bar for simplicity,
thereby equation (11) can be rewritten with a simple form as
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Equations (13) and (14) are the governing equations of
motion of deputy satellite with respect to chief satellite in the
LVLH frame.

3. Analysis of Periodic Orbits

Since the trajectory of phase space is defined uniquely for any
provided set of specified conditions, we will analyze the initial
position of deputy satellite, which provides periodic orbits
under different values for initial true anomalies and eccen-
tricities of chief satellite. In this context, System (11) can be
used to accomplish our goal. &is system consists of second-
order nonlinear differential equations, which can be con-
verted into system of first-order differential equations and
then integrated with the Runge–Kutta fourth-order method.

&e numerical integration will be developed with a step
size of 0.001 during each iteration. It is important that,
during simulation, true anomaly f is considered as a var-
iable. Notation f0 stands for initial value of true anomaly.
During each iteration of simulation, true anomaly f varies
between f0 and f0 + 4π. Software MATLAB is used to
perform the simulation. In this study, the periodic orbits up
to ten loops are obtained for different values of f0 and e,
where f0 is referred as the initial true anomaly while e is the
eccentricity of the orbit of chief satellite. &e initial position
of the deputy satellite is given as (x0, 0, z0) and initial ve-
locity is taken as (0, y0

.

, 0).&e orbital period and number of
loops are denoted as T and NL, respectively.

3.1. Periodic Orbits When e � 0.1. In this section, we analyze
periodic orbits of deputy satellite with 1–10 loops when ec-
centricity e of chief satellite’s orbit is taken in to account as 0.1.
During this analysis, the effect of initial velocity of deputy
satellite in the y direction and initial true anomaly of deputy

satellite are considered. &us, two different sets of initial
velocities of deputy satellite (0, 0.002, 0) and (0, 0.005, 0) are
taken into account. Also, three different values of initial true
anomaly f0 of deputy satellites are taken as π/6, π/3, and π/2.
&is analysis will be investigated numerically and graphically
through Figures 2–6 and Table 1. &e initial position of
deputy satellite and orbital period of the periodic orbits is
obtained for each set of orbits with 1–10 loops. It is observed
that the orbital period decreases as velocity increases for given
number of loops, eccentricity, and initial true anomaly.

Figures 2(a)–2(f) show the two-dimensional view of the
periodic orbits with the number of loops 1 to 6 with a given
value of x0. &ese orbits are obtained when the initial true
anomaly and initial velocities are π/6 and (0, 0.002, 0),
respectively.

Figures 3(a)–3(f) cover the three-dimensional view of
the periodic orbits with the number of loops from 1 to 6 with
a given value of x0.&ese orbits are obtained when the initial
true anomaly and initial velocity are π/3 and (0, 0.002, 0),
respectively.

Figures 4(a)–4(f) show the three-dimensional view of
periodic orbits with the number of loops from 5 to 10 with
given value of x0. &ese orbits are obtained when initial true
anomaly and initial velocity are π/3 and (0, 0.005, 0), re-
spectively. All the orbits are plotted in the same dimensions
so that the comparative study can be possible. &e com-
parative study of periodic orbits for different initial values of
velocities depicts that shape and geometric parameters of
orbits are same though the values of initial velocities are
different.

Figures 5(a)–5(f) show the periodic orbits with the
number of loops 3 to 8 with a given value of x0. &ese orbits
are obtained when the initial true anomaly and initial ve-
locity are π/2 and (0, 0.002, 0), respectively.

&e analysis of the periodic orbits for three different
initial true anomalies π/6, π/3, and π/2 are observed in
Table 1. Two different sets of initial velocities (0, 0.002, 0)
and (0, 0.005, 0) are considered for the study when e � 0.1.
&e initial position of deputy satellite and orbital period of
the periodic orbits are obtained for each set of orbits with
1–10 loops. &e orbital period is conserved as the velocity
increases for given number of loops, eccentricity, and initial
true anomaly.

&e variation in initial position and period of the pe-
riodic orbits is given in Figures 6(a) and 6(b) for initial
velocities (0, 0.002, 0) and (0, 0.005, 0), respectively. From
these graphs, it can be observed that, as the number of loops
in the given orbit increases, the initial position of the pe-
riodic orbit moves towards the origin (the initial position of
chief satellite) irrespective of the initial value of the true
anomaly. From these graphs, it can also be observed that, as
number of loops in the given orbit increases, the period of
the periodic orbit increases irrespective of the initial true
anomaly.

3.2. Periodic Orbits When e � 0.2. Now, we have considered
the eccentricity of chief satellite’s orbit as 0.2 to analyze the
effect of eccentricity of chief satellite’s orbit, on periodic
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orbits of deputy satellite with 1–10 loops. Here, we have
considered the proposed values of initial velocity of deputy
satellite and initial true anomaly of deputy satellite with

e � 0.1. So that the comparative study is possible and effect
of individual parameter and combination of more than one
parameter can be investigated. &is analysis will be
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Figure 2: Periodic orbits when e � 0.1, f0 � π/6, and velocity _y0 � 0.002. (a) Single-loop orbit, when x0 � 0.097990643050. (b) Two-loop
orbit, when x0 � 0.060941913025. (c) &ree-loop orbit, when x0 � 0.0442639955. (d) Four-loop orbit, when x0 � 0.03469385. (e) Five-loop
orbit, when x0 � 0.02847325. (f ) Six-loop orbit, when x0 � 0.02410242.
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investigated numerically and graphically through
Figures 7–10 and Table 2.

Figures 7(a)–7(f) show the periodic orbits with 1 to 6
number of loops with initial true anomaly and velocity of π/6
and (0, 0.002, 0), w/ respectively.

Figures 8(a)–8(f) show the periodic orbits with 3 to 8
number of loops with an initial true anomaly and velocity of
π/3 with (0, 0.002, 0), respectively.

Figures 9(a)–9(f) show the periodic orbits with the
number of loops 5 to 10 with a given value of x0.&ese orbits
are obtained when the initial true anomaly and initial ve-
locities are π/2 and (0, 0.002, 0), respectively.

&e analysis of periodic orbits for three initial values of
true anomalies π/6, π/3, and π/2 with eccentricity e � 0.2 is
given in Table 2. &e entire study has been performed by
considering two different sets of initial velocities as (0, 0.002, 0)
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Figure 3: Periodic orbits when e � 0.1, f0 � π/3, and velocity _y0 � 0.002. (a) Single-loop orbit, when x0 � 0.093525298500. (b) Two-loop
orbit, when x0 � 0.059057635000. (c) &ree-loop orbit, when x0 � 0.043092145000. (d) Four-loop orbit, when x0 � 0.033847995000. (e) Five-
loop orbit, when x0 � 0.027812858705. (f ) Six-loop orbit, when x0 � 0.0235613.
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and (0, 0.005, 0).&e initial position and period of the periodic
orbits are obtained for each set of orbits with 1–10 loops.

Figures 10(a) and 10(b) indicates the variation in the
initial position and period of the periodic orbits for initial
velocities (0, 0.002, 0) and (0, 0.005, 0), respectively. Here,
eccentricity of chief satellite’s orbit is considered 0.2. From
these graphs, it can be observed that, as number of loops in
the given orbit increases, the initial position of the periodic
orbit moves towards the origin (the initial position of chief
satellite) irrespective of the initial value of true anomaly.

From these graphs, it can also be observed that, as number of
loops in the given orbit increases, the period of the periodic
orbit increases irrespective of the initial true anomaly.

4. Effect of Eccentricity of Chief Satellite’s Orbit

In the previous section, we have considered that the ec-
centricity e of chief satellite’s orbit is 0.1 and 0.2, respectively.
But, in the current section, we compare the effect of variation
in eccentricity of chief satellite’s orbit on periodic orbits of
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Figure 4: Periodic orbits when e � 0.1 and f0 � π/3 and velocity _y0 � 0.005. (a) Five-loop orbit, when x0 � 0.026250375000. (b) Six-loop
orbit, when x0 � 0.022008125000. (c) Seven-loop orbit, when x0 � 0.018857650000. (d) Eight-loop orbit, when x0 � 0.016425375000. (e) Nine-
loop orbit, when x0 � 0.01449068105. (f ) Ten-loop orbit, when x0 � 0.012915.
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deputy satellite with the number of loops 1–10.&is effect on
initial position and orbital period of periodic orbits of
deputy satellite with 1–10 number of loops will be shown in
Figures 11–13.

Figures 11(a) and 11(b) give the relation between the
initial position and orbital period and number of loops with
consideration of three different values of true anomaly as
π/6, π/3, and π/2. &e velocity is taken in magnitude as (0,
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Figure 5: Periodic orbits when e � 0.1, f0 � π/2, and velocity _y0 � 0.002. (a) &ree-loop orbit, when x0 � 0.041398075500. (b) Four-loop
orbit, when x0 � 0.032620475000. (c) Five-loop orbit, when x0 � 0.0268523875. (d) Six-loop orbit, when x0 � 0.0227732155. (e) Seven-loop
orbit, when x0 � 0.0197361. (f ) Eight-loop orbit, when x0 � 0.017387015.
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Figure 6: Variation in the initial position of deputy satellite and orbital period when e � 0.1. (a) Velocity _y0 � 0.002. (b) Velocity _y0 � 0.005.

Table 1: Analysis of periodic orbits with e � 0.1.

f0 _y0 z0 x0 T NL

π/6 0.002 0.0001

0.097990643050 1.250 01
0.060941913025 1.885 02
0.044263995500 2.520 03
0.034693850000 3.140 04
0.028473250000 3.765 05
0.024102420000 4.400 06
0.020861979500 5.020 07
0.018363295500 5.650 08
0.016377575000 6.275 09
0.014761465000 6.900 10

π/6 0.005 0.0001

0.096286152500 1.250 01
0.059311045000 1.885 02
0.042667625000 2.520 03
0.033117650000 3.140 04
0.026910306500 3.765 05
0.022548855000 4.400 06
0.019315450000 5.020 07
0.016822145000 5.650 08
0.014840725000 6.275 09
0.013228150000 6.900 10

π/3 0.002 0.0001

0.093525298500 1.260 01
0.059057635000 1.885 02
0.043092145000 2.520 03
0.033847995000 3.140 04
0.027812858705 3.770 05
0.023561300000 4.400 06
0.020403925000 5.030 07
0.017966250000 5.655 08
0.016027250000 6.285 09
0.014448085000 6.950 10

Table 1: Continued.

f0 _y0 z0 x0 T NL

π/3 0.005 0.0001

0.091825025000 1.260 01
0.057428285000 1.885 02
0.041496687050 2.520 03
0.032272425000 3.140 04
0.026250375000 3.770 05
0.022008125000 4.400 06
0.018857650000 5.030 07
0.016425375000 5.655 08
0.014490681050 6.285 09
0.012915000000 6.950 10

π/2 0.002 0.0001

0.087338089500 1.276 01
0.056357275000 1.907 02
0.041398075500 2.540 03
0.032620475000 3.170 04
0.026852387500 3.803 05
0.022773215500 4.450 06
0.019736100000 5.070 07
0.017387015000 5.700 08
0.015515950000 6.334 09
0.013990535000 6.960 10

π/2 0.005 0.0001

0.085643905000 1.276 01
0.054730207500 1.907 02
0.039803926500 2.540 03
0.031045825000 3.170 04
0.025290650000 3.803 05
0.021220605000 4.450 06
0.018190250000 5.070 07
0.015846495000 5.700 08
0.013979735000 6.334 09
0.012457750000 6.960 10
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0.002, 0). It has been observed from the Figure 11(a) for
single-loop orbit that, as the true anomaly increases, the
initial position of the periodic orbit moves towards zero.
&us, it has been observed from the comparative study that,
in both the cases of initial velocities and eccentricities, as true

anomaly increases, the initial position of periodic orbit
moves towards zero. Also, it can be seen that, as we shift
towards 1- to 10-loop periodic orbit, the difference in the
initial position due to the true anomaly decreases. &us,
initial locations of periodic orbits for three different values of
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Figure 7: Periodic orbits when e � 0.2, f0 � π/6, and velocity _y0 � 0.002. (a) One-loop orbit, when x0 � 0.088265415. (b) Two-loop orbit,
when x0 � 0.0567688625. (c)&ree-loop orbit, when x0 � 0.041657425. (d) Four-loop orbit, when x0 � 0.032808755. (e) Five-loop orbit, when
x0 � 0.026999870500. (f ) Six-loop orbit, when x0 � 0.022894322500.
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true anomaly come closer to each other as the number of
loops increases from 1 to 10. Variation in periods of periodic
orbits with respect to the number of loops for three different
values of true anomaly as π/6, π/3, and π/2 is shown in
Figure 11(b) with a velocity (0, 0.002, 0). It has been seen in

both cases of initial velocities and eccentricities that orbital
period increases with the increasing number of loops.

Figures 12(a) and 12(b) give the relation between the
initial position and orbital period and number of loops with
consideration of three different values of true anomaly as
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Figure 8: Periodic orbits when e � 0.2, f0 � π/3 and velocity _y0 � 0.002. (a) &ree loops orbit, when x0 � 0.0396983975. (b) Four loops
orbit, when x0 � 0.031383115. (c) Five loops orbit, when x0 � 0.0258816925. (d) Six loops orbit, when x0 � 0.02197541025. (e) Seven loops
orbit, when x0 � 0.019059245000. (f ) Eight loops orbit, when x0 � 0.016799437500.
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π/6, π/3, and π/2. &e velocity is taken in magnitude as (0,
0.005, 0). It has been observed from the Figure 12(a) for
single-loop orbit that, as the true anomaly increases, the
initial position of periodic orbit moves towards zero.&us, it
has been observed from the comparative study that, in both

the cases of initial velocities and eccentricities, as true
anomaly increases, the initial position of periodic orbit
moves towards zero. Also, it can be seen that, as we shift
towards 1- to 10-loop periodic orbit, the difference in the
initial position due to the true anomaly decreases. &us, the
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Figure 9: Periodic orbits when e � 0.2, f0 � π/2, and velocity _y0 � 0.002. (a) Five-loop orbit, when x0 � 0.024156265. (b) Six-loop orbit,
when x0 � 0.020553885. (c) Seven-loop orbit, when x0 � 0.01785125. (d) Eight-loop orbit, when x0 � 0.0157495245. (e) Nine-loop orbit, when
x0 � 0.029191930500. (f ) Ten-loop orbit, when x0 � 0.027620026500.
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Figure 10: Variation in the initial position of deputy satellite and orbital period when e � 0.2. (a) Velocity _y0 � 0.002. (b) Velocity
_y0 � 0.005.

Table 2: Analysis of periodic orbits with e � 0.2.

f0 _y0 z0 x0 T NL

π/6 0.002 0.0001

0.088265415000 1.272 01
0.056768862500 1.910 02
0.041657425000 2.533 03
0.032808755000 3.165 04
0.026999870500 3.797 05
0.022894322500 4.450 06
0.019838765000 5.062 07
0.017476085000 5.700 08
0.015594612750 6.325 09
0.014060927500 6.956 10

π/6 0.005 0.0001

0.086570301500 1.272 01
0.055141436550 1.910 02
0.040063075000 2.533 03
0.031233975000 3.165 04
0.025437996500 3.797 05
0.021341635000 4.450 06
0.018292920100 5.062 07
0.015935540000 5.700 08
0.014058295500 6.325 09
0.012528082500 6.956 10

π/3 0.002 0.0001

0.081430725000 1.293 01
0.053676025000 1.926 02
0.039698397500 2.600 03
0.031383115000 3.200 04
0.025881692500 3.837 05
0.021975410250 4.474 06
0.019059245000 5.115 07
0.016799437500 5.748 08
0.014996967500 6.386 09
0.013525826550 7.025 10

Table 2: Continued.

f0 _y0 z0 x0 T NL

π/3 0.005 0.0001

0.079742645000 1.293 01
0.052051320000 1.926 02
0.038105645000 2.600 03
0.029809435000 3.200 04
0.024320665000 3.837 05
0.020423376500 4.474 06
0.017513965000 5.115 07
0.015259385000 5.748 08
0.013461085000 6.386 09
0.011993350000 7.025 10

π/2 0.002 0.0001

0.071713530000 1.328 01
0.049027550000 1.968 02
0.036708365000 2.612 03
0.029191930500 3.257 04
0.024156265000 3.903 05
0.020553885000 4.550 06
0.017851250000 5.195 07
0.015749524500 5.843 08
0.014068710500 6.488 09
0.012694067500 7.135 10

π/2 0.005 0.0001

0.070036225000 1.328 01
0.047407175000 1.968 02
0.035118165000 2.612 03
0.027620026500 3.257 04
0.022596595500 3.903 05
0.019002955000 4.550 06
0.016306865000 5.195 07
0.014210250000 5.843 08
0.012533505000 6.488 09
0.011162205000 7.135 10
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initial locations of periodic orbits for three different values of
true anomaly come closer to each other as the number of
loops increases from 1 to 10. &e variation in periods of
periodic orbits with respect to the number of loops for three
different values of true anomaly as π/6, π/3, and π/2 is shown
in Figure 12(b) with a velocity (0, 0.005, 0). It has been seen
in both cases of initial velocities and eccentricities that
orbital period increases with increasing number of loops.

Figures 13(a)–13(c) show the variation in the initial
position and period with respect to number of loops for two
different eccentricities 0.1 and 0.2 with given initial true
anomalies π/6, π/3, and π/2, respectively. In these three
figures, the velocity is considered as (0, 0.002, 0). &is gives

information about the variation in the initial position and
orbital period when the values of eccentricity are changed as
shown in all figures. &e sharp observation for the single-
loop orbit depicts that, for the given value of true anomaly, as
the eccentricity goes on increasing and the initial position of
periodic orbit shifts towards x0 � 0. It has also been ob-
served that, moving in the direction from 1- to 10-loop orbit,
differences in the initial position for a given value of true
anomaly decreases with increasing eccentricity. &e orbital
period is conserved as the velocity increases for a given
number of loops, eccentricity, and initial true anomaly.

It is observed that, with the ascending number of loops,
the initial position of periodic orbits approaches to the origin
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Figure 11: Variation in (a) the initial position of periodic orbits and (b) orbital period when _y0 � 0.002.
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Figure 12: Variation in the (a) initial position of periodic orbits and (b) orbital period when _y0 � 0.005.
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with an increasing value of orbital periods. When the ec-
centricity is 0.1, for all the true anomalies, we get two-di-
mensional periodic orbits, but especially when true anomaly
approaches to π/3, the orbits becomes three-dimensional
periodic and then again, as true anomaly approaches π/2, the
three-dimensional orbits becomes quasi in nature. Whereas
when the eccentricity is 0.2, we get two-dimensional periodic
orbits for all the true anomalies. &e nature of three di-
mensional orbits becomes highly quasi with an increasing
value of the true anomaly.&us, as the eccentricity increases,
the nature of periodic orbits becomes more chaotic with an
increasing value of true anomaly.

&e periodic solution plays a vital role in the field of
celestial mechanics. However, a solution feature in the form
of mathematical expression for the behavior of the trajectory
does not directly appear, but these features can be clearly
shown when the solution is graphically represented. It also
identifies the orbit whether it is loop or without loop. In case

an orbit is having loops, the number of loops with internal
position or external position can be determined easily with
the same solution too. An orbital period of the orbit is the
most important parameter that gives information about the
time required to complete one revolution by the deputy
satellite. &e value of this parameter is determined easily by
the periodic solution. It is evident from this study that, as the
number of loops increases, the period of the periodic orbit
increases. Periodic orbits with a lower number of orbital
periods have been more emphasized in celestial mechanics.
In this regard, the main focus of this study is 1- to 10-loop
periodic orbit with a value of period less than 7. In formation
satellites, the initial true anomaly and initial velocity of
deputy satellite play an important role which affects the
initial position of periodic orbits of deputy satellite. Also, in
the LVLH frame, the origin is located at the position of chief
satellite, so the eccentricity of the orbit of chief satellite also
affects the initial position and orbital period of deputy
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Figure 13: Variation in the initial position and orbital period, when velocity is (0, 0.002, 0). (a) f0 � π/6. (b) f0 � π/3. (c) f0 � π/2.
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satellite. &us, it is important to study the effect of these
parameters on periodic orbit of deputy satellite.

5. Conclusion

&e main focus of this work is on periodic orbit of deputy
satellite in the elliptical case of formation satellites. &e
analysis of 1- to 10-loop periodic orbits with different values
of initial true anomaly f0 and eccentricity e of the orbit of
chief satellite has been performed by considering the initial
position (x0, 0, 0.0001) and initial velocity (0, _y0, 0). It has
been observed that, as the number of loops ascends from 1 to
10, there is an increment in the orbital period, and the initial
position of periodic orbits approaches to origin. For a given
number of loops, eccentricity, and initial true anomaly, the
orbital period is conserved with regard as velocity ascends.

It is noticed that the effect of eccentricity and initial true
anomaly on orbital period is negligible. For the given ec-
centricity e and initial velocity (0, _y0, 0), as number of loops
increases, the initial position (x0, 0, 0.0001) shifts towards
zero. It has also been concluded that, for the given number of
loops, the effect of eccentricity and initial true anomaly on
orbital period is negligible. Furthermore, with the given
value of initial true anomaly f0 and initial velocity (0, _y0, 0),
the number of loops and increment in eccentricity e and
initial position (x0, 0, 0.0001) approach the origin. &us, to
conclude with that for given value of true anomaly and
eccentricity, there is a decrement in the value between the
differences in initial position vectors with the ascending
number of loops. In other words, for a given value of true
anomaly and eccentricity, the difference in the initial po-
sition (Δx, 0, 0.0001) decreases as the number of loops
increases.

Finally, we summarize and state that, in the frame work
of formation satellite, 1–10 loop periodic orbits of deputy
satellite are analyzed. In this analysis, there are three pa-
rameters, namely, initial true anomaly, initial velocity of
deputy satellite, and eccentricity of orbit of chief satellite.
&e initial position and orbital period are investigated for
these orbits.

It is observed that, with the ascending number of loops,
the initial position of periodic orbits approaches to origin
with an increasing value of orbital periods. When the ec-
centricity is 0.1, for all the true anomalies, we get two-di-
mensional periodic orbits, but especially when true anomaly
approaches to π/3, the orbits become three-dimensional
periodic and then, again as true anomaly approaches π/2, the
three-dimensional orbits becomes quasi in nature. Whereas
when eccentricity is 0.2, we get two-dimensional periodic
orbits for all the true anomalies. &e nature of three-di-
mensional orbits becomes highly quasi with an increasing
value of true anomaly.&us, as the eccentricity increases, the
nature of periodic orbits becomes more chaotic with an
increasing value of true anomaly.

It is remarkable that the orbital period remains un-
changed for the given initial true anomaly, eccentricity, and
number of loops with ascending velocity. &us, the orbital
period and nature of the periodic orbits are conserved with a
negligible displacement in the initial position of the orbits

with increasing velocity. It has also been observed that, for a
given number of loops, eccentricity, and initial true anomaly
with the increment in velocity, there is a decrement in the
value of the initial position of the orbit. &us, to conclude
with that for a given value of true anomaly and eccentricity,
there is a decrement in the value between the differences in
initial position vectors with the ascending number of loops.
Also, with the rise in velocity, there is negligible change in
the value of differences in the initial position (Δx, 0, 0.0001)
corresponding to each loop.
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