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)e Mount Wilson magnetic classification of sunspot groups is thought to be meaningful to forecast flares’ eruptions. In this
paper, we adopt a deep learning method, CornerNet-Saccade, to perform the Mount Wilson magnetic classification of sunspot
groups. It includes three stages, generating object locations, detecting objects, and merging detections. )e key technologies
consist of the backbone as Hourglass-54, the attention mechanism, and the key points’ mechanism including the top-left corners
and the bottom-right corners of the object by corner pooling layers. )ese technologies improve the efficiency of detecting the
objects without sacrificing accuracy. A dataset is built by a total of 2486 composited images which are composited with the
continuum images and the correspondingmagnetograms fromHMI andMDI. After training the network, the sunspot groups in a
composited solar full image are detected and classified in 3 seconds on average. )e test results show that this method has a good
performance, with the accuracy, precision, recall, and mAP as 0.94, 0.93, 0.94, and 0.90, respectively. Moreover, the flare
productivities of different types of sunspot groups from 2011 to 2020 are calculated. As Itot ≥ 1, the flare productivities of
α, β, βc, βδ, and βcδ sunspot groups are 0.14, 0.28, 0.61, 0.71, and 0.87, respectively. As Itot ≥ 10, the flare productivities are 0.02,
0.07, 0.27, 0.45, and 0.65, respectively. It means that the βc, βδ, and βcδ types are indeed very closely related to the eruption of solar
flares, especially the βcδ type. Based on the reliability of this method, the sunspot groups of the HMI solar full images from 2011 to
2020 are detected and classified, and the detailed data are shared on the website (https://61.166.157.71/MWMCSG.html).

1. Introduction

Sunspots are the typical manifestation of the strong mag-
netic fields on the solar surface. )ey are closely associated
with solar activities, such as solar flares and coronal mass
ejections [1–8]. )ese activities will disrupt the atmosphere
of space and Earth, affect the ground short wave radio
communication, and produce hazards such as magnetic
storm [5].

Sunspots tend to appear in magnetically bipolar groups.
Even a unipolar spot group really has dual polarity; the
magnetic field strength of the other polarity is not intense
enough to cause a visible spot. With the evolving of sunspot
groups, they show various morphologies and complex
magnetic polarities. )erefore, some classification schemes
were proposed to describe the generality of sunspot groups.

Typically, three classification schemes have been successively
proposed: Zurich, McIntosh, and Mount Wilson magnetic
classification. )e Zurich sunspot classification was pro-
posed to classify the sunspots into nine classes, A to J,
comprising almost all stages of sunspots occurring mainly
[9, 10]. Later, the Zurich classification was modified and
expanded to the McIntosh classification, by adding size,
stability, and complexity that appeared to correlate with
flares [11, 12].)e formwas expanded as Zpc, where Z is the
modified Zurich class, p is the type of principal spot, and c is
the degree of compactness in the interior of the group. )ey
present that the correlations with flares are excel with earlier
Zurich classification, especially the larger flares correlating
with types Dki and Eki [12]. Both the Zurich classification
and the McIntosh classification mainly depend on the
morphology of sunspots, which require only white-light
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observations. )eMountWilson magnetic classification was
proposed earlier [13]. )e scheme classifies sunspot groups
into eight classes based on their morphological andmagnetic
properties together (for the detailed please, see Section 2).
)erefore, both white-light observations and magnetograms
are needed. Most M-class and X-class flares are found to be
erupting above the complex sunspot groups, just like the βc,
βδ, and βcδ sunspots groups [14]. In particular, the βcδ
sunspot groups have very high probabilities of flares [15].
Whichever classification schemes indicate that the more
complex the morphological structure and the magnetic
polarity of a sunspot group is, the higher the probability of
the flare is [16, 17].

Previous authors have presented some methods for the
above three classification schemes. For instance, Nguyen
et al. [18] used machine learning techniques, including
decision trees, rough sets, hierarchical clustering, and lay-
ered learningmethods, to classify sunspot groups into seven-
class modified Zurich classes. Abd et al. [19] employed
support vector machines to achieve modified Zurich clas-
sification. Colak and Qahwaji [20] adopted the traditional
image processing algorithm to detect sunspots, such as
morphological operator, thresholding, and region growing;
the features of sunspot groups, like length, height, and area,
were then extracted; the McIntosh classification was de-
termined finally by a decision tree using the extracted fea-
tures. Hong et al. [21] performed the Mount Wilson
magnetic classification according to features such as plus
polarity, minus polarity, and magnetic neutral line, which
are extracted from the continuum images and magneto-
grams after doing morphological operations and threshold
methods. Padinhatteeri et al. [22] proposed an algorithm
called SMART-DF to detect the δ type.)ey also adopted the
threshold method to identify the umbra and penumbra, and
then the pairs with a distance less than 2∘ are reserved, where
the distance is between each possible pairing of opposite-
polarity umbrae. Finally, the pairs of opposite-polarity spots
that pass several conditions involving the areas of umbra and
penumbra are marked as δ type. Recently, Fang et al. [23]
used a deep learning method based on Lenet-5 [24, 25] to
classify the sunspot groups into α, β, and β-x types, where the
sunspot type falls into three categories based on the Mount
Wilson classification. However, the automatic method for
the whole Mount Wilson classification in sunspot groups is
still lacking.

In recent years, deep learning methods use various
machine learning algorithms based on multilayer neural
networks to solve problems [26], such as image detection
and classification [27, 28]. )e core of these methods is deep
feature learning, which acquires hierarchical feature infor-
mation through hierarchical networks. CornerNet-Saccade
[29] is a new object detection algorithm, whose detection
scheme based on the attention mechanism [30] and the key
points [31–33] make it have advanced performance in the
fields of object detection. )is paper proposes a method for
the Mount Wilson magnetic classification of sunspot groups
based on CornerNet-Saccade. It obtains a good performance
with the accuracy, precision, recall, and mAP, which all are
above 0.90.

)e main organizational structure of this paper is as
follows. Section 2 introduces the Mount Wilson magnetic
classification scheme briefly. Section 3 describes the data
source and how to build the dataset. In Section 4, the method
including the main steps is listed. Section 5 details the ex-
periments, results, and evaluation of the method. Sections 6
and 7 discuss and summarize the results, respectively.

2. Mount Wilson Magnetic Classification of
Sunspot Groups

)eMount Wilson Observatory regards the bipolar sunspot
group as the basic type and other types as the deformations
of the bipolar sunspot group according to the polarities of
the magnetic fields [13]. Following the classification scheme,
α is a unipolar sunspot group, and β is a distinct bipolar
sunspot group with opposite polarities. c is a complex
sunspot group with irregular polarities. δ is a sunspot group
with umbra which have opposite polarities and are separated
by less than 2∘ within one penumbra. βc is a bipolar sunspot
group with more than one continuous line. Besides that, if
the sunspot groups contain one or more δ spots, δ spots shall
be added to the corresponding types. )is classification is
also called Hale class. )e detailed description of the clas-
sification is as follows:

(i) α is a unipolar sunspot group
(ii) β is a bipolar sunspot group, with the simple and

distinct division between opposite polarities
(iii) c is a complex sunspot group with irregular

polarities
(iv) δ is a sunspot group with umbra having opposite

polarities within a penumbra and spans less then 2∘

(v) cδ is a c sunspot group containing one or more δ
sunspots

(vi) βc is a bipolar sunspot group with more than one
continuous polarity reversal line

(vii) βδ is a β sunspot group containing one or more δ
sunspots

(viii) βcδ is a βc sunspot group containing one ormore δ
sunspots

3. Data

)e data used in this paper come from the Helioseismic and
Magnetic Imager (HMI) of the Solar Dynamics Observatory
(SDO) [34] satellite and Michelson Doppler Imager (MDI)
of the Solar and Heliospheric Observatory (SOHO) [35]. We
used the continuum images and magnetograms, where the
HMI data span from June 2010 to April 2020, and the MDI
data span from July 2000 to September 2001. Both of them
are selected with 12-hour interval.

Since the Mount Wilson magnetic classification needs to
take into account the morphological structures and mag-
netic properties of the sunspot groups, we first composited
the sunspot morphological structure information from the
continuum image and the magnetic properties information
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from themagnetogram into one image.)emain steps are as
follows (Figure 1):

(1) )e continuum image and the cotemporal magne-
togram are smoothed and normalized separately.

(2) )e penumbra boundaries and umbra regions of the
continuum image are extracted by the threshold
method [22]. )ey are represented by A and B, re-
spectively. )e positive and negative polar regions of
the magnetogram are extracted, which are repre-
sented by C and D, respectively.

(3) E � B∩C and F � B∩D, where E is the positive
region of the umbra, and F is the negative region. ∩
is the intersection operation.

(4) )e penumbra boundaries corresponding to A in the
continuum image are contoured with green; the
positive regions of the umbra corresponding to E are
filled with red; and the negative regions of the umbra
corresponding to F are filled with blue. Figure 1
shows an example. Figure 1(a) is the continuum
image, Figure 1(b) is the magnetogram, and
Figure 1(c) is the composited image.

A total of 2486 composited images were used to build the
Mount Wilson magnetic classification datasets. )e training
set is used to train the deep learning network model, which
consists of 1886 composited images. )e test set is used to
test the performance of the model, which consists of 600
composited images.)e HMI data observed daily at 08:00:00
UT and 20:00:00 UT from 1 June 2010 to 31 December 2016
were mainly used for building the training set, and the data
from 1 January 2017 to 30 April 2020 were used for the test
set. All the samples were selected from them representa-
tively. )e MDI data which were observed in July 2000
(NOAA 9601) and September 2001 (NOAA 9087) were
supplements because there were no c and cδ types occurring
from 2010 until April 2020 according to the Solar Region
Summary (SRS) text file (https://www.swpc.noaa.gov/). )e
c and cδ types only appeared in NOAA 9601 and NOAA
9087 from 1996 until April 2020. )erefore, all the scarce
data including c and cδ types were added to the training set
and the test set without intersection. Besides that, some data
including the βδ and βcδ types from 2010 to 2016 were
moved from the training set to the test set because these two
types have been relatively lacking since 2017. It should be
noted that, from 1996 until now, the SRS file has not re-
ported δ type. )erefore, the remainder of this paper no
longer involves δ type.

LabelMe tool [36] was used to label the samples of the
dataset. Each sample, a sunspot group, was given a label
according to the combination of the definition of Mount
Wilson magnetic classification [13] and the label of the SRS
file. If the label of a sunspot group from the SRS was
doubtful, then the label was mainly decided by the definition
of Mount Wilson magnetic classification. A total of 10,286
samples were labeled in the datasets, including 7805 samples
in the training set and 2433 samples in the testing set. Table 1
lists the numbers and proportions of all samples for various
types of sunspot groups in the datasets. It can be seen that the

numbers of samples differ greatly, which is due to the quite
difference in occurrences of different types of sunspot
groups. For example, the β type appears frequently, while the
c type appears rarely. We had tried to solve the problem of
the unbalanced numbers of the samples by oversampling.
However, the experimental results show that the classifi-
cation effect is not significantly improved. )erefore, this
paper does not do anything to balance the samples of various
types of sunspot groups.

4. Method

We adopted a new deep learning model, CornerNet-Sac-
cade, to implement the Mount Wilson magnetic classifi-
cation of sunspot groups. It mainly includes three stages,
generating object locations, detecting objects, and merging
detections. )e main flow of the method is shown in Fig-
ure 2. )e stage of generating object locations is plotted in
blue, which is to find approximate locations and rough sizes
of the sunspot groups on the solar full images. )e stage of
detecting objects is plotted in orange, which is to further
determine the specific locations of the sunspot groups on the
basis of the first stage and give the classification and con-
fidence score of the sunspot groups. )e third stage of
merging detections is plotted in red, which is to merge the
detections for eliminating the redundant boxes.

)e deep learning method needs training the network by
the samples in the training set first, which is to adjust the
parameters of networks by executing the feedforward
propagation and back propagation in iterations. )e
propagation algorithm performs a series of operations such
as convolution and pooling to obtain the classification
probability and bounding box of the objects. )e loss value
of the loss function, which is used to evaluate the error
between the estimated value and the true value, is then fed
back to the entire network by the back propagation algo-
rithm; that is, the gradient of each layer of the networks is
calculated using the gradient descent algorithm to contin-
uously adjust the weight of each parameter to minimize the
loss. )e training procedure is iterated until the loss value
converges steadily. )e main steps, seen in Figure 2, are
detailed in the following (Figure 3).

(1) Downsizing the composited images for reducing
inference time under limited memory.

(2) Inputting the downsized images to the backbone
network, Hourglass-54 [37]. )e Hourglass-54 net-
work is composed of three hourglass modules, which
has a total depth of 54 layers. Each hourglass is a
modular network with a symmetrical structure (see
Figure 3). )e hourglass network first applies three
stages of convolution and downsampling layers to
reduce the size of the input feature maps and then
upsamples the features back to the original resolu-
tion by three stages of convolution and upsampling
layers, combining features across scales. Down-
sampling is achieved by convolution with stride of 2,
and upsampling is achieved by nearest neighbour
interpolate [38]. One residual unit [39] is applied
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after each downsampling layer and upsampling
layers, which corresponds to each box in Figure 3.
Each residual unit is composed of two parts, three
weight layers, and one identity mapping (or shortcut
connections). Each weight layer is used to obtain
deep-level information, which is designed as con-
volutions and following ReLU (Conv-ReLU). )e
identity mapping is used to retain the original in-
formation, which is designed as a 1× 1 convolution
for matching dimensions with the output of the
weight layer. )ere are ten residual units in the
hourglass module, which better solves the vanishing
degradation problem of deep neural networks and
improves the network performance. A total of three
hourglass modules together allow for repeated bot-
tom-up, top-down inference across scales, which
capture and consolidate information across all scales
of the image.)e outputs of Hourglass-54 are a set of
feature maps.

(3) Applying 3× 3 Conv-ReLU module and a 1× 1
Conv-Sigmoid module on each feature map to
predict attention maps by the attention mechanism.
)e attention mechanism is derived from the sac-
cades mechanism, which refers to a sequence of rapid
eye movements to fixate different image regions
[40].)e feature maps at finer scales are used for
smaller objects and the ones at coarser scales are for
larger objects. A total of three size scales of attention
maps are predicted, corresponding to small, me-
dium, and large objects, respectively. )e attention
map indicates the approximate locations and rough
sizes of the object. Meanwhile, Hourglass-54 also

generates bounding boxes for the detected objects in
the downsized image. )e bounding boxes are ob-
tained by detecting the two key points, the top-left
corners and the bottom-right corners of the object,
through corner pooling layers [33]. If the Intersec-
tion over Union (IoU, Rezatofighi et al. [41]), the
ratio of intersection and union of the bounding box
and ground truth, is greater than a threshold (set as
0.3 in this work), the bounding box is reserved
because it is more likely to contain the targets. So far,
the approximate locations and sizes of the objects
from the attention maps and bounding boxes are
obtained separately.

(4) the downsampled image at each possible location to
find the locations of the objects more accurately. For
the locations obtained from the attention maps, the
zoom ratios of small, medium, and large objects are
commonly set as 4, 2, and 1, respectively. For the
locations obtained from the bounding boxes, the
downsized image is enlarged according to the size of
the bounding box.

(5) the enlarged image back to the original image and
then cropping the regions by taking the locations as
the center points.

(6) the regions according to the scores and then picking
up the top k locations with the highest scores.

(7) the possible objects in each region through the
second Hourglass-54. )e bounding boxes of the
objects are fine adjusted by detecting the two key
points, the top-left corners and the bottom-right
corners of the object, through the corner pooling
layers.

(8) Training the network. )e loss function of the model
consists of four losses with different weights [33]: a
variant of focal loss, Ldet [42], the smooth L1 loss at
ground-truth corner locations, Loff [43], the loss of
grouping the corners, Lpull [44], and the loss of
separating the corners, Lpush [44].

2014.06.08

(a) (b) (c)

Figure 1: An example of compositing the morphological structure information of sunspots from the continuum image and the magnetic
properties’ information from the magnetogram.)e time is 20:00:00 UTon 8 June 2014. (a))e continuum image. (b))emagnetogram.
(c) )e composited image, in which the penumbra boundaries of the sunspot groups are contoured with green, and the positive umbra
and the negative umbra are filled with red and blue, respectively.

Table 1: )e numbers and proportions of the samples of various
types.

Type α β c cδ βc βδ βcδ
Number 2953 5086 13 28 1470 135 601
Proportion (%) 28.71 49.45 0.13 0.27 14.29 1.31 5.84
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(9) Testing the network. )e feedforward propagation is
performed only once with the flow of Figure 2, except
for back propagation with loss functions. Besides
that, all detected bounding boxes are merged in the
solar full image, where the redundant bounding
boxes are eliminated based on Nonmaximum Sup-
pression (NMS) [45].)e typical NMS is to find local

maximum value and suppress nonlocal maximum
values for each class, which aims to eliminate the
redundant boxes of each class. )is work modifies
the typical NMS as eliminating the redundant boxes
for all bounding boxes as a whole, not repeating for
each class. On average, it takes about three seconds to
process one image.

Downsizing

Attention maps

Object locations
(x0, y0)
(x1, y1)

(x2, y2)

(x2, y2)
(x0, y0)
(x1, y1)

Ranking
and picking

Cropping regions

Hourglass-54 Hourglass-54

NMS

Attention 
mechanism

CornerCorner
poolingpooling

Figure 2: )e main flow of the network. )e first stage of generating object locations is plotted in blue, which is to find approximate
locations and rough sizes of the sunspot groups on the solar full images.)e second stage of detecting objects is plotted in orange, which is to
further determine the specific locations of the sunspot groups on the basis of the first stage and give the classification and confidence score of
the sunspot groups. )e third stage of merging detection is plotted in red, which is to merge the detections for eliminating the redundant
boxes.

Size

Size/2

Size/4

Input Subsam. Subsam. Subsam. Upsam. Upsam. Upsam. Output

Res. Res. Res. Res. Res.

ReLU ReLU ReLU
3 × 3, 384 3 × 3, 256 3 × 3, 256

1 × 1, 256

Figure 3: An illustration of a single “hourglass” module. Each hourglass is a modular network with a symmetrical structure. Each box
represents a single residual module.
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)e experiments were performed on a personal computer
equipped with a GeForce RTXTM 2080 graphics card. )e
main programs deployed were Python 3.7, PyTorch 1.2,
CUDA 10.1, GCC 7.4, etc. Adam [46] was chosen to optimize
both losses for the attentionmaps and object detections. After
repeated experiments, the hyperparameters such as the
learning_rate, decay_rate, batch_size, and IoU of the network
model were set to 0.000025, 10, 8, and 0.01, respectively. )e
loss value of the network converges stably after 335,000 it-
erations of training, which takes about 110 hours.

5. Results

5.1. Instance. Figure 4 shows two cases. )e sunspot groups
with solid line boxes are detected by our method, where the
classification results are displayed at the upper left of each
box. )e active region (AR) number and classification of the
sunspot groups given by NOAA are manually labeled to the
box below. Note that the reports of NOAA are issued on
today using data from yesterday. We marked them by using
the correct reports.

It can be seen in Figure 4(a) that our method detects five
sunspot groups. A total of three sunspot groups are marked
by NOAA: NOAA 12299, NOAA 12297, and NOAA 12298.
Our classification results are consistent with them, where the
three sunspot groups are classified into β, βcδ, and β, re-
spectively. Besides that, two other sunspot groups (red ar-
rows 1 and 2) are detected by our method, and both of them
are classified into β type.

In Figure 4(b), eight sunspot groups are detected by our
method, while seven are marked by NOAA. )ere are six
sunspot groups that are the same by NOAA and by our
method. NOAA 11971 (red arrow 3) is classified as β type by
our method; however, it is classified as α type by NOAA. By
analyzing the continuum image and the corresponding
magnetogram, this sunspot group is a bipolar group, where
there is no mixed polarity and no umbra of opposite polarity
in the same penumbra region. )erefore, the sunspot group
ought to be β type. Besides that, there is a visible sunspot
group above NOAA 11973 (red arrow 4). Our method detects
the sunspot group and classifies it into β type correctly.

5.2. Evaluation Metrics. We evaluated the performance of
our method by four metrics: accuracy, precision, recall, and
AP [47]. )e definitions are as follows:

accuracy �
TP
N

,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

AP � 􏽚
1

0
P(r)dr,

(1)

where N is the total number of samples. )e true positive,
TP, is the number of items correctly labeled as belonging to
the positive class. )e false positive, FP, is the number of
items incorrectly labeled as belonging to the class. )e false
negative, FN, is the number of items which are not labeled as
belonging to the positive class but should have been. )e
average precision, AP, is a typical performance metric of
combination of precision and recall, which is calculated as
the precision averaged across all recall values between 0 and
1.

Table 2 lists the metrics of the test set. Note that c and cδ
are not taken into account in Table 2, because there are few c

and cδ types of sunspot groups in the training set and the test
set. It is meaningless to evaluate their corresponding per-
formances. )e mean accuracy, precision, recall, and mean
AP (mAP) are all above 0.90. )ere are three types in which
the AP values reach up to 0.90, namely, β, βc, and βcδ. On
the other hand, the APs of α and βδ types are a little lower
than 0.90.We found that some small sunspots belonging to α
type are easily confused with the background, which results
in false detections and missed detections. )e βδ type has
some characteristics confused with β, βc, and βcδ, so there
are a few false detections.

5.3. Statistics. Based on the satisfactory results of this
method, the solar full images of HMI from January 2011 to
April 2020 were fed to the trained network for the Mount
Wilson magnetic classification of sunspot groups. A total of
3086 composited images are available; most of them are at
20:00:00 UT and a few of them are near 20:00:00 UT. As a
result, a total of 11, 681 sunspot groups are detected and
classified. Note that only five types of sunspot groups
appeared in this decade.)ey are α, β, βc, βδ, and βcδ, where
the numbers are 3951, 6094, 1158, 110, and 368, respectively.
)erefore, only these five types are analyzed in this section.
Detailed data are shared on the website (https://61.166.157.
71/MWMCSG.html).

We summarized the total number for each type of
sunspot group in months in Figure 5. )e x-axis represents
time in months, and the y-axis represents the number of
sunspot groups. Because no data are provided in some days,
we fill the missed data by averaging the previous day and the
next day in order to plot the lines continuously in the figure.

)e number of sunspot groups belonging to the same
type varies greatly over time. For α type, the highest
number is 106 in December 2014; the lowest number falls to
1 in February 2020. )e difference between the maximum
value and minimum value reaches up to 105. For β type,
there are two months with the highest number of 144,
including November 2011 and May 2013. On the other
hand, the lowest number is 0 in October 2019. Besides that,
the other types are relatively rare. )e highest numbers of
βc and βδ are 49 and 12, respectively, which occur in
February 2014 and November 2014, respectively. For βcδ
type, there are two months with the highest number of 18:
July 2012 and October 2013. For βc, βδ, and βcδ, there are
24, 63, and 54 months with the lowest numbers of 0,
respectively.
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Solar activity level is closely related to three types of
sunspot groups, such as α, β, and βc. From 2011 to 2016,
there are a great number of α, β, and βc types. In particular, α
and β types have hundreds of numbers monthly, where the
sun is relatively active during this period. Since 2016, these
types of sunspot groups have gradually decreased, even
down to single digits, where the solar activities decrease. On
the contrary, the numbers of βδ and βcδ types have a little
change, where the monthly amounts are only 12 and 18 at
the peak, respectively.

)e numbers of various types differ significantly in the
same period of time, especially during the solar active pe-
riod. For example, in November 2011 (the left-dashed
vertical line), the numbers of α, β, βc, βδ, and βcδ are 76,
144, 29, 5, and 7, respectively. )e maximum difference
(between β and βδ) is up to 139. But, with the solar activity
weakening, the difference becomes smaller. For example, in
February 2020 (the right vertical line), the number of α, β,
βc, βδ, and βcδ are 1, 1, 0, 0, and 0, respectively. )e
maximum difference (between β and βδ) is only 1.

5.4. 8e Relationship between Magnetic Classification and
Solar Flares. Solar flares are closely related to the magnetic
classification of sunspot groups. )e solar flare productivity
is used to quantify the relationship, which is calculated by
the total number of flares divided by the number of sunspot
groups. According to the peak fluxes of soft X-ray, flares are
usually classified into four levels: B, C, M, and X. Within a
certain time interval, the total importance, Itot, is presented
as [48, 49]

Itot � 0.1 × 􏽘B + 1.0 × 􏽘C + 10 × 􏽘M + 100 × 􏽘X.

(2)

)e flare productivity with Itot ≥ 1, which is equivalent
to a C1.0 flare, is analyzed. )e occurrence of flares in an AR
described in this paper is within 48 hours.)e solar flare data
come from the NOAA website (https://www.solarmonitor.
org/). )e number of sunspot groups and the corresponding
flare productivity from January 2011 to April 2020 are listed
in Table 3. )ey are also plotted in Figure 6 in order to make

2015.03.12

1

2

NOAA 12299: β

β

β

β

β

NOAA 12297: βγδ
NOAA 12298: β

βγδ

(a)

3

4

2014.02.11

β

β

β

β

β

β

NOAA 11977: β

NOAA 11973: β NOAA 11978: β

NOAA 11975: β
NOAA 11971: α

NOAA 11976: βγ

NOAA 11974: βγδ

βγδ

βγ

(b)

Figure 4: Two cases. )e sunspot groups with solid-line boxes are detected by our method, where the classification results are displayed at
the upper left of each box.)e AR number and classification given by NOAA are manually labeled at the box below.)e times of (a) and (b)
are 20:00:00 UT on 12 March 2015 and 20:00:00 UT on 11 February 2014, respectively.

Table 2: )e metrics of the test set.

Type Accuracy Recall Precision AP
α 0.90 0.92 0.90 0.89
β 0.95 0.94 0.95 0.93
βc 0.94 0.92 0.94 0.90
βδ 0.93 0.91 0.93 0.87
βcδ 0.96 0.95 0.96 0.93
Mean 0.94 0.93 0.94 0.90
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Figure 5: )e total number for each type of sunspot groups in months from January 2011 to April 2020. )e left dashed vertical line
(November 2011) represents that the numbers of various types differ significantly, where the maximum difference is up to 139. )e right
dashed vertical line (February 2020) represents the numbers of various types that are very close, where the maximum difference is only 1.

Table 3: )e number of various types of the sunspot groups and the corresponding flare productivity from 2011 to 2020 (Itot ≥ 1).

Type Numbers of
sunspot groups

Numbers of C-
class flares

Numbers of M-
class flares

Numbers of X-
class flares

Productivity of C-
class flares

Productivity of M-
class flares

Productivity of X-
class flares

α 649 91 15 0 0.14 0.02 0
β 1044 297 71 5 0.28 0.07 0.01
βc 336 206 91 7 0.61 0.27 0.02
βδ 49 35 22 5 0.71 0.45 0.10
βcδ 105 91 68 23 0.87 0.65 0.22
Total 2183 720 267 40 0.33 0.12 0.02
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Figure 6: Productivity of C-class, M-class, and X-class flares of various types of the sunspot groups from January 2011 to April 2020
(Itot ≥ 1).
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the relationship between magnetic classification of sunspot
groups and flare productivities more intuitive.

It is found that the more complex the sunspot group is,
the higher the corresponding flare productivity is. For in-
stance, the flare productivities of C, M, and X belonging to
the α type are all lower than those belonging to the β types
(including β and βc types), and those of the β types are all
lower than those of the δ types (including βδ and βcδ types).
In detail, the flare productivities of C-class, M-class, and
X-class belonging to α are 0.14, 0.02, and 0, respectively; and
those belonging to β are 0.28, 0.07, and 0.01, respectively.
)e flare productivities of these two types of sunspot groups
are relatively low; in particular, X-class is almost zero. It
means that these two types of sunspot groups with simple
structures are difficult to produce large flares. On the other
hand, the flare productivities of βc, βδ, and βcδ are relatively
high. )e values for C-class flares reach up to 0.61, 0.71, and
0.87, respectively, and those for M-class flares are 0.27, 0.45,
and 0.65, respectively.)e X-class flares are very rare, as only
forty occurred in the last ten years. )e corresponding flare
productivities of βc, βδ, and βcδ are 0.02, 0.10, and 0.22,
respectively. Especially, for a total of 105 βcδ, there erupted
23 X-class flares. )at means βc, βδ, and βcδ have much
higher probabilities of flare eruption than the other types,
especially βcδ. In additional, X-class flares basically occur
above the δ or c types.

)e above results show that the Mount Wilson magnetic
classification of sunspot groups is indeed closely related to
solar flares. )erefore, the magnetic classification can be
used as a major factor to predict the flare eruptions.

6. Discussion

6.1. ComparisonwithNOAA. We compared our results with
NOAA carefully. Figure 7 shows the evolving procedure and
classification results of NOAA 11158 from 13 to 15 February
2011.

It can be seen that the sunspot group during the three
days is mixed in polarity, with opposite polarity within the
same penumbra and no more than 2∘ separation of the
umbra in the continuum image and the corresponding
magnetogram. According to the description of Mount
Wilson magnetic classification, the sunspot group should be
βcδ. )e results obtained by our method are all βcδ, while
NOAA gives βc on the 13th and the 14th and βcδ on the
15th. X-class large flares erupted above NOAA 11158 on the
14th. Our method classifies it into βcδ two days earlier than
NOAA and one day earlier than the eruption of this large
flare.

Figure 8 shows the evolving procedure and classification
results of NOAA 12260 from 8 to 10 January 2015. )ere is
an AR visible at the lower right corner of NOAA 12258 on 8
January 2015. Our method detects the AR and classifies it
into β in time. )is AR is marked as NOAA 12260 and
classified into β by NOAA on the 9th. Our method detects
the AR one day earlier than NOAA.

Moreover, we counted the numbers of various types of
sunspot groups detected by our method and NOAA in 2014
separately, as shown in Figure 9.)e types of sunspot groups

in this year are very abundant. )ere are a few sunspots in
some days and very big sunspots in other days. Importantly,
a lot of different levels of flares erupted in that year.
)erefore, it is a typical year that we chose for analyzing the
magnetic classification of sunspot groups day by day. )e x-
axis represents the classification of sunspot groups, and the
y-axis represents the number of each type. Our results are
very similar to those of NOAA. )e total numbers detected
by our method and NOAA are 2254 and 2073, respectively.
In detail, there are 654 sunspot groups belonging to α type by
our method, 57 more than NOAA; 1155 β sunspot groups,
129 more than NOAA; 302 βc sunspot groups, 8 less than
NOAA; 23 βδ sunspot groups, 4 more than NOAA; and 120
βcδ sunspot groups, 1 less than NOAA. )e main reason
why there are more α and β types by our method than those
by NOAA is that our method detects more of small α and β
sunspot groups. On the other hand, the sum of the βc, βδ,
and βcδ sunspot groups detected by our method is 445, and
that by NOAA is 450. )e total difference is very small, and
the difference of every type is also very small. We found that
the difference is mainly caused by the somewhat similar
features of these types during the evolution of sunspot
groups (see Figure 7). Note that the statistical results are
obtained by 313 days in 2014 due to missed data.

Figure 10 shows the flare productivities by our method
and NOAA in 2014. Here, the total flare level, Itot, is set to 10
or greater, which is equivalent to an M1.0 flare. )e flares
productivities of α, β, βc, βδ, and βcδ detected by our method
are 0.03, 0.10, 0.37, 0.60, and 0.64, respectively. )ey are 0.05,
0.15, 0.37, 0.40, and 0.48 by NOAA, respectively. )e general
trends of the flare productivities of different types by our
method and NOAA are similar. )e more complex the
sunspot group is, the higher its flare productivity is. In other
words, the flare productivities of βcδ, βδ, and βc are both
higher than that of β, and that of β is higher than that of α. If
we have to say something different, NOAA obtains higher
flare productivities of α and β compared to our method; our
method has the same flare productivity as NOAA for βc; for
βδ and βcδ that are most closely related to flares, the flare
productivities of our method are higher than those of NOAA.

Note that the numbers of sunspot groups are counted
somewhat differently in Figures 9 and 10. )e number of
sunspot groups in Figure 9 is the number of occurrences of
sunspot groups in days, but in Figure 10, it is the number of
different types of sunspot groups in their evolutions. For
example, NOAA 11946 appeared on 5 January 2014 and
disappeared on the 12th. It belongs to β in three days and to
βc in five days.)e numbers of β and βc in Figure 9 are 3 and
5, respectively, while both are 1 in Figure 10.

In summary, the multilevel features of various types of
sunspot groups are extracted effectively using the deep
learning method. )is leads to a good performance in the
magnetic classification of sunspot groups. Moreover, the
complex sunspot groups including βc, βδ, and βcδ have
higher flare productivities, especially βcδ. Most X-class solar
flares erupt above the complex sunspot groups. )e Mount
Wilson magnetic classification of the sunspot groups can
indeed be used as an important predictor to predict the
eruption of solar flares.
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6.2. Some Problems. Although our method has achieved a
good performance in the Mount Wilson magnetic classifi-
cation of sunspot groups, there are still some problems.

Some small spots are difficult to be affirmed because they
are very similar to background. Figure 11(a) shows the result
by our method on 2 August 2011. A total of four sunspot
groups are detected and classified. Two regions with red
circle labeled as 1 and 2 are zoomed in panels 11(b) and
11(c). Neither our method nor NOAA detects Region 1 as an
AR, but both of them detect Region 2 as an AR (NOAA
11264). )e difference is that our method classifies Region 2
into α, while NOAA does not give a classification result. It is
not difficult to see that these two small spots are very similar.
)e main reason for miss-detected Region 1 is its envi-
ronment.)e reason is possibly due to the downsized images
in order to reduce memory consumption. We believe this
problem can be solved if the hardware conditions can
support the high-resolution image without downsizing for
deep learning operations.

Some sunspot groups are difficult to be judged when they
are located at the edge of the solar surface. Figures 12(a) and
12(b) are subregions observed on May 10 2012 and 6 August

2012, respectively. In Figure 12(a), the sunspot group is
about to disappear from the solar surface. On the other hand,
the sunspot group in Figure 12(b) just appears on the solar
surface. Both of them are classified into α type by our
method. However, the characteristics of these sunspot
groups are not fully shown. It is difficult to judge whether it
is true. For such situations, it is not easy to classify them
accurately even by hand.

Moreover, some sunspot groups are difficult to be
classified during their evolution according to the definition
of the Mount Wilson magnetic classification of sunspot
groups. Figure 13 shows one common example, NOAA
12257, from 9 to 11 January 2015. )e sunspot group is
judged as βc by ourmethod but as βδ byNOAA on 9 January
2015. We think that it should not be δ because of the umbra
with the same polarity in the same penumbra. However,
whether it belongs to β or βc is not easy to distinguish
clearly.)emain reason is that there are some unclear words
in the definition, such as simple, complex, and irregular. For
instance, β is a bipolar sunspot group, with the simple and
obvious division between polarities; c is a complex sunspot
group with irregular polarity; βc is a bipolar sunspot group

2011.02.13

(a) (b)

NOAA 11158: βγ

βγδ

(c)

2011.02.14

(d) (e)

NOAA 11158: βγ

βγδ

(f )

2011.02.15

(g) (h)

NOAA 11158: βγδ

βγδ

(i)

Figure 7: )e classifications of NOAA 11158 given by our method and NOAA. )e columns from left to right are the continuum image,
magnetogram, and the classification result. )e rows are the evolving procedure, which is on the 13th, 14th, and 15th of February 2011,
respectively. All the times are 20:00:00 UT. )e sunspot groups with solid-line boxes are detected by our method, where the classification
results are displayed at the upper left of each box. )e AR number and classification given by NOAA are manually labeled at the box below.
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but with more than one continuous polarity reversal line.
What level is simple or complex especially in the transitional
period from one type into another type during its evolution?

Here, it is judged by ourmethod to be βc. Now, in the second
row that follows, it is judged as δ because of the umbra with
opposite polarity appear in the same penumbra, which are

2015.01.08

(a) (b)

β

(c)

2015.01.09

(d) (e)

NOAA 12260: β

β

(f )

2015.01.10

(g) (h)

NOAA 12260: β

β

(i)

Figure 8: )e classifications of NOAA 12660 given by our method and NOAA. )e columns from left to right are the continuum image,
magnetogram, and the classification result. )e rows are the evolving procedure, which is on the 8th, 9th, and 10th of January 2015,
respectively. All the times are 20:00:00 UT.)e active region appeared on 8 January 2015. Our method detects the active region and classifies
it into β in time. )is AR is marked as NOAA 12260 and is classified into β on the 9th by NOAA.
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Figure 9: )e numbers of various types of sunspot groups detected by our method and NOAA in 2014.
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Figure 11: Detection results by our method at 20:00:00 UTon 2 August 2011. (a) )e detection results of the composited solar full image.
)e region with a red circle labeled as 1 is not detected, which is zoomed in (b). )e region labeled as 2 is detected, which is zoomed in (c).
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Figure 12: (a, b) Subregions at the edges of the solar surface observed at 20:00:00 UTon 10 May 2012 and at 20:00:00 UTon 6 August 2012,
respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NOAA
Our method

βγδβδβγβα

Figure 10: )e flare productivities of various types of sunspot groups detected by our method and NOAA in 2014 (Itot ≥ 10).
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coincident by both methods. Whether it belongs to β or βc is
also a problem. We think that the sunspot group is inclined
to be βcδ for its complex sunspot group with irregular
polarity here. In the third row, both methods obtain the
same results, βcδ.

7. Conclusion

)is paper proposes a deep learning method for the Mount
Wilson magnetic classification of sunspot groups. )e
continuum images and the magnetograms from HMI
spanning from June 2010 to April 2020 and MDI spanning
from July 2000 to September 2001 are employed to build the
dataset. We first composite the morphological structures of
sunspot groups from the continuum image and the magnetic
properties from the cotemporal magnetogram into one
image. A total of 2486 composited images are then labeled to
build the dataset of the Mount Wilson magnetic

classification, which are divided into a training set and a test
set at a ratio of 3 :1.

A deep learning model, CornerNet-Saccade, is adopted
to detect and classify the sunspot groups. It mainly includes
three stages, generating object locations, detecting objects,
andmerging detections.)e first stage is to find approximate
locations and rough sizes of the sunspot groups on the solar
full images. )e backbone of the method is Hourglass-54,
which consists of 3 hourglass modules with a total depth of
54 layers. Each hourglass module is a symmetrical structure,
which downsamples to a very low resolution and then
upsamples and combines features across multiple resolu-
tions. )e multiple hourglass modules together allow for
repeated bottom-up, top-down inference across scales,
which capture and consolidate information across all scales
of the image. A total of three size scales of attention maps are
predicted using the feature maps gotten from Hourglass-54
by the attention mechanism, corresponding to small,
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βγ
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Figure 13: )e classifications of NOAA 12257 given by our method and NOAA. )e columns from left to right are the continuum image,
magnetogram, and the detection result, respectively. )e rows show the evolving procedure, which is on the 9th, 10th, and 11th of January
2015, respectively. All the times are 20:00:00 UT. )e sunspot groups with solid-line boxes are detected by our method, where the
classification results are displayed at the upper left of each box. )e AR numbers and classification given by NOAA are manually labeled at
the box below.
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medium, and large objects. Meanwhile, the bounding boxes
are generated by detecting the two key points, the top-left
corners and the bottom-right corners of the object, through
corner pooling layers. )e second stage is to further de-
termine the specific locations and bounding boxes of the
sunspot groups. )e locations gotten from the first stage are
ranked by their scores, and then the top ones are picked up.
)ey are fine-adjusted by corner pooling layers using the
feature maps through the second Hourglass-54. )e third
stage is to merge the detections by NMS for eliminating the
redundant boxes. )ese key technologies improve the effi-
ciency of the deep learning method without sacrificing
accuracy.

)e model is trained on a personal computer equipped
with a GeForce RTXTM 2080 graphics card. After 335,000
iterations, the loss value converges stably. It takes about 3
seconds to detect and classify the sunspot groups in a
composited solar full image. )e experimental results show
that this method has an excellent performance in the de-
tection and classification.)e accuracy, precision, recall, and
mAP reach up to 0.94, 0.93, 0.94, and 0.90, respectively.

Based on the reliable performance of our method, the
classifications of sunspot groups in the past 10 years from
January 2011 to April 2020 are analyzed, which are shared on
the website (https://61.166.157.71/MWMCSG.html). In ad-
dition, we calculate the flare productivities of various types
of sunspot groups from January 2011 to April 2020 in order
to describe the relationship between the magnetic classifi-
cation of sunspot groups and solar flares. If Itot is set to
greater than or equal to 1, the flare productivities of α, β, βc,
βδ, and βcδ sunspot groups are 0.14, 0.28, 0.61, 0.71, and
0.87, respectively. If Itot is set to greater than or equal to 10,
they are 0.02, 0.07, 0.27, 0.45, and 0.65, respectively. Among
them, the flare productivities of βc, βδ, and βcδ reach up to
0.60 with Itot ≥ 1. )e productivities of βδ and βcδ reach up
to 0.45 even with Itot ≥ 10. )is means that βc, βδ, and βcδ
sunspot groups are indeed very closely related to solar flare
eruptions, especially the βcδ sunspot groups.

We also compare the classifications of sunspot groups
with NOAA using the data in 2014.)e results show that our
method detects more α and β sunspot groups which are
small and faint; therefore, the numbers of α and β are 654
and 1155, respectively, 57 and 129 more than those of
NOAA, respectively. Our method is good at distinguishing
the more complex sunspot groups including βc, βδ, and βcδ
classes, owing to the features of different types learned by the
deep learning networks, where the detection schemes of
CornerNet-Saccade, such as Hourglass-54, key points, and
the attention map mechanism, make the features of the
multiple levels fused available.

In the future, we plan to use the MountWilson magnetic
classification of sunspot groups as the main predictor to
establish a more reasonable solar flare prediction model.
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