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Using an analytical and numerical study, this paper investigates the equilibrium state of the triangular equilibrium points L4, 5 of
the Sun-Earth system in the frame of the elliptic restricted problem of three bodies subject to the radial component of
Poynting–Robertson (P–R) drag and radiation pressure factor of the bigger primary as well as dynamical flattening parameters of
both primary bodies (i.e., Sun and Earth). 'e equations of motion are presented in a dimensionless-pulsating coordinate system
(ξ − η), and the positions of the triangular equilibrium points are found to depend on the mass ratio (μ) and the perturbing forces
involved in the equations of motion. A numerical analysis of the positions and stability of the triangular equilibrium points of the
Sun-Earth system shows that the perturbing forces have no significant effect on the positions of the triangular equilibrium points
and their stability. Hence, this research work concludes that the motion of an infinitesimal mass near the triangular equilibrium
points of the Sun-Earth system remains linearly stable in the presence of the perturbing forces.

1. Introduction

'e study of the equilibrium state of an infinitesimal mass (a
test particle) with regard to the dynamical system of the
restricted three-body problem (R3BP) remains one of the
most important and interesting aspects in the study of celestial
mechanics and dynamical astronomy. 'e elliptic restricted
three-body problem (ER3BP) deals with the description-study
of the motion of an infinitesimal mass (m3), in the vicinity of
the gravitational fields of two dominant bodies m1 and m2
which are called the primaries (bigger primary and smaller
primary, respectively), where m1 ≥m2≫m3. 'ese primary
bodies revolve about their common centre of mass in elliptic
orbits, under the influence of their mutual gravitational at-
traction. 'e ER3BP admits five equilibrium points at which
the test particle (infinitesimal mass) would remain fixed if
placed there. 'ree of such points lie on the line joining the
two dominant bodies m1 and m2, called the collinear equi-
librium points Li(i � 1, 2, 3), and are unstable, while the other
two points form equilateral triangles with the two dominant

bodies, called the triangular equilibrium points L4 and L5, and
are stable for 0< μ< μc, where μ is the mass ratio defined by
μ � (m2/(m1 + m2)) and μc is the critical mass parameter [1].

In an attempt to have a much more realistic description
of the motion of an infinitesimal mass over the decades, the
classical R3BP has been modified in the sense that additional
dynamical potentials of the system were considered in
different approaches [2–8] and others.

Abouelmagd [9] in his study of the R3BP found out
that the locations of the triangular points and their linear
stability are affected by the oblateness of the more
massive primary, up to the second zonal harmonic J4. In
his numerical study, he concluded that the existence of J4
sometimes does not affect the stability of the equilibrium
points as in the Earth-Moon, Saturn-Phoebe, and Ura-
nus-Caliban systems. Also, Abouelmagd et al. [10] ex-
amined the effects of oblateness of the three participating
bodies together with small perturbations in Coriolis and
centrifugal forces. Afterwards, Abouelmagd et al. [11]
studied the effect of the first two even zonal harmonic
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coefficients of both the primaries as well as the periodic
orbits around the equilibrium points. 'ey found out that
the triangular equilibrium points are linearly stable for
0< μ< μC and unstable for μC ≤ μ≤ 0.5, while the collinear
equilibrium points remain linearly unstable.

Singh and Tyokyaa [12] examined the stability of the
triangular points in the ER3BP with oblateness up to the
second zonal harmonic J4 of both primaries.'ey concluded
that the location and linear stability of the triangular points
are affected by the oblateness of the primary bodies, ec-
centricity of the orbits of the primaries, and the semi-major
axis of the system and both destabilized the system. In the
same year, Singh et al. [13] investigated the influence of the
zonal harmonics (J2 and J4) of the primary and the radiation
pressure of the secondary on the locations and linear sta-
bility of the triangular points. 'ey however claimed that the
parameters involved in the system affect the positions of the
equilibrium points and destabilize the system as well.

'e Doppler shift and absorptions and subsequent re-
emission of incident radiation, that is, the so-called Poyn-
ting–Robertson’s (P–R) drag, are often neglected by many
researchers in the estimation of light radiation force. Poynting
[14] while studying radiation in the Solar System stated that
radiation affects temperature and small bodies. He asserted that
particles such as cosmic dust grain or smallmeteors are affected
considerably by gravitational and light radiation force as they
approach luminous celestial bodies. Furthermore, infinitesimal
bodies in solar orbits suffer a gradual loss of angular mo-
mentum and ultimately spiral into the Sun. Later, Robertson
[15] in a modified theory of Poynting considered only terms of
the first order in the ratio of velocity of the particles to that of
light. He investigated the dynamical effects of drag in the Solar
System and derived the expression for the times of fall from
circular orbits. 'us at a cosmically rapid rate, the P–R effect
sweeps small particles of the Solar System into the sun.

Researchers like Burns et al. [16], Murray [17], Singh and
Simeon [18], Alhussain [19], Chakraborty and Narayan [20],
Amuda et al. [21], and others studied the R3BP by taking into
account the P–R drag in different views. Mishra et al. [22]
examined the stability of triangular points under the assump-
tion that the bigger primary is a source of radiation with the
incident P–R drag while the smaller is an oblate spheroid in the
frame of the ER3BP. 'ey concluded that the triangular points
are unstable. In a recent study, Singh and Amuda [23] inves-
tigated the linear stability around L4, 5 of a test particle in the
field of post-AGB binary system with the effective P–R drag
force. 'ey asserted that P–R drag and the mass parameter μ
contribute in shifting the locations of the triangular points and
the triangular points are unstable in the linear sense due to the
presence of complex conjugate roots.

'e aim of the present paper is to further investigate the
effects of radiation pressure and P–R drag of the bigger
primary on L4, 5 in the ER3BP, taking into account the effects
of dynamical flattening parameters of the primary bodies.

2. Equations of Motion

Letm1, m2, andm3 be the threemasses,m1 andm2 being the
dominant bodies having an elliptic orbit about their

common centre of mass, while m3 being the infinitesimal
mass which moves in the same plane with the dominant
bodies under the influence of their force-field without
influencing their motion. Let (x1, y1, z1), (x2, y2, z2), and
(x3, y3, z3) denote the coordinates of m1, m2, and m3, re-
spectively, in the sidereal coordinates. Using Newton’s law,
the equations of motion of an infinitesimal mass m3 in the
sidereal coordinates system can be represented as

m3€x3 �
zV

zx3
,

m3€y3 �
zV

zy3

m3€z3 �
zV

zz3
,

, (1)

where V � m3k
2((m1/R1) + (m2/R2)); R1 and R2 are the

distances of an infinitesimalmass fromm1 andm2, respectively,
and are defined asR2

i � (x − xi)
2 + (y − yi)

2 + (z − zi)
2; k2 is

the Gaussian constant of gravitation and the dot indicates
differentiation with respect to time t.

Equations (1) can be rewritten as [3]

€x3 �
zW

zx3
,

€y3 �
zW

zy3
,

€z3 �
zW

zz3
,

(2)

where W � (V/m3).
Now, we choose and rotate the synodic coordinates

uniformly with a positive unit rate, which has the same origin
at the centre of mass of the two dominant bodies with the
sidereal coordinates. 'e direction of the x− axis is chosen
such that the two dominant bodies always lie on it. 'erefore,
the equations of motion in sidereal coordinates are related to
the equations of motion in synodic coordinates with respect
to the true anomaly. By transforming the equations of motion
from true anomaly to eccentric anomaly in a dimensionless-
pulsating (rotating) coordinate system (ξ, η, ζ), we have

ξ″ +
eξ′ sinE

ρ
−
2 1 − e

2
􏼐 􏼑

(1/2)
η′

ρ
�

zΩ
zξ

,

η″ +
eη′ sinE

ρ
+
2 1 − e

2
􏼐 􏼑

(1/2)
ξ′

ρ
�

zΩ
zη

,

ζ″ +
eζ′ sinE

ρ
�

zΩ
zζ

,

(3)

where the prime (′) represents differentiation with respect
to eccentric anomaly (E) and Ω(ξ, η, ζ) � (1/(n2ρ))[(n2 /2)

(ξ2 + η2) − ((en2)/(2ρ))(cosE − e)ζ2 + W], ρ � (1 − e cos
E), e and n are the eccentricity of the orbits andmeanmotion
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of the dominant bodies, while
W � − (V/m3), V � − k2m3((m1/r1) + (m2/r2)), ri(i � 1, 2)

are the distances of an infinitesimal mass from the bigger
primary and smaller primary, respectively, and are defined
as r2i � (ξ − ξi)

2 + η2 + ζ2, (i � 1, 2)., ξ1 � − ((m2a)/ (m1
+m2)), ξ2 � ((m1a)/(m1 + m2)), and a is the semi-major axis
of m2 around m1. See [3, 24, 25].

Now, integrating equations (3) with respect to the ec-
centric anomaly (E) and averaging, we get

ξ″ − 2η′ �
zΩ
zξ

,

η″ + 2ξ′ �
zΩ
zη

,

ζ″ �
zΩ
zζ

,

(4)

where Ω is the potential-like function defined by
Ω(ξ, η, ζ) � (1 − e2)− (1/2)[(1/2)(ξ2 + η2) + (W/n2)].

'us, the defined dynamical system in equations (4) is
the required equations of motion for the ER3BP.

Let q be the radiation pressure factor of the bigger
primary which is given by

Fg1 − Fp1 � Fg1 1 −
Fp1

Fg1
􏼠 􏼡 � qFg1. (5)

'is implies that q � 1 − (Fp1/Fg1) such that 0< 1 − q �

α≪ 1 [26], where Fg1 is the gravitational force of m1 and Fp1
is the radiation pressure of m1.

Considering the potential theory, the external gravi-
tational potential due to a body that has axial symmetry
can be written in terms of Legendre polynomials as V0 �

− ((k2m0)/r0)[1 − 􏽐
∞
n�2 JnPn(cos θ)(R0/r0)

n] (see de Pater
and Lissauer [27] for more details), where m0 denotes the
mass of the body; r0 denotes the radial distance from the
centre of the particle to the centre of any other body; θ
denotes the angle between the body’s symmetry axis and
vector to the particle; R0 denotes the mean radius of the
body; Jn denotes the dimensionless coefficient that
characterizes the degree of nonspherical components of
the potential, Jn is zero for odd n, and when n is even, Jn is
called a zonal harmonic coefficient; and the term
Pn(cos θ) denotes the Legendre polynomials of degree n

and is defined by Pn(x) � (1/(2nn!))(dn/dxn)(x2 − 1)n. We
assume that the infinitesimal mass moves in the same
plane of motion as the dominant bodies and this plane
coincides with the equatorial plane (i.e. θ � 900). 'ere-
fore, the potential energy of the infinitesimal mass under
the effects of the dynamical flattening parameters of both
dominant bodies can be written as

V � − k
2
m3 m1

1
r1

+
A1

2r
3
1

−
3A2

8r
5
1

􏼠 􏼡 + m2
1
r2

+
B1

2r
3
2

−
3B2

8r
5
2

􏼠 􏼡􏼢 􏼣,

(6)

where Ai � JA
2iR

2i

1 and Bi � JB
2iR

2i

2 (i � 1, 2) represent the
dynamical flattening parameters of the bigger and smaller

primaries, respectively, JA
2i and JB

2i(i � 1, 2) are the zonal
harmonics coefficients; ri(i � 1, 2) is defined as in equation
(3); and R1 andR2 are themean radii of the dominant masses
m1 and m2, respectively.

'e distance between the dominant bodies is
r � a(1 − e cos E) in the elliptic orbit, where a, e , and E

are semi-major axis between the dominant bodies,
common eccentricity of the dominant bodies, and ec-
centric anomaly, respectively.

And the mean distance between them is as follows:

1
2π

􏽚
2π

0
r dE � a. (7)

Assuming that the dominant bodies are in elliptical
motion with constant angular velocity n(meanmotion), then
the orbits of m1 and m2 with respect to the centre of mass,
with semi-major axes, would be a1 � (m2/(m1 + m2))a and
a2 � (m1/(m1 + m2))a, respectively, having the same ec-
centricity; thus, the motion of the bigger and smaller pri-
mary can be written as [1, 28]

m1n
2
a1 �

k
2
m1m2

r
2 1 +

3A1

2r
2 +

3B1

2r
2 −

15A2

8r
4 −

15B2

8r
4􏼢 􏼣,

m2n
2
a2 �

k
2
m1m2

r
2 1 +

3A1

2r
2 +

3B1

2r
2 −

15A2

8r
4 −

15B2

8r
4􏼢 􏼣,

(8)

where n, r, and k are the mean motion, distance between the
dominant bodies, and Gaussian constant of gravitation, re-
spectively. 'e distance between the dominant bodies r is
defined to be the semi-major axis a of the orbit (i.e., r � a),
since the dominant bodies are in elliptic orbits.

Hence, adding equations (8) together, we obtain

n
2

a1 + a2( 􏼁 �
k
2

m1 + m2( 􏼁

a
2 1 +

3A1

2a
2 +

3B1

2a
2 −

15A2

8a
4 −

15B2

8a
4􏼢 􏼣.

(9)

Assume that the sum of the masses of the dominant
bodies and the semi-major axis between them are the units
of mass and length, respectively; i.e., m1 + m2 � 1, and
a1 + a2 � a � 1. Also, the unit of time is chosen so as tomake
the Gaussian constant, k2 � 1. Hence, equation (9) becomes

n
2

� 1 +
3A1

2
+
3B1

2
−
15A2

8
−
15B2

8
. (10)

Using equations (4), (5), (6), and (10), the equations
of motion of an infinitesimal mass in the frame of the
ER3BP can be modified, taking into account the dy-
namical flattening parameters of both dominant bodies
together with the radiation pressure as well as P–R drag
due to the bigger primary in a dimensionless-pulsating
(rotating) coordinate system (ξ, η) as

ξ″ − 2η′ � Uξ ,

η″ + 2ξ′ � Uη,
(11)

where
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Uξ �
zΩ
zξ

−
1 − e

2
􏼐 􏼑

− (1/2)
W1N1

n
2
r
2
1

,

Uη �
zΩ
zη

−
1 − e

2
􏼐 􏼑

− (1/2)
W1N2

n
2
r
2
1

,

Ω � 1 − e
2

􏼐 􏼑
(− 1/2) ξ2 + η2

2
+

1
n
2

(1 − μ)q

r1
+

(1 − μ)A1q

2r
3
1

−
3(1 − μ)A2q

8r
5
1

+
μ
r2

+
μB1

2r
3
2

−
3μB2

8r
5
2

􏼨 􏼩􏼢 􏼣,

N1 �
(ξ + μ) (ξ + μ)ξ′ + ηη′􏼂 􏼃

r
2
1

+ ξ′ − nη,

N2 �
η (ξ + μ)ξ′ + ηη′􏼂 􏼃

r
2
1

+ η′ + n(ξ + μ),

W1 �
(1 − μ)(1 − q)

cd

,

(12)

and cd is the dimensionless speed of light [18, 22, 29].

3. Locations of the Triangular Equilibrium
Points L4, 5

To obtain the equilibrium positions of an infinitesimal mass,
the equations ξ′ � η′ � ξ″ � η″ � 0 must be satisfied in the

equations of motion (11); i.e., they are the solutions of the
equations Uξ � Uη � 0, and thus resulting in

ξn
2

−
(1 − μ)(ξ + μ)q

r
3
1

−
3(1 − μ)(ξ + μ)qA1

2r
5
1

+
15(1 − μ)(ξ + μ)qA2

8r
7
1

−
μ(ξ + μ − 1)

r
3
2

−
3μ(ξ + μ − 1)B1

2r
5
2

+
15μ(ξ + μ − 1)B2

8r
7
2

+
Wnη

r
2
1

� 0,

(13)

n
2η −

(1 − μ)qη
r
3
1

−
3(1 − μ)qηA1

2r
5
1

+
15(1 − μ)qηA2

8r
7
1

−
μη
r
3
2

−
3μηB1

2r
5
2

+
15μηB2

8r
7
2

−
Wn(ξ + μ)

r
2
1

� 0,

(14)

which can be rewritten as

n
2

−
(1 − μ)q

r
3
1

−
3(1 − μ)qA1

2r
5
1

+
15(1 − μ)qA2

8r
7
1

−
μ
r
3
2

−
3μB1

2r
5
2

+
15μB2

8r
7
2

􏼢 􏼣η �
Wn(ξ + μ)

r
2
1

. (15)
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Multiplying equations (13) and (14) by η and (ξ + μ),
respectively, we obtain

ξηn
2

−
(1 − μ)(ξ + μ)ηq

r
3
1

−
3(1 − μ)(ξ + μ)ηqA1

2r
5
1

+
15(1 − μ)(ξ + μ)ηqA2

8r
7
1

−
μ(ξ + μ − 1)η

r
3
2

−
3μ(ξ + μ − 1)ηB1

2r
5
2

+
15μ(ξ + μ − 1)ηB2

8r
7
2

+
Wnη2

r
2
1

� 0,

(16)

n
2
(ξ + μ)η −

(1 − μ)(ξ + μ)qη
r
3
1

−
3(1 − μ)(ξ + μ)qηA1

2r
5
1

+
15(1 − μ)(ξ + μ)qηA2

8r
7
1

−
μ(ξ + μ)η

r
3
2

−
3μ(ξ + μ)ηB1

2r
5
2

+
15μ(ξ + μ)ηB2

8r
7
2

−
Wn(ξ + μ)

2

r
2
1

� 0.

(17)

Subtracting equation (17) from equation (16), we obtain

n
2

�
Wn

μη
+
1
r
3
2

+
3B1

2r
5
2

−
15B2

8r
7
2

� 0. (18)

Using equation (18) in equation (15), we have

n
2

�
q

r
3
1

+
3qA1

2r
5
1

−
15qA2

8r
7
1

+
Wn(ξ + μ)

r
2
1η(1 − μ)

−
Wn

η(1 − μ)
. (19)

In the absence of the dynamical flattening parameters
(Ai � Bi � 0, i � 1, 2) and P–R drag (i.e., W � 0), the solu-
tions of equations (18) and (19) are r1 � r2 � 1. 'en,
considering the above parameters, the solutions of equations
(18) and (19) would change slightly by

r1 � 1 + ε1,

r2 � 1 + ε2,
(20)

where εi(i � 1, 2)≪ 1.
Substituting equations (20) in equations (18) and (19)

together with help of equation (10), we obtain the series
equations in terms of εi(i � 1, 2)≪ 1. Solving these equa-
tions by holding the expressions which contain
Ai, Bi, A2

1, B2
1, A1B1(i � 1, 2) (since Ai � JA

2iR
2i

1 and
Bi � JB

2iR
2i

2 i � 1, 2, then A2
1, B2

1, A1B1, A2, and B2 have the
same powers of mean radii of the dominant bodies), α
(where α � 1 − q) and W also by restricting ourselves only to
the quadratic terms in εi(i � 1, 2)≪ 1, we have

ε1 � −
α
3

−
B1

2
+
5B2

8
+
5A1B1

4
+

B
2
1
2

−
W

3
�
3

√
(1 − μ)

,

ε2 � −
A1

2
+
5A2

8
+
5A1B1

4
+

A
2
1
2

+
2W

3
�
3

√
μ

.

(21)

Substituting equations (21) in equations (20), we have

r1 � 1 −
α
3

−
B1

2
+
5B2

8
+
5A1B1

4
+

B
2
1
2

−
W

3
�
3

√
(1 − μ)

,

r2 � 1 −
A1

2
+
5A2

8
+
5A1B1

4
+

A
2
1
2

+
2W

3
�
3

√
μ

.

(22)

Using r21 � (ξ + μ)2 + η2 & r22 � (ξ + μ − 1)2 + η2 defined
in equations (3), then the exact solutions of the triangular
points L4, 5 are

ξ �
1
2

− μ +
1
2

r
2
1 − r

2
2􏼐 􏼑,

η � ±

�������������������

r
2
1 + r

2
2

2
−

r22 − r21
2

􏼠 􏼡

2

−
1
4

􏽶
􏽴

.

(23)

Substituting equation (22) in (23), we obtain

ξ �
1
2

− μ −
α
3

+
1
2

A1 − B1( 􏼁 −
5
8

A2 − B2( 􏼁 −
5
8

A
2
1 − B

2
1􏼐 􏼑

−
W(2 − μ)

3
�
3

√
μ(1 − μ)

,

η � ±
�
3

√

2
1 −

2α
9

−
1
3

A1 + B1( 􏼁 +
5
12

A2 + B2( 􏼁􏼔

+
7
36

A
2
1 + B

2
1􏼐 􏼑 +

17A1B1

9
+

2W(2 − 3μ)

9
�
3

√
μ(1 − μ)

􏼣.

(24)

Hence, equations (24) are the required locations of the
triangular equilibrium points L4, 5 denoted by (ξ, ±η).

4. Stabilityof theTriangularEquilibriumPoints

To examine the stability of the triangular equilibrium points,
we place the infinitesimal mass at one of the equilibrium
points and give it a small velocity. 'e point is stable for the
oscillatory solutions with small amplitude and unstable for
exponentially diverging solutions.

Assume that (ξ0, η0) are the coordinates of the equi-
librium points under consideration and let (x, y) be the
small displacements from these coordinates of the equilib-
rium points.

'ese can be written as
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ξ � ξ0 + x,

η � η0 + y.
(25)

Now, using equations (25) and holding only the linear
terms of Taylor’s theorem as the second and higher power of
x andy being very small, equation (11) become

x″ − 2y′ � U
0
ξ + xU

0
ξξ + yU

0
ξη + x′U0

ξξ′ + y′U0
ξη′ ,

y″ + 2x′ � U
0
η + xU

0
ηξ + yU

0
ηη + x′U0

ηξ′ + y′U0
ηη′ ,

(26)

where the superscript 0 of equations (26) indicates that the
partial derivatives are evaluated at the equilibrium points
(ξ0, η0). At equilibrium points, U0

ξ � U0
η � 0. Hence, equa-

tions (26) become

x″ − 2y′ � xU
0
ξξ + yU

0
ξη + x′U0

ξξ′ + y′U0
ξη′ ,

y″ + 2x′ � xU
0
ηξ + yU

0
ηη + x′U0

ηξ′ + y′U0
ηη′ .

(27)

Suppose x � Aeλt and y � Beλt are the trial solution of
equations (27) (variational equations). 'en, by using these
values of the trial solutions in equations (27), we get

λ2 − U
0
ξξ − λU

0
ξξ′􏼐 􏼑A + − 2λ − U

0
ξη − λU

0
ξη′􏼐 􏼑B � 0,

λ2 − U
0
ηη − λU

0
ηη′􏼐 􏼑B + 2λ − U

0
ηξ − λU

0
ηξ′􏼐 􏼑A � 0.

(28)

Equations (28) have a nontrivial solution if

λ2 − U
0
ξξ − λU

0
ξξ′ − 2λ − U

0
ξη − λU

0
ξη′

2λ − U
0
ηξ − λU

0
ηξ′ λ2 − U

0
ηη − λU

0
ηη′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 0. (29)

Hence, the required characteristic equation of this dy-
namical system is given by [3, 22]

λ4 + a0λ
3

+ a1λ
2

+ a2λ + a3 � 0, (30)

where

a0 � − U
0
ξξ′ + U

0
ηη′􏼐 􏼑,

a1 � 4 − U
0
ξξ + U

0
ηη􏼐 􏼑 + 2 U

0
ξη′ + U

0
ηξ′􏼐 􏼑 + U

0
ξξ′U

0
ηη′ − U

0
ξη′U

0
ηξ′ ,

a2 � U
0
ξξU

0
ηη′ + U

0
ξξ′U

0
ηη + 2 U

0
ξη − U

0
ηξ􏼐 􏼑 − U

0
ξη′U

0
ηξ − U

0
ξηU

0
ηξ′ ,

a3 � U
0
ξξU

0
ηη − U

0
ξηU

0
ηξ .

(31)

Now, the second partial derivatives of the modified
potential-like functionU at triangular equilibrium points are

U
0
ξξ �

3
4

+
3e

2

8
−

1
2

−
3μ
2

􏼒 􏼓α +
9
4

− 3μ􏼒 􏼓A1 −
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4
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16
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3
4
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16

−
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16
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−
3
4

−
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16

􏼒 􏼓A
2
1 +
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16

−
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2
1 −
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8
−

W μ2 − 13μ + 8􏼐 􏼑

4
�
3

√
μ(1 − μ)

,

U
0
ηη �

9
4

+
9e

2

8
+

1
2

−
3μ
2

􏼒 􏼓α +
3A1

4
−

15
4

−
45μ
16

􏼒 􏼓A2 +
3B1

4
−

15
16

+
45μ
16

􏼒 􏼓B2

−
15
4

−
45μ
16
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2
1 −

15
16

+
45μ
16
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2
1 +

39A1B1

8
+

W 5μ2 − 17μ + 8􏼐 􏼑
�
3

√
μ(1 − μ)

,

U
0
ξη �

3
�
3

√

2
1
2

− μ􏼒 􏼓 +
1
2
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e
2

2
−

1
9

+
μ
9

􏼒 􏼓α +
5(1 − μ)

6
+
μ
6

􏼠 􏼡A1 −
5(1 − μ)

3
+
5μ
24

􏼠 􏼡A2􏼢

−
(1 − μ)

6
+
5μ
6

􏼠 􏼡B1 +
5(1 − μ)

24
+
5μ
3

􏼠 􏼡B2 −
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9

−
73μ
72

􏼒 􏼓A
2
1 +

7
72

+
73μ
72
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2
1

+
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36
−
13μ
36

􏼠 􏼡A1B1 −
W 27μ2 − 31μ + 8􏼐 􏼑

18
�
3

√
μ(1 − μ)

,

Ω0ηξ � Ω0ξη, U
0
ξξ′ � −

5W

4
, U

0
ηη′ � −

7W

4
U

0
ξη′ � U

0
ηξ′ � −

�
3

√
W

4
, U

0
ξη′􏼐 􏼑

2
� 0.

(32)
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Hence, the general expressions for the roots of the
characteristic equation (30) are

λ1⟶ −
1
2

��������������������

a
2
0
2

−
4a1

3
−

M

4
��
R

√ − P − Q

􏽳

−
a0

4
−

��
R

√

2
,

λ2⟶
1
2

��������������������

a
2
0
2

−
4a1

3
−

M

4
��
R

√ − P − Q

􏽳

−
a0

4
−

��
R

√

2
,

λ3⟶ −
1
2

��������������������

a
2
0
2

−
4a1

3
+

M

4
��
R

√ − P − Q

􏽳

−
a0

4
+

��
R

√

2
,

λ4⟶
1
2

��������������������

a
2
0
2

−
4a1

3
+

M

4
��
R

√ − P − Q

􏽳

−
a0

4
+

��
R

√

2
,

(33)

where

K � a
2
1 − 3a0a2 + 12a3,

L � 2a
3
1 − 9a0a1a2 + 27a

2
2 + 27a

2
0a3 − 72a1a3,

M � − a
3
0 + 4a0a1 − 8a2,

p �
L +

��������
L2 − 4K3

√
􏼐 􏼑

(1/3)

3 × 2(1/3)
,

Q �
2(1/3)

K

3 L +
��������
L2 − 4K3

√
􏼐 􏼑

(1/3)
,

R � P +
a
2
0
4

−
2a1

3
Q.

(34)

5. Numerical Application

In this section, we study numerically the locations and
stability of the triangular equilibrium points L4, 5 of the Sun-
Earth system, by taking into account the dynamical flat-
tening parameters of both the Sun (m1) and Earth (m2), the
radiation pressure factor, and P–R drag of the Sun.

For the purpose of computation in this paper, the as-
trophysical data of the Sun-Earth system are borrowed from
NASA ADS, Ragos et al. [29], Mecheri et al. [30], and Singh
and Umar [31].

'e first two even zonal harmonics of the Sun are
JA
2 ∼ 2.2 × 10− 7 & JA

4 ∼ − 4.5 × 10− 9 and those of the Earth
are JB

2 ∼ 1.0 × 10− 3 & JB
4 ∼ − 1.6 × 10− 6. Also, the orbital

eccentricity of the Earth is e∼0.0167. Now, the dynamical
flattening parameters of the primary bodies are given by

A1 ∼ 5.0 × 10− 12, A2 ∼ − 2.0 × 10− 18, B1 ∼ 2.0 × 10− 12,

and B2 ∼ − 5.2 × 10− 24.
'e radiation pressure factor of the Sun q is defined as

q � 1 − α such that α can be expressed as
α � (L⊙/(2πGm1cκ)) [28], where L⊙ is the luminosity of the
Sun, G is the gravitational constant, c is the speed of light,
and κ is the mass per unit area. By using Stefan–Boltzmann’s
law, the luminosity of the primary can be expressed as
L⊙ � 4πR

2
⊙ σT4
⊙ , where σ is the Stefan–Boltzmann’s constant

(see [28]). Also, the dimensionless velocity of light and the
mass ratio of the Sun-Earth system are given by
cd ∼ 10064.84 and μ ∼ 3.0035 × 10− 6, respectively [29].

6. Discussion

'emodified equations of motion of an infinitesimal mass in
the framework of the elliptic restricted three-body problem
under the effects of dynamical flattening parameters of both
primaries, radiation pressure factor, and P–R drag of the
bigger primary (i.e., the Sun) are given in equations (11),
while the locations and characteristic equation of the tri-
angular points L4, 5 are given in equations (24) and (34),
respectively.

Figure 1 shows the effects of the perturbing forces in-
volved in the problem under consideration for the three
different cases and classical case as well on the locations of
triangular equilibrium points L4, 5. Graph (a) is the classical
case, graph (b) shows the effects of radiation pressure factor
together with P–R drag, and graph (c) shows the effects of
dynamical flattening parameters while graph (d) shows the
combine effects of radiation pressure factor, P–R drag, and
dynamical flattening parameters. 'is clearly shows that the
perturbing forces under consideration have no significant
effect on the locations of the triangular equilibrium points
L4, 5 in the vicinity of the Sun-Earth system.'ese effects can
only be seen in the table (see Table 1).

Table 2 shows numerical roots of the characteristic
equation (30) for the classical case, as well as three other
cases. In all cases, the characteristic roots reveal that all the
roots are purely imaginary. 'is shows that the perturbing
forces under consideration have no significant effect on the
stability of the triangular equilibrium points L4, 5. Hence, the
motion of an infinitesimal mass near the triangular equi-
librium points L4, 5 of the Sun-Earth system is stable in the
linear sense under the influence of these perturbations.

For A2
1 � B2

1 � A1B1 � 0 and W � 0, the present results
of the triangular points in the circular case are in conformity
with Singh and Taura [5] for p2 � Mb � 0 in their results and
for α � W � 0, which also agrees with those of Abouelmagd
et al. [11]; the difference in configuration of the primary
bodies is responsible for the difference in sign.

'eir results are [5, 11]
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r
2
1 � (x + μ)

2
+ y

2
,

r
2
2 � (x + μ − 1)

2
+ y

2
,

ξ �
1
2

1 − 2μ −
2p1

3
+
2p2

3
+ A1 −

5
4
A2 − B1 +

5
4
B2􏼔 􏼕,

η � ±
�
3

√

2
1 −

2 p1 + p2( 􏼁

9
−

A1

3
+
5A2

12
−

B1

3
+
5B2

12
−
4Mb 2rC − 1( 􏼁

9 r
2
C + T

2
􏼐 􏼑

(2/3)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦,

(35)

r
2
1 � (x − μ)

2
+ y

2
,

r
2
2 � (x − μ + 1)

2
+ y

2
,

x4, 5 � μ −
1
2

−
1
2

A1 − B1( 􏼁 +
5
8

A2 − B2( 􏼁 +
5
8

A
2
1 − B

2
1􏼐 􏼑,

y4, 5 � ±
�
3

√

2
1 −

1
3

A1 − B1( 􏼁 +
5
12

A2 + B2( 􏼁 +
1
36

7 A
2
1 + B

2
1􏼐 􏼑 + 68A1B1􏽨 􏽩􏼚 􏼛.

(36)
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Figure 1: Effects of radiation pressure factor, P–R drag, and dynamical flattening parameters on the locations of triangular equilibrium points L4, 5
of the Sun-Earth system. (a) Blue triangle is for the classical case. (b) Purple triangle is for Ai � Bi � 0, W≠ 0, α≠ 0 case. (c) Brown triangle is for
Ai ≠ 0, Bi ≠ 0, W � α � 0 case. (d) Turquoise triangle is for Ai ≠ 0, Bi ≠ 0, W≠ 0, α≠ 0 case.

Table 1: Effects of radiation pressure factor, P–R drag, and dynamical flattening parameters on the locations of triangular equilibrium points
L4, 5 of the Sun-Earth system.

Case (i � 1, 2) ξ ±η
1 Classical 0.4999969965000000 0.866025403784439
2 Ai � Bi � 0, W≠ 0, α≠ 0 0.4999969964999347 0.866025403784474
3 Ai ≠ 0, Bi ≠ 0, W � α � 0 0.4999969965015000 0.866025403782418
4 Ai ≠ 0, Bi ≠ 0, W≠ 0, α≠ 0 0.4999969965014348 0.866025403782454

Table 2: Effects of radiation pressure factor, P–R drag, and dynamical flattening parameters on the stability of triangular equilibrium points
L4, 5 of the Sun-Earth system.

Case (i � 1, 2) λ1, 2 λ3, 4 Remark

1 Classical ±0.004504233279349719i ±0.999780664387228i Stable
2 Ai � Bi � 0, W≠ 0, α≠ 0 ±0.004504233327067630i ±0.999780664386725i Stable
3 Ai ≠ 0, Bi ≠ 0, W � α � 0 ±0.004504233279348517i ±0.999780664379725i Stable
4 Ai ≠ 0, Bi ≠ 0, W≠ 0, α≠ 0 ±0.004504233327101427i ±0.999780664379223i Stable
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In the case Ai � Bi � 0(i � 1, 2) in the present work, the
obtained results of the triangular points in the circular case
are in agreement with those of Singh and Simeon [18] by

taking σi � σi
′ � δ2 � W2 � 0(i � 1, 2), andW1⟶W in

their results.
'eir results are

x �
1
2

− μ −
δ1
3

+
δ2
3

−
W1(2 − μ)

3μ(1 − μ)
�
3

√ −
W2(1 + μ)

3μ(1 − μ)
�
3

√ −
(4 + μ)σ1

8μ
+

(4 + 3μ)σ1′
8(1 − μ)
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(− 7 + 3μ)σ2′
8(1 − μ)

y � ±
�
3

√

2
1 −

2δ1
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−
2δ2
9

−
1
3

23
4

−
1

1 − μ
􏼠 􏼡σ1′ +

1
3

19
4

−
1

1 − μ
􏼠 􏼡σ2′ +

1
3

− 23
4

+
1
μ

􏼠 􏼡σ1 +
1
3

19
4

−
1
μ

􏼠 􏼡􏼨

σ2 +
W1(2 − 3μ)

9μ(1 − μ)
+

W2(1 − 3μ)

9μ(1 − μ)
.

(37)

Our results for the second partial derivatives and the
characteristic equation differ from those of Singh and Taura
[5], Abouelmagd et al. [11], and Singh and Simeon [18] due
to the elliptic nature of our potential-like function. However,

the P–R drag parts of the partial derivatives coincide with
those of Singh and Simeon [18], that is, for
δ2 � W2 � 0, W⟶W1, and α⟶ δ1. 'eir results for the
second partial derivatives are

Ω0xx �
3
4
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1
2
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(38)

'us, for A2 � B2 � W � 0 in the elliptic case of the
triangular points, the obtained results coincide with those of
Narayan and Shrivastava [6]; that is, for α⟶∈(1),

A1⟶ A1, B1⟶ A2, A1∈(1) � 0& ∈(2) � 0. 'eir results
are

x0 �
1
2

− μ +
A1

2
−

A2

2
+
∈(2)
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∈(1)

3
−
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(39)
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In the elliptic case, the obtained results do not agree with
those of Singh and Umar [4] and Singh and Tyokyaa [12].
'is is because we have used the modified mean motion
(n)(equation (10)) which does not contain the eccentricity
(e) and semi-major axis (a). However, by substituting e � 0

and a � 1, their results in the triangular case coincide fully
with ours upon relaxing some parameters in our problem.
'e same applies to the second partial derivatives.

'eir results are [12, 14]
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(41)

'eP–R drag finds importance in the investigation of the
stability of zodiacal cloud, orbital evolution of cometary
meteor steams, asteroidal particles, and dust rings around
planets. 'is model is applicable not only to the Sun-Earth
system but also to other systems in both the solar and stellar
systems as well.
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