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*is study presents the chaotic oscillation of the satellite around the Earth due to aerodynamic torque. *e orbital plane of the
satellite concurs is same as the tropical plane of Earth.*e half-width of riotous separatrix is assessed utilizing Chirikov’s measure.
Variety of boundary techniques shows that streamlined force boundary (ε), unpredictability of circle (e), and mass-proportion
(ω0) convert normal wavering to the disorganized one. We studied the behavior of trajectories due to change in parameters with
Lyapunov exponents and time series plots. *e theory is applied to Resourcesat-1, an artificial satellite of the Earth.

1. Introduction

Artificial satellites are widely used in telecommunication,
mass media and weather forecast, agriculture, and naviga-
tion. Satellites are widely used in agriculture and forestry for
crop inventory, yield prediction, and soil/crop condition
monitoring. Resourcesat-1 (also known as IRS-P6) is an
advanced remote sensing satellite built by the Indian Space
Research Organization (ISRO).*e tenth satellite of ISRO in
IRS series, Resourcesat-1, is intended to not only continue
the remote sensing data services provided by IRS-1C and
IRS-1D, both of which have far outlived their designed
mission lives, but also vastly enhance the data quality. *e
major objectives of Resourcesat-1 are to provide continued
remote sensing data services on operational basis for inte-
grated land and water resources management with enhanced
multispectral/spatial coverage and stereo imaging and also
to develop new areas of applications to take full advantages
of increased spatial and spectral resolutions. For a country
like India, with populations separated by rough terrain and
different languages, communications satellites provide re-
mote populations access to education and to medical ex-
pertise that would otherwise not reach them [1].

Satellite exhibits chaotic motion under the influence of
different torques and, for the low-thrust tug-debris tethered
system in a Keplerian orbit, experiences chaotic attitude
motion. Aslanov et al. [2] introduced steady and insecure
fixed answers for the in-plane movement of the framework
in a roundabout circle, which rely upon the estimation of the
pull’s pushed. Bhardwaj and Kaur [3] studied the satellite
motion under the effect of aerodynamic torque and
explained in detail about the nonresonance oscillation. Also,
they discussed that under the influence of magnetic torque
for different mass parameters, tumbling of satellite experi-
ences shows the chaotic signal [4]. Bhardwaj and Sethi [5]
discussed that air drag exhibits resonance criteria for
nonlinear motion. Rotational nonlinear oscillation of the
satellite under the influence of combined aerodynamic and
magnetic torque was discussed by Bhardwaj et al. [6], and
they concluded that with the change in mass parameter, the
dynamics of the satellite altered. Bhardwaj and Tuli [7]
discussed the nonlinear planar oscillation of a satellite under
the influence of third-body torque, and it is concluded that
Hyperion tumbled more chaotically with the change in the
third body torque parameter. Planar oscillation of a satellite
in an elliptic orbit for magnetic torque was studied by
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Bhardwaj and Kaur [8], and they observed that as eccen-
tricity changed, the oscillation of satellite exhibits chaotic
motion which increases with the increase in eccentricity.
Bhardwaj and Bhatnagar [9–12] studied the nonlinear planar
rotational oscillation of the satellite in circular orbit for
magnetic torque and for third-body torque in elliptic orbit,
and it is concluded that the mass parameter and torque
parameter play an important role in changing the motion
from regular to the chaotic one.

Chegini et al. [13, 14] explored mathematically turmoil
in demeanor elements of an adaptable satellite made out of
an inflexible body and two indistinguishable unbending
boards connected to the fundamental body with springs
using analytical and numerical methods. Clemson and
Stefanovska [15] discussed the analysis of nonautonomous
dynamics for extracting properties of interactions and the
direction of couplings for chaotic, stochastic, and nonau-
tonomous behaviour. For the chaotic class, the Lorenz
system; for the stochastic class, the noise forced Duffing
system; and for the nonautonomous class, the Poincare
oscillator with quasiperiodic forcing discussed and gave a
good review to distinguish nonautonomous dynamics from
chaos or stochasticity. Doroshin [16] got altered numerical
models and dynamical frameworks to give an idea of het-
eroclinic chaos and its local suppression in attitude dy-
namics for dual spin spacecraft and gyrostat satellites.
Gutnik and Sarychev [17] mathematically simulated the
motion of the satellite under aerodynamic torque for the
control system influenced by the active dumping torques.
Inarrea and Lanchares [18] examined the pitch movement
elements of an awry rocket in round circle affected by a
gravity inclination force and accepted that shuttle is irritated
by a little streamlined drag force corresponding to the
precise speed of the body about its mass community.
Koupriano and Shevchenko [19] considered the issue of
recognizability of clamorous systems in turn of planetary
satellites utilizing Jacobian assessment approach. Kuptsov
and Kuznets [20] discussed the Lyapunov analysis of strange
pseudohyperbolic attractors and briefly analyzed about the
angles between tangent subspaces, local volume expansion,
and contraction.

*e phenomenon of chaos is generally related to the field
of dynamical systems, and it can be characterized in the
dynamics by sensitive dependence on the initial conditions.
Chaos is a fascinating mathematical and physical phenom-
enon. *e study of chaos shows that simple systems can
exhibit a complex and unpredictable behaviour. *e chaos in
the dynamics can be identified and quantified by several
techniques. A positive value of the Lyapunov exponent
provides chaos in the dynamics which is discussed by Letellier
[21]. Liu and Cui [22] analyzed the nonlinear model which
should be adopted for the sailcraft in long duration missions,
and the restricted position of the sliding mass could be se-
lected elaborately to utilize the resultant torque by the
gravitational and center-of-mass or center-of-pressure tor-
ques. Melnikov and Shevchenko [23] considered the issue of
figuring the Lyapunov season of the disorganized movement
region for resonances in satellite movement. Pritykin et al.

[24] discussed the long-term evolution of attitude motion for
defunct satellites in nearly polar orbits. Rosengren et al. [25]
indicated that the sporadic and random characters of the
Global Navigation Satellite Systems’ circles mirror a com-
parative inconsistency in the circles of numerous divine
bodies in our solar framework. Rawashdeh [26] studied the
attitude analysis of small satellites using model-based simu-
lation. Efimov et al. [27] discussed about long-term attitude
dynamics of space debris for sun-synchronous orbits and
studied about Cassini cycles and chaotic stabilization. Chang
[28] gave an idea of stability, chaos detection, and quenching
chaos for the swing equation system. Wang et al. [29] de-
veloped the six-dimensional hyperchaotic system and applied
for secure communication circuit implementation. Wolf et al.
[30] introduced the main calculations that permit the as-
sessment of nonnegative Lyapunov types from an exploratory
time arrangement.

Apparently, none of the creators have contemplated the
bedlam affected by the streamlined force in an elliptic circle.
In the current examination, we contemplated the tumul-
tuous movement of a satellite affected by a streamlined force
in an elliptic circle. In this study, the condition of movement
for the framework is inferred. Utilizing variety of boundaries
techniques, the unrest, libration, and endless period sepa-
ratrix are examined. *e mathematical recreation of tu-
multuous movement affected by the streamlined force is
examined for Earth-Resourcesat-1 satellite.

2. Mathematical Model

Let an inflexible satellite S revolve in elliptic circle around
Earth E with the end goal that orbital plane concurs with
central plane of Earth. S is thought a trihub body with head
snapshots of inactivity A<B<C at its focal point of mass,
and C is the snapshot of idleness about turn hub which is
opposite to the orbital plane. Let r

→ be the sweep vector of
focal point of mass of S, ] be the true anomaly, θ be the point
that the long hub of S makes with fixed line EF lying in the
orbital plane, and (η/2) be the point between the span vector
and long pivot as shown in Figure 1.

Equation of motion for the system, see details as given in
[3], is obtained as

d2η
d]2

+ n
2η � − e cos ]

d2η
d]2

+ 2e sin ]
dη
d]

+ 4e sin ] + n
2
(η − sin η)

+ ε A∗]
2 sin ] + B∗] sin ] + C∗ sin ] + D∗] + E∗􏼐 􏼑,

(1)

where n2 � ((3(B − A))/C) � mass parameter; ε � ((ρSCd

l2)/(CΩ2)) � aerodynamic torque parameter; A∗ � ((

a2(1 − e))/Ω2l) � constant; B∗ � (((ωa(2e − 1))/Ω) cos i+

((2V1a(1 − 2e))/Ωl)) � constant; C∗ � (ωV1(2e − 1)cos i +

((V2
1(1 − 2e))/l) +((ωae)/2Ω)sin i) � constant; D∗ � (((ω

a(2e − 1))/Ω)sin i) � constant; E∗ � ωV1(2e − 1)sin i � con
stant; and
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d2θ
dt

2 �
μ
r
3 − 2e sin ] − e sin ]

dη
d]

+
1
2

(1 + e cos ])
d2η
d]2

􏼠 􏼡.

(2)

From equations (1) and (2), we get

d2θ
dt

2 � −
μ
2r

3 n
2 sin δ − ε1􏼐

· A∗]
2 sin ] + B∗] sin ] + C∗ sin ] + D∗] + E∗􏼐 􏼑􏼑.

(3)

Taking n2 � ω2
0 � ((3(B − A))/C); θ � ] + (δ/2)⇒

δ � 2(θ − ]), equation (3) becomes

d2θ
dt

2 � −
μ
2r

3 ω2
0 sin(2(θ − ])) − ε1􏼐

· A∗ sin ]3 + B∗ sin ]2 + C∗ sin ] + D∗] + E∗􏼐 􏼑􏼑.

(4)

In condition (4), if units are picked to the point that
orbital time of S is 2π and its semisignificant pivot is 1, at
that point dimensionless, time is equivalent to mean
longitude or genuine inconsistency which is 2π intermit-
tent and μ� 1. As r and ] are 2π occasional as expected,
utilizing Fourier-like Poisson series (Wisdom et al. [31]),
equation (4) becomes

d2θ
dt

2 +
ω2
0
2

􏽘 H
m

2
, e􏼒 􏼓 sin(2θ − mt)

−
ε
2

A∗ sin ]3 + B∗ sin ]2 + C∗ sin ] + D∗] + E∗􏼐 􏼑 � 0,

(5)
H((m/2), e) corresponds to e2|(m/2)− 1| and is given by Cayley
[32] and Goldreich and Peale [33]. At the point, if e is little,
H((m/2), e) � − (e/2). *e half whole number (m/2) is
signified by the image p. Resonances happen at whatever
point one of the contentions of the sine or cosine capacities is
almost fixed, for example, at whatever point
|(dθ/dt) − p|≪ (1/2). In such cases, it is to rework the
condition of movement as far as the gradually changing
reverberation variable vp � θ − pt ⇒((d2vp)/dt2) �

((d2θ)/dt2)⟹ 2vp � 2θ − mt. Equation (5) can be written
as

d2vp

dt
2 +

ω2
0
2

H(p, e)sin 2vp

−
ε
2

A∗ sin ]3 + B∗ sin ]2 + C∗ sin ] + D∗] + E∗􏼐 􏼑 � 0.

(6)

*is is pendulum perturbed by (ε/2)(A∗ sin ]3+
B∗ sin ]2 + C∗ sin ] + D∗] + E∗). When ε≠ 0, condition (6)
speaks to the condition of movement of upset pendulum
given by

d2xp/dt
2

􏼐 􏼑 + f′ xp􏼐 􏼑 � mpg′ xp, t􏼐 􏼑, (7)

where xp � 2vp ; f′ (xp) � k2
1p sin xp ; k2

1p � ω2
0H(p, e) ;

mp � ε ; and g′(xp, t) � A∗ sin t3 + B∗ sin t2 + C∗ sin t +

D∗t + E∗. *e unperturbed piece of condition (7) is
((d2xp)/dt2) + f′(xp) � 0 ⇒(dxp/dt)2 � 2k2

1p cos xp + c1p.

*e integration constant is defined as c1p. If c1p + 2k21p ≥ 0,
then motion is said to be real. *ree kinds of motions are
defined based on the conditions c1p > 2k21p, c1p < 2k21p, and
c1p � 2k2

1p.

2.1. Category-I. We consider c1p > 2k21p. Forc1p > 2k21p, the
value of (dxp/dt) never vanishes; it is either certain or
negative, and the pendulum is seeming well and good or the
other. For this situation, the unperturbed arrangement is

xp � lp + c1p sin lp + o c
2
1p􏼐 􏼑,

lp � npt + ε1,

c1p �
k
2
1p

n
2
p

;

1
np

�
1
2π

􏽚
2π

0

dxp

c1p + 2k
2
1p cos xp􏼐 􏼑

(1/2)
,

(8)

ν 

S 

F E 
θ

r

n/2

Figure 1: S revolving around Earth E.

Advances in Astronomy 3



where c1p and ε1 are the discretionary constants, and lp is a
contention. Intermittent segment of this arrangement can be
viewed as swaying about the mean condition of movement
which is unrest with a period (2π/np). Half plentifulness of
wavering is clearly not exactly π, and it diminishes as np

increments. Here, we may see that (dxp/dt)≠ 0, and the
movement is supposed to be of type I, for example, upheaval.
Brown and Shook [34] proposed the theory of variation of
parameters for the perturbed pendulum which gives

dc1p

dt
�

m

kp

zx

zl
g′,

dlp

dt
� n −

m

kp

zx

zc1
g′,

kp �
z

zc1p

np

zx

zl
􏼠 􏼡

zx

zl
− np

z
2
x

zl
2

zx

zc1p

,

(9)

Table 1: Earth-Resourcesat-1 system for fixed values of A∗ � 3.36E + 09, B∗ � 1596.387, C∗ � − 103631, D∗ � −

4E + 08, E∗ � 200.1022, e � 0.001, ε, and variation in n.

Figure no. n ε Graphical behaviour of Poincare map Graphical behaviour of Lyapunov exponent
2 0.0001 0.000000000000000001

Regular curves disintegrate as ε increases

Chaotic
3 0.00000000000001 Chaotic
4 0.9 0.000000000000000001 Periodic
5 0.00000000000001 Periodic and chaotic
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Figure 2: For n � 0.0001, ε � 0.000000000000000001, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631, E∗ � 200.1022,

and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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since c1p � (k2
1p/n2p). *erefore,

znp

zc1p

� −
np

2c1p

,

zxp

zlp
� 1 + c1p cos lp,

z
2
xp

zlp
2 � − c1p sin lp,

zxp

zc1p

� sin lp,

z
2
xp

zc1pzlp
� cos lp.

(10)

Putting the above values and writing kp � k1p, equation
(9) can be written as

k1p � −
np

2c1p

−
npc1pcos

2
lp

2

+ npc1p � −
np

2c1p

.

(11)

Hence, (dc1p/dt) � 0; so, c1p is the second order ap-
proximation constant. Second equation of (9) gives

dlp

dt
� np +

2mpc1p

np

sin lp

· A∗ sin t
3

+ B∗ sin t
2

+ C∗ sin t + D∗t + E∗􏼐 􏼑.

(12)

Rejecting second or higher order terms, we get
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Figure 3: For n � 0.0001, ε � 0.00000000000001, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631, E∗ � 200.1022,

and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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d2lp
dt

2 �
2C∗mpc1p

np

+
2D∗mpc1p

np

−
6E

2
∗m

2
pc1p

n
2
p

+
4E

2
∗m

2
pc

2
1p

np

⎛⎝ ⎞⎠

· sin lp + 1 + 2c1p􏼐 􏼑 C∗mp sin t + D∗mpt + E∗mp􏼐 􏼑,

d2lp
dt

2 + k
2
2p sin lp � mp 1 + 2c1p􏼐 􏼑 C∗ sin t + D∗t + E∗( 􏼁.

(13)

Let l p � x p, (d2xp/dt2) + k2
2p sin xp � mpg″(xp, t),

where g″(xp, t) � (1 + 2c1p)(C∗ sin t + D∗t + E∗), and
k2
2p � − (((2C∗mpc1p)/np) + ((2D∗mpc1p) /np) − ((6E2

∗m
2
pc

1p)/np) + ((4E2
∗m

2
pc21p)/np)). *e unperturbed part of the

above equation is (d2xp/dt2) + k2
2p sin xp � 0⇒(dxp/dt)2 �

2k22p cos xp + c2p, where c2p is a constant of integration.
*ree types of motions are obtained for the motion of
pendulum.

(1) If (dxp/dt)≠ 0, then motion of type 1 exists. For type
1, the solution is xp � Npt + ε2p + (k2

2p/N
2
p)

sin(Npt + ε2p) + · · ·; (1/Np) � (1/2π) 􏽒
2π
0 (dxp/(c2p

+2k2
2p cos xp)(1/2)), where c2p and ε2p are the arbi-

trary constants. For first approximation, Np � N0p;
so, xp � x0p + (k2

2p/N
2
0p)sin(x0p), where x 0p � N0p

t + ε2p. *is is situation of unrest.
(2) If (dxp/dt) � 0 at 0 or π, then motion of type 2

exists. For type 2, solution is xp � λp sin(p′t + λ0),
where p′ �

�����
((2m

􏽰
pω2

0H(p, e))/n3
p)(C∗ + D∗ + (

(E2
∗mp)/np)(− 3 + 2((2ω2

0H(p, e))/n2
p))), λp, λ0 are

defined as the constants of integration. *is is sit-
uation of libration.

(3) Type 3 when c2p � 2k22p � − ((4ω2
0mpH(p, e))/n3

p)

(C∗ + D∗ + ((E2
∗mp)/np)(2((ω2

0H(p, e))/n2
p) − 3)).

Solution is x p + π � 4 tan− 1 exp(k 2pt + α 0). *e
arbitrary constant is defined as α0. It is observed that
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Figure 4: For n � 0.9, ε � 0.000000000000000001, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631, E∗ � 200.1022,

and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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as t⟶ ±∞, (dxp/dt) � 0 as x p⟶ ±π are
consequently higher subsidiaries of x p way to deal
with zero. As x p ways to deal with ± π, t watches out
for uncertain capacity of x p.*is is case of boundless
period separatrix.

We presumed that because of the aftereffects of type 1,
type 2, and type 3, the streamlined force assumes a huge part
in changing the movement of upset to libration or to
boundless period separatrix.

2.2. Category-II: c1p < 2k21p. For this situation, unperturbed
arrangement is xp � c1p sin lp + o(c31p) , lp � npt + ε1 , and
np � k1p(1 − (1/16)c21p + · · ·), where c1p and ε1 are the
discretionary constants, and lp is a contention. If there
should arise an occurrence of bothered pendulum by uti-
lizing the hypothesis of variety of boundaries, we get
kp � (z/zc1p)(np(zx/zl))(zx/zl) − np(z2x/zl2)(zx/zc1p),
kp � k1pc1p,
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Figure 5: For n � 0.9, ε � 0.00000000000001, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631, E∗ � 200.1022, and e �

0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.

Table 2: Earth-Resourcesat-1 system for fixed values of A∗ � 3.36E + 09, B∗ � 1596.387, C∗ � − 103631, D∗ � − 4E + 08, E∗
� 200.1022, e � 0.001, n, and variation in ε.

Figure
no. ε n Graphical behaviour of Poincare map Graphical behaviour of Lyapunov exponent

6 0.0000000000000000000000005 0.00001
Curves behave chaotically but

remains almost same

Chaotic
7

0.000000000000000000005
0.005 Chaotic

8 0.4 Periodic and chaotic
9 0.8 Periodic
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d2lp
dt

2 �
mp

k1pc1p

− C∗ − D∗ +
mpE

2
∗

k1pc
2
1p

⎛⎝ ⎞⎠sin lp

−
mp

c1p

C∗ sin t + D∗t + E∗( 􏼁

+
m

2
p

k
2
1pc

2
1p

C∗E∗ sin t + D∗E∗t + E
2
∗􏼐 􏼑,

⇒
d2lp
dt

2 + k
2
3p sin lp � −

mp

c1p

C∗ sin t + D∗t + E∗( 􏼁

+
m

2
p

k
2
1pc

2
1p

C∗E∗ sin t + D∗E∗t + E
2
∗􏼐 􏼑,

(14)

where k2
3p � − (mp/k1pc1p)(− C∗ − D∗ + (mpE2

∗/k1pc21p)).

*e unperturbed part of the equation is
((d2lp)/dt2) + k2

3p sin lp � 0, where lp is little, and the ar-
rangement of above condition is lp � e k 3pt + e − k 3pt. It is
again a condition of a pendulum, and as in a prior case, the
movement is alluded as upset, libration, and boundless
period separatrix.

2.3. Category-III: c1p � 2k21p. *e unperturbed arrangement
is

xp + π � 4 tan− 1 exp k1pt + α0􏼐 􏼑, (15)

where α0 is a discretionary steady. *is is the situation of
endless period separatrix as asymptotic forward and in re-
verse so as to insecure harmony. In this class, the idea of
unperturbed arrangement does not change by considering
the streamlined force. Close to the endless period, separatrix
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Figure 6: For n � 0.00001, ε � 0.0000000000000000000000005, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631,

E∗ � 200.1022, and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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widened by high recurrence term into tight clamorous band
for little n, and half width of disordered separatrix is given by

ωp �
Ip − I

s
p

I
s
p

� 4πε1λ
3
e

− (πλ/2)
, (16)

where ε1 is the proportion of coefficient of closest annoying
high-recurrence term to coefficient of perturbed term, and
λ�Ω/ω is the proportion of recurrence distinction between
full term and closest nonfull term (Ω) to recurrence of little
sufficiency freedoms (ω).

3. Spin-Orbit Phase Space

Utilizing Poincare surface of the segment by taking a gander
at directions stroboscopically with period 2π, the segment is
drawn with (dη/d]) versus v at each periapse section. On
account of semi-intermittent direction, focuses are con-
tained in smooth bends, while for clamorous directions, they
seem to the top off region in the stage space in an arbitrary
way. Since direction indicated by η is identical to the di-
rection signified by π + η, we have, consequently, confined
the span from 0 to π.
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Figure 7: For n � 0.005, ε � 0.000000000000000000005, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631,

E∗ � 200.1022, and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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4. Results and Discussion

Poincare map, surface of section, and Lyapunov exponents
have been plotted for Earth’s artificial satellite Resourcesat-1.
For the satellite, it is assumed that semimajor
axis� a� 7.195∗103 km, flightiness� e� 0.001, tendency
� i� 98.69°, and angular velocity�Ω� 1.034∗10− 3 rad/sec. *e
effect of mass parameter (n) and aerodynamic torque pa-
rameter (ε) is studied on the nonstraight wavering of a satellite

in an elliptic circle. Poincare maps, surface of section, Lya-
punov exponents, and time series for different values of mass
parameter and aerodynamic toque parameter are plotted as
described in tables and figures. Table 1 gives the details of
figures for Earth − Resourcesat − 1 for fixed values of A∗,

B∗, C∗, D∗, E∗, ε, and e, and the variation of values of n from
0≤ n≤ 1 is shown in Figures 2–5. Table 2 gives description of
figures for the Earth-Resourcesat-1 system at fixed values of
parameters, n, and e, and the variation of values of ε from
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Figure 8: For n � 0.4, ε � 0.000000000000000000005, A∗ � 3.36E + 09, D∗ � − 4E + 08, B∗ � 1596.387, C∗ � − 103631,

E∗ � 200.1022, and e � 0.001. (a) Poincare map, (b) Poincare surface of section, (c) Lyapunov exponent, and (d) time series.
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0≤ ε≤ 0.5 which are plotted is shown in Figures 6–9. From the
plots, it is observed that regular curves disintegrate, and this
disintegration increases as ε increases and curves behaves
chaotically but remains almost same.

5. Conclusion

From these investigations, we conclude that the stream-
lined force assumes an extremely huge function in
changing the movement of insurgency into movement of
libration or endless period separatrix. Likewise, we see that
standard movement changes into a turbulent one for
certain estimations of the streamlined force boundary and
mass boundary n. Half width of disordered separatrices
assessed by Chirikov’s basis is not influenced by the
streamlined force. It was seen that counterfeit satellite’s
turn circle stage space is overwhelmed by a chaotic zone
which increments further because of the streamlined force.
It is additionally seen that normal bends begin breaking
down because of the streamlined force and mass boundary,
and this deterioration increments as the streamlined force

and mass boundary increments. It is concluded that
aerodynamic torque and n change regular movement to the
chaotic motion.
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