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)is work aims to study the stability of certain motions of a rigid body rotating about its fixed point and carrying a rotor that
rotates with constant angular velocity about an axis parallel to one of the principal axes.)is motion is presumed to take place due
to the combined influence of the magnetic field and the Newtonian force field. )e equations of motion are deduced, and
moreover, they are expressed as a Lie–Poisson Hamilton system. )e permanent rotations are calculated and interpreted
mechanically. )e sufficient conditions for instability are presented employing the linear approximation method. )e energy-
Casimir method is applied to gain sufficient conditions for stability. )e regions of linear stability and Lyapunov stability are
illustrated graphically for certain values of the parameters.

1. Introduction

A gyrostat is a simple multibody which consists of a rigid
body and other bodies which are usually called rotors
moving in such a way that their motion does not change the
distribution of mass for the gyrostat [1]. )e gyrostat is also
well known in the literature as a dual-spin body due to the
motion of the two bodies which compose the gyrostat.
Volterra [2] had first introduced the notions of gyrostat
when he strived to study the motion of the Earth’s polar axis
and interpret variations in the Earth’s latitude by means of
the internal motion which keeps the mass distribution of the
planet fixed. )is model is used in a variety of numerous
applications in different branches of physics besides their
classical applications in astronomy and mechanics. For
example, the gyrostat was utilized as a model of the Earth
that takes into account some stationary transport processes
on it [2], as a model of the atmosphere and of rotating fluid
(e.g., [3]) and as a controlling device in satellite dynamics
(e.g., [4]).

Most of the works related to the rigid body and its
extension to gyrostat can be assorted into three categories.
)e first is the integrability problem and the searching for the
complete set of the first integrals of the motions. Borisov and
Mamaev [5] contain most of those integrable problems up to
2001, and some cases were presented by several authors (see,
e.g., [6–10]). )e second category regards the problem of
study periodic solutions, bifurcation, and chaos in some
problems of rigid body-gyrostat (see, e.g., [11–14]).)e third
one is the stability problem of the equilibria in the dynamics
of a rigid body-gyrostat moving in an orbit or about its fixed
point (see, e.g., [15–23]).

)e current work is interested in studying the stability of
permanent rotations for the motion of a charged gyrostat
moving due to the combined influence of the magnetic field
and Newtonian force field. )is work is regarded as an
extension of some previous works. In [17], Iñarrea et al.
examined the stability of permanent rotations of a heavy
rigid body carrying a rotor that rotates about one of the
principal axes by a constant angular velocity. )is study was
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followed by Elmandouh who studied this problem in the
case of a charged heavy gyrostat [20]. Vera studied the
stability of relative equilibrium for a gyrostat in Newtonian
force field [19].

)is work is organized as follows: in Section 2, we deduce
equations of the motion and rewrite them as a Lie–Poisson
Hamilton system. Section 3 contains the permanent rota-
tions and their interpretation mechanically. In Section 4, we
study the stability of those permanent rotations by applying
both methods linear approximation method and energy-
Casimir method. Section 5 involves the results found.

2. Equations of Motion

We consider the rotation of a charged rigid body about its
fixed point and assume this body carries an axisymmetric
rotor aligning along one of the principal axes of the body and
rotating with a constant angular velocity. )is motion is
assumed to happen due to the combined influence of a
homogeneous magnetic field H

�→
and Newtonian forces field.

For motion description, we choose two frames Oξ1ζ1η1 and
Oξ2ζ2η2 fixed in the space and in the body, respectively (see
Figure 1). Furthermore, the body frame Oξ2ζ2η2 is assumed
to be the principal axes of the inertia at the fixed point O, and
consequently, the principal inertia matrix of the gyrostat is
I � diag(A, B, C). Let c

→
� (c1, c2, c3) and ω→ � (ω1,ω2,ω3)

are the unit vector along Oη1-axis and the angular velocity of
the gyrostat, respectively. )e two vectors ω→ and c

→ are
referred to the body frame.

)e vector c
→ is written in terms of Eulerian angle as

illustrated in [1]:

c
→

� c1, c2, c3( 􏼁 � (sin θ sinφ, sin θ cosφ, cos θ), (1)

where θ,ψ, and φ indicate the angle of nutation between the
two axes Oη2 andOη1, the precession angle about the Oη2
axis, and the angle of proper rotation, respectively. )e
homogeneous magnetic field N

�→
is presumed to be a con-

stant and influences in the direction of the Oη1-axis, and
therefore, it can be written as

N
�→

� β c
→

, (2)

where β denotes the magnitude of the magnetic field. Now,
we are going to introduce the equations of the motion. )e
whole angular momentum of the gyrostat is

G
→

� π→ + K
�→

, (3)

where π→ � Iω→ is the angular momentum of the gyrostat
when the rotor is relatively at rest and K

�→
� (0, 0, k) is the

gyrostatic momentum, that is, the relative angular mo-
mentum of the rotor with respect to the body. Following the
theorem of angular momentum about the point O, fixed
point, we obtain

dG
→

dt
� M

�→
0,

(4)

where M
�→

0 indicates the total torque of the external forces
about the fixed point O.

According to [1], the potential function for the New-
tonian forces field takes the following form:

U c1, c2, c3( 􏼁 � mgr0
→

· c
→

+
n

2
c
→

· I c
→

, (5)

where r0
→

� (x0, y0, z0) is the center of mass vector, and for
simplicity, we assume the center of mass lies on Oη2 and
n � (3g/R), where R is the distance between the center of the
attraction and the fixed point O (R is assumed very large
compared with the dimensions of the body). )e torque due
to the potential forces derived from the potential function
(5) is given as follows [24]:

M
�→1

0 � c
→

×
zU

z c
→ � mg c

→
× r0

→
+ n c

→
× I c

→
. (6)

Now, we calculate the torque appearing due to the
magnetic field about the fixed point O. Let p be any point
from the body which moves with velocity u

→
(p), carry a

charge dq, and its position vector r
→with respect to the fixed

point O. )is point is influenced by Lorentz forces dF
→

�

dq( u
→

×H
�→

) � βρdV[(ω→ × r
→

) × c
→

] � βρdV [(ω→ · c
→

) r
→

−

( r
→

· c
→

)ω→], where ρ is the charge density and dV is the
element’s volume from the body. Hence, the torque arising
due to the magnetic field takes the following form:

M
�→2

0 � 􏽚
V

r
→

× dF
→

� ω→ × βρ􏽚
V

r
→

( r
→

· c
→

)dV � ω→ × A c
→

,

(7)

where A is the 3 × 3 constant matrix which is assumed to be
A � diag(a, b, d) for simplicity. )us, the total torque about
the fixed point O is
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Figure 1: References frames and gyrostat.
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M
�→

0 � M
�→1

0 + M
�→2

0

� mg c
→

× r
→

0 + n c
→

× I c
→

+ ω→ × A c
→

.
(8)

Taking into account the two equations (4) and (8), the
equations of motion in the body frame take the following
form:

_π→ � − ω→ ×( π→ + μ→) + mg c
→

× r
→

0 + n c
→

× I c
→

, (9)

where

μ→ � K
�→

+ A c
→

. (10)

Notably, the expression (10) represents the torque of the
gyroscopic forces (forces rely on the velocity). Because c

→ is a
unit vector fixed in the space, we obtain

_c
→

� c
→

× ω→. (11)

Despite the variables utilized in two equations (9) and
(11) are not canonical, we can describe this motion by means
of a Hamiltonian function in the framework of Lie–Poisson
systems.)eHamiltonian function takes the following form:

H �
1
2

π21
A

+
π2
2

B
+
π2
3

C
􏼠 􏼡 + mgz0c3 +

n

2
Ac

2
1 + Bc

2
2 + Cc

2
3􏼐 􏼑.

(12)
According to [25], we write the equations of the motion

(9) and (11) as a Hamiltonian–Poisson system that is
spanned by the matrix Π μ→:

Π μ→ �

0 − π3 − μ3 π2 + μ2 0 − c3 c2

π3 + μ3 0 − π1 − μ1 c3 0 − c1

− π2 − μ2 π1 + μ1 0 − c2 c1 0

0 − c3 c2 0 0 0

c3 0 − c1 0 0 0

− c2 c1 0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)

as long as the Jacobi identity is verified, i.e.,

Πli

μ→zlΠ
jk

μ→
+Πlj

μ→
zlΠ

ki

μ→ +Πlk

μ→zlΠ
ij

μ→
� 0,

i, j, k � 1, 2, . . . , 6.

(14)

Alternatively, the condition (14) is equivalently verified if
the equation

c
→

· ∇
c

→ × μ→ � 0, (15)

is satisfied. By direct calculations, we can prove that vector
μ→, shown in (10), satisfied the condition (15), and conse-
quently, the equations of motion (9) and (11) are rewritten as

_
Y
→

� Π μ→∇
→

H, (16)

where Y � (π1, π2, π3, c1, c2, c3) and ∇
→

H is the naive gra-
dient of H. In addition to the Hamilton (12), this system
admits two Casimirs:

C1 ≔ c
2
1 + c

2
2 + c

2
3 � 1, geometric integral,

C2 ≔ π1c1 + π2c2 + π3c3 +
1
2

ac
2
1 + bc

2
2 + dc

2
3􏼐 􏼑 + kc3 � α0, area integral,

(17)

where α0 is a constant.

3. Permanent Rotations

To find the permanent rotations, we place _π→ � _c
→

� 0
→

into
the two equations of motion (9) and (11); we obtain

ω→ ×( π→ + K
�→

+ A c
→

) − mg c
→

× r
→

0 − n c
→

× I c
→

� 0,

(18)

c
→

× ω→ � 0. (19)

Equation (19) implies the two vectors ω→ and c
→ are

parallel, and consequently, ω→ � ω c
→, where ω is the mag-

nitude of angular velocity of the gyrostat in the body frame.
)us, equation (18) becomes

c
→

× ω2
− n􏼐 􏼑I c

→
+ ω(K

�→
+ A c

→
) − mg r

→
0􏼔 􏼕 � 0. (20)

)e scalar form for equation (20) is

c1 c3(C − A) ω2
− n􏼐 􏼑 + ω k + c3(d − a)( 􏼁 − mgz0􏽨 􏽩 � 0,

(21)

c2 c3(C − B) ω2
− n􏼐 􏼑 + ω k + c3(d − b)( 􏼁 − mgz0􏽨 􏽩 � 0,

(22)

c1c2 (B − A) ω2
− n􏼐 􏼑 + ω(b − a)􏽨 􏽩 � 0.

(23)

From equation (23), we have three possibilities
c1 � c2 � 0, c1 � 0, c2 ≠ 0, and c1 ≠ 0, c2 � 0. We study these
cases one by one. Hereinafter, the permanent rotation is
written in the form E � (Aωc10, Bωc20, Cωc30, c10, c20, c30).

(i) When c1 � c2 � 0, equations (21)–(23) are satisfied,
identically. Using the geometric integral (2), we get
c3 � ±1. )e permanent rotation is
E ±1 � (0, 0, ±Cω, 0, 0, ±1). E+

1 characterizes the
rotation of the gyrostat about the vertical axis in the
upward direction. )is means the angle θ between
the two axes Oη1 and Oη2 is zero; i.e., the fixed point
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O lies down the center of the mass of the gyrostat. In
a similitude way, the permanent rotation E−

1 is
explained as the rotation of the gyrostat in the down
direction; i.e., the fixed point O lies above the center
of mass of the gyrostat.

(ii) When c1 � 0 and c2 ≠ 0, the geometric integral (2)
reduces to c2

2 + c2
3 � 1, which has a parametric so-

lution c2 � sin θ and c3 � cos θ. Taking into account
the obtained results, equations (21)–(23) become

(B − C) n − ω2
􏼐 􏼑 +(d − b)ω + Cn􏽨 􏽩cos θ + kω − mgz0 � 0,

(24)

which represents the existence condition for a
family of the permanent rotations taking the form
E2 � (0, Bω sin θ, Cω cos θ, 0, sin θ, cos θ). It rep-
resents a rotation of a gyrostat with a constant
angular velocity about an axis having a direction
cosine (0, sin θ, cos θ).

(iii) When c1 ≠ 0 and c2 � 0, the geometric integral
becomes c2

1 + c2
3 � 1, which admits the parametric

solution c1 � sin θ and c3 � cos θ. Regarding the
obtained results, equations (21)–(23) reduce to

(A − C) n − ω2
􏼐 􏼑 + ω(d − a)􏽨 􏽩cos θ + kω − mgz0 � 0,

(25)

that is, the condition for the existence of the family of the
permanent rotations E3 � (Aω sin θ, 0, Cω cos θ, sin θ, 0,

cos θ). E3 is explained as the rotation of a gyrostat with a
constant angular velocity about an axis with direction co-
sines (sin θ, 0, cos θ).

Collecting the obtained results, we introduce down the
following.

Theorem 1. ;e mechanical system (9) and (11) charac-
terizing the rotations of a charged gyrostat in Newtonian field
has four permanent rotations. ;ey are as follows:

(i) E ±1 � (0, 0, ±Cω, 0, 0, ±1).
(ii) E2 � (0, Bω sin θ, Cω cos θ, 0, sin θ, cos θ) provided

that [(B − C)(n − ω2) + (d − b)ω + Cn] cos θ + kω−

mgz0 � 0 is satisfied.
(iii) E3 � (Aω sin θ, 0, Cω cos θ, sin θ, 0, cos θ) if the

condition [(A − C)(n − ω2) + ω(d − a)]cos θ+ kω −

mgz0 � 0 is verified.

4. Stability Analysis

)is section aims to examine the stability of the permanent
rotations introduced in )eorem 1. We apply a linear ap-
proximation method to determine the sufficient conditions
for instability that are also necessary conditions for the

stability. We evaluate the tangent flow for the equations of
the motion at the permanent rotation E, and we get

dy
dt

� J(Ε)y, (26)

whereJ(E) is the Jacobi matrix calculated at the permanent
rotation E. To examine the linear stability, we find the ei-
genvalues of the Jacobi matrix and those eigenvalues are the
roots of the characteristic equation

det J(E) − λI6􏼂 􏼃 � 0, (27)

where I6 refers the 6 × 6 identity matrix.
)e energy-Casimir method is utilized to find sufficient

conditions for stability. )is method was employed in
several works such as [15–23]. )e energy-Casimir method
is briefly presented in the following.

Theorem 2. Assuming (M, ·, ·{ },N) is a Poisson system and
E ∈M is an equilibrium point for the Hamiltonian vector
XN. If there is a set of Casimirs Ci ∈ C∞, i � 1, 2, . . . , n

satisfies

d N + 􏽘
n

i�1
Ci

⎛⎝ ⎞⎠(∈) � 0,

d2 N + 􏽘
n

i�1
Ci

⎛⎝ ⎞⎠(∈)|W×W,

(28)

is definite for W that is defined by

W � ∩
n

i�1
kerdCi(E). (29)

)en, E is stable and E is usually stable if W � 0{ }.

4.1. Stability of E ±1 . )is section aims to examine the sta-
bility of the permanent rotation E ±1 which describes the
rotation about the vertical axis with a constant angular
velocity in two cases characterized by whether the fixed point
O is above or down the gyrostat center of mass.

To obtain the necessary conditions for the stability, we
compute the tangent flow of the equations of the motion (9)
and (11) in the permanent rotation E ±1 , and we obtain an
equation in the form (26) and its characteristic equation (27)
admits the following form:

λ2 λ4 + P1λ
2

+ Q1􏼐 􏼑 � 0, (30)

where
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P1 �
1

AB
(A(A − C) + B(B − C))n +(C(C − A) + B(2A − C))ω2

− mgz0(A + B) +(d + k)
2

􏽨

∓ω[Aa + Bb +(d + k)(A + B − 2C)]],

Q1 �
1

AB
±(B − C) ω2

− n􏼐 􏼑 +(b − d − k)ω ± mgz0􏽨 􏽩 ±(A − C) ω2
− n􏼐 􏼑 +(a − d − k)ω ± mgz0􏽨 􏽩.

(31)

)us, we can formulate the following.

Theorem 3. Let a charged gyrostat move about its fixed point
O due to the Newtonian force field, then the necessary con-
dition for its rotation about the vertical axis up or down is
linearly stable if P1 ≥ 0, Q1 ≥ 0, and P2

1 − 4Q1 ≥ 0. Or,

equivalently, this motion is Lyapunov unstable if at least one
of these conditions is not satisfied.

Now, we are going to determine the sufficient conditions
for the stability by employing the energy-Casimir method
that is presented in)eorem 2.We introduce the augmented
Hamilton in the following form:

N �
1
2

π21
A

+
π22
B

+
π2
3

C
􏼠 􏼡 + mgz0c3 +

n

2
Ac

2
1 + Bc

2
2 + Cc

2
3􏼐 􏼑 + ]1 c

2
1 + c

2
2 + c

2
3􏽨 􏽩

+ ]2 π1c1 + π2c2 + π3c3 +
1
2

ac
2
1 + bc

2
2 + dc

2
3􏼐 􏼑 + kc3􏼔 􏼕,

(32)

where ]1 and ]2 are arbitrary constants which are deter-
mined by taking into account and E ±1 is a critical point for
the augmented Hamilton N, i.e.,

zN

zπi

|E ±1 � 0,

zN

zci

|E ±1 � 0,

i � 1, 2, 3.

(33)

Equation (33) implies

]1 �
C

2
ω2

− n􏼐 􏼑 ±
1
2

ω(k ± d) − mgz0􏼂 􏼃, ]2 � − ω.

(34)

)e subspace W is determined by

W � kerdC1 E
±
1( 􏼁∩ kerdC2 E

±
1( 􏼁, (35)

where

dC1 Ε
±
1( 􏼁 � ±2dc3,

dC2 Ε
±
1( 􏼁 � ±dπ3 +(k ± d ± Cω)dc3.

(36)

After some calculation, the basis of the subspace W is

BW � e
→

1, e
→

2, e
→

4, e
→

5􏼈 􏼉, (37)

where e
→

i are the canonical basis of R6. )e Hessian matrix
for the augmented Hamilton (32) in the reduced subspace
W is

Hess|W×W �

1
A

0 0 − ω

0
1
B

− ω 0

0 − ω x 0

− ω 0 0 y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (38)

where

x � Cω2
+ n(B − C)∓mgz0 + ω(d ± k − b),

y � Cω2
+ n(A − C)∓mgz0 + ω(d ± k − a).

(39)

We investigate the definiteness of the Hessian matrix
(38) by applying the Sylvester criterion and so we evaluate its
principal minors:

Δ1 �
1
A

,

Δ2 �
1

AB
,

Δ3 �
1

AB
(C − B) ω2

− n􏼐 􏼑 + ω(d ± k − b)∓mgz0􏽨 􏽩,

Δ4 � Δ3 (C − A) ω2
− n􏼐 􏼑 + ω(d ± k − a)∓mgz0􏽨 􏽩.

(40)

It is obvious that Δ1 > 0 and Δ2 > 0 while Δ3 > 0 if
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±mgz0 <(C − B) ω2
− n􏼐 􏼑 + ω(k + d − b) � χ1, (41)

and Δ4 > 0 if

±mgz0 <(C − A) ω2
− n􏼐 􏼑 + ω(k + d − a) � χ2. (42)

)e two inequalities (41) and (42) verify together if

±mgz0 <min χ1, χ2( 􏼁. (43)

)us, we can formulate the theorem.

Theorem 4. ;e sufficient condition of the stability for the
permanent rotation E ±1 to be Lyapunov stable is (43).

Figure 2 determines the regions of linear stability and
Lyapunov stability for E ±1 . In Figure 2(a), the regions in
pink determine the linear stability, while the white zones
represent the instability. Notably, the solid lines in Figure 2
are determined by P10, Q1 � 0, P2

1 − 4Q1 � 0. Figure 2(b)

specifies the regions of Lyapunov stability in yellow, and the
dash lines are specified by mgz0 � min(χ1, χ2). Figure 3(c)
clarifies the regions of Lyapunov stability appears as a
portion from the regions of linear stability.

Similar figures can be used to describe the zones of the
stability and instability for the permanent rotation E−

1 .

4.2. Stability of E2. We endeavor to find the necessary and
sufficient conditions for a family of the permanent rotation
E2 by utilizing the linear approximation and energy-Casimir
method, respectively.

Calculating the tangent flow of the equations of the
motion (9) and (11) in the equilibrium positionE2, we get an
equation in the form (26) and its characteristic equation (27)
takes the following form:

λ2 λ4 + P2λ
2

+ Q2􏼐 􏼑 � 0, (44)

where

P2 �
ω(2bB − Aa)sin2 θ

AC
+

(A + C)

AC
(B − A)n +(B − C)ω2

+ bω􏽨 􏽩cos2 θ − B ω2
+ n􏼐 􏼑 − bω􏽮 􏽯

+
2k cos θ

AB
×[d − (A + B − C)ω]

−
cos2 θ
ABC

(B − C) B
2

+ C
2

− 2AC􏼐 􏼑ω2
+ Cω[dB − 2(C − A)d + A(d − a)] − Cd

2
+ Bb

2
− nC A

2
− BC􏼐 􏼑􏽮 􏽯

+
k
2

AB
+

1
AC

ω2
B
2

+ 2AC􏼐 􏼑 + b
2

+ n A
2

+ C
2

􏼐 􏼑􏽨 􏽩 −
dω
A

,

Q2 �
sin2 θ
ABC

(B − A) ω2
− n􏼐 􏼑 − ω(a − b)􏽨 􏽩 (B − C) n + 3ω2

􏼐 􏼑(B − C) + 3ω(b − d)􏼐 􏼑 +(b − d)
2

􏼐 􏼑cos2 θ􏽨

+ 2(2k(B − C)ω + b − d)cos θ + n − ω2
􏼐 􏼑(C − B) − ω(d − b)􏼐 􏼑B + k

2
􏽩.

(45)

Notice that we use the existence condition (24) to
eliminate the weight of the gyrostat mg. Now, we can write
down the following.

Theorem 5. ;e family of permanent rotation E2 is linearly
stable if the conditions P2 ≥ 0, Q2 ≥ 0, and P2

2 − 4Q2 ≥ 0 are
met. Or, equivalently, it is Lyapunov instable if at least one of
these conditions is not satisfied.

To complete our study about the stability of E2, we
apply the energy-Casimir method to find the stability’s
sufficient conditions. We utilize the same augmented
Hamilton (34) and determine the values the two constants
]1 and ]2 leading to E2 becomes a critical point for this
augmented Hamilton, i.e.,

zN

zπi

􏼌􏼌􏼌􏼌􏼌􏼌E2
� 0,

zL

zci

􏼌􏼌􏼌􏼌􏼌􏼌E2
� 0,

i � 1, 2, 3.

(46)

Equation (46) leads to

]1 �
1
2

B ω2
− n􏼐 􏼑 + bω􏽨 􏽩,

]2 � − ω.

(47)

Following )eorem 2, the subspace W is specified by

W � kerdC1 E2( 􏼁∩ kerdC2 E2( 􏼁, (48)
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where

dC1 E2( 􏼁 � dc3 +
sin θ
cos θ

dc2,

dC2 E2( 􏼁 �
sin θ
cos θ

dπ2 + dπ3 +
sin θ
cos2 θ

[((B − C)ω + b − d)cos θ − k]dc2.

(49)

After some manipulations, we show that the subspaceW
is spanned by the vectors

e
→

1, cos θ e
→

2 − sin θ e
→

3, e
→

4, sin θ[cos(θ)((B − C)ω + b − d) − k] e
→

3 − cos2 θ e
→

5 + sin θ cos θ e
→

6, (50)
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Figure 3: Regions of stability and instability for the permanent rotation E2 in the plane of the two parameters k and ω and
A � 3, B � 4, C � 5, d � 5, b � 10, a � 15, g � 9.8, m � 1, z0 � 1.
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Figure 2: Regions of stability and instability for the permanent rotation E+
1 in the plane of the two parameters k and ω and

A � 3, B � 4, C � 5, d � 5, b � 10, a � 15, g � 9.8, m � 1, z0 � 1.
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where e
→

i are the canonical basis of R6. )e Hessian matrix
corresponding to the Hamiltonian (32) with (47) takes the
following form:

Hess|W×W �

1
A

0 0 − ω

0
cos2 θ

B
+
sin2 θ

C
δ1 0

0 δ1 δ2 0

− ω 0 0 Bω2
+(b − a)ω + n(A − B)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (51)

where

δ1 �
1
C

((B − C)ω + b − d)cos3 θ − k cos2 θ +((2C − B)ω − b + d)cos θ + k􏽨 􏽩,

δ2 � Bω2cos4 θ +
sin2 θ cos2 θ

C
ω2

B
2

− 3BC + 3C
2

􏼐 􏼑 +(b − d)(2B − 3C)ω + Cn(C − B) +(b − d)
2

􏽨 􏽩

−
2k sin2 θ cos θ

C
[(B − 2C)ω + b − d] + k

2sin2 θ.

(52)

To investigate the definiteness of Hessian matrix (51), we
utilize the Sylvester criterion and so we compute the
principal minors. )ey take the following form:

Δ1 �
1
A

,

Δ2 �
1
A

cos2 θ
B

+
sin2 θ

C
􏼢 􏼣,

Δ3 �
sin2 θ cos2 θ

ABC
(B − C)

2 3ω2
+ n􏼐 􏼑 + 3ω(b − d)(B − C) − (b − d)

2
􏽨 􏽩cos2 θ − 2k[2ω(B − C) + b − d]cos θ􏽮

+ B(B − C) ω2
− n􏼐 􏼑 + Bω(b − d) − k

2
􏽯,

Δ4 � (B − A) ω2
− n􏼐 􏼑 +(b − a)ω􏽨 􏽩Δ3.

(53)

It is clear that Δ1 and Δ2 are always positive, whereas Δ3
and Δ4 are positive if

sin2 θ cos2 θ
ABC

(B − C)
2 3ω2

+ n􏼐 􏼑 + 3ω(b − d)(B − C) − (b − d)
2

􏽨 􏽩cos2 θ􏽮

− 2k[2ω(B − C) + b − d]cos θ + B(B − C) ω2
− n􏼐 􏼑 + Bω(b − d) − k

2
􏽯> 0,

(54)

Φ(ω) ≔ (B − A) ω2
− n􏼐 􏼑 +(b − a)ω> 0. (55)
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Φ(ω) is a quadratic polynomial in ω, and its discriminant is
always positive and so it has two real roots (say) ω1,ω2.)us,
we have two cases: (1) when B>A, the condition (55) is
satisfied ifω ∈]− ∞,ω1[⋃]ω2,∞[ ; (2) if B<A, the condition
(55) is verified if ω ∈ ]ω1,ω2[ . Notice that if A � B and b � a,

the energy-Casimir does not furnish any information about
the sufficient conditions of the stability.

Theorem 6. ;e sufficient condition for the stability of the
equilibrium position E2 is

(B − C)
2 3ω2

+ n􏼐 􏼑 + 3ω(b − d)(B − C) − (b − d)
2

􏽨 􏽩cos2 θ

− 2k[2ω(B − C) + b − d]cos θ + B(B − C) ω2
− n􏼐 􏼑 + Bω(b − d) − k

2 > 0,
(56)

with one of the two conditions B>A, ω ∈ ]− ∞,ω1[⋃]ω2,

∞[or B<A, ω ∈ ]ω1,ω2[ is verified.

)e regions of linear and nonlinear (Lyapunov) stability
are clarified by Figure 3. Figure 3(a) delimits the regions of
linear stability in pink color, while as the white regions
display the sufficient conditions for the instability of the
permanent rotation E2. Notably, the solid lines which are
the boundary of those regions are characterized by the
equations P2 � 0, Q2 � 0, P2

2 − 4Q2 � 0. )e regions in yel-
low appear in Figure 3(b) represent the regions of Lyapunov
stability for E2. Figure 3(c) illustrates that the regions of
Lyapunov stability appear as a part of the regions of linear
stability. Notably, on the boundary of linear stability regions

(solid lines in Figure 3(a) and also in Figure 3(c)), the
permanent rotation E2 is unstable.

4.3. Stability ofE3. )e stability analysis for the family of the
permanent rotations E3 is done by applying similar pro-
cedures to E2 stability study. )e necessary and sufficient
conditions for the stability of E3 can be obtained by
replacing A↔B and a↔b in the )eorems 5 and 6, re-
spectively. )us, we can formulate the following two
theorems.

Theorem 7. ;e family of permanent rotationsE3 is linearly
stable if

P3 �
ω(2aA − Bb)sin2 θ

BC
+

(B + C)

BC
(A − B)n +(A − C)ω2

+ aω􏽨 􏽩cos2 θ − A ω2
+ n􏼐 􏼑 − aω􏽮 􏽯 +

2k cos θ
AB

× [d − (A + B − C)ω] −
cos2 θ
ABC

(A − C) A
2

+ C
2

− 2BC􏼐 􏼑ω2
+ Cω[dA − 2(C − B)d + B(d − b)]􏽮

− Cd
2

+ Aa
2

− nC B
2

− AC􏼐 􏼑􏽯 +
k
2

AB
+

1
BC

ω2
A
2

+ 2BC􏼐 􏼑 + a
2

+ n B
2

+ C
2

􏼐 􏼑􏽨 􏽩 −
dω
B
≥ 0,

Q3 �
sin2 θ
ABC

(A − B) ω2
− n􏼐 􏼑 − ω(b − a)􏽨 􏽩 (A − C) n + 3ω2

􏼐 􏼑(A − C) + 3ω(a − d)􏼐 􏼑 +(a − d)
2

􏼐 􏼑cos2 θ􏽨

+ 2(2(A − C)ω + a − d)k cos θ + n − ω2
􏼐 􏼑(C − A) − ω(d − a)􏼐 􏼑A + k

2
􏽩≥ 0,

P
2
3 − 4Q

2
3 ≥ 0.

(57)

Or, equivalently, it is unstable if at least one of the
conditions (57) is verified.

Theorem 8. ;e sufficient condition for the stability of the
equilibrium position E3 is

(A − C)
2 3ω2

+ n􏼐 􏼑 + 3ω(a − d)(A − C) − (a − d)
2

􏽨 􏽩cos2 θ

− 2k[2ω(A − C) + a − d]cos θ + A(A − C) ω2
− n􏼐 􏼑 + Aω(a − d) − k

2 > 0,
(58)

where one of the two conditions B>A, ω ∈ ]− ∞,ω1[⋃]ω1,

∞[ or A<B, ω ∈ ]ω1,ω2[ is verified.

Figure 4 displays the regions of sufficient and necessary
conditions for the family of permanent rotations E3.

Figure 4(a) illustrates the regions on linear stability in pink,
while the zones of Lyapunov instability delimit in white and
the solid lines which separate these zones are determined by
P3 � 0, Q3 � 0, P2

3 − 4Q3 � 0. Figure 4(b) determines the
region of Lyapunov stability in yellow. Figure 4(c) clarifies
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the zones of Lyapunov stability appear as a portion of linear
stability.

5. Conclusions

In this work, we have considered the motion of a charged
rigid body carrying a rotor rotating about an axis which is
parallel to one of the principal axes with a constant velocity.
We have assumed the motion happens due to the com-
bination influence of a uniform constant magnetic field and
Newtonian force field. )e equations of the motion have
been constructed and rewritten as a Lie–Poisson Hamilton
system. )e permanent rotations E1 have been obtained
and collected in )eorem 1. )e first two permanent ro-
tations E ±1 are mechanically interpreted as the rotation of
the gyrostat about the vertical up or down with a constant
angular velocity. )e permanent rotationE2 is explained as
the rotation of a gyrostat with a constant angular velocity
about an axis having a direction cosine (0, sin θ, cos θ). )e
permanent rotation E3 is interpreted as the rotation of the
gyrostat with a constant angular velocity about an axis
having a direction cosine (sin θ, 0, cos θ). )e linear sta-
bility of those equilibrium positions has been studied by
applying the linear approximation method, and the ob-
tained results have been collected in )eorems 3, 5, and 7.
However, the Lyapunov stability of those permanent ro-
tations have been examined by utilizing the energy-Casimir
method, and the finding results have been presented in
)eorems 4, 6, and 8. In the plane of the two variables k and
ω, the regions of linear stability have been clarified in pink
(see Figures 2(a), 3(a), and 4(a)), while the regions of
Lyapunov stability have been illustrated in yellow (see
Figures 2(b), 3(b), and 4(b)). Moreover, we illustrate the
regions of Lyapunov stability appear as a part of the regions
of linear stability.

Data Availability

No data were used to support the study.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

References

[1] E. Leimanis, ;e General Problem of the Motion of Coupled
Rigid Bodies about a Fixed Point, Springer, Berlin, Germany,
1965.
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formulation for the rotational motion of a rigid body in the
presence of an axisymmetric force field and a gyroscopic
torque,” Physics Letters A, vol. 375, no. 45, pp. 3941–3945,
2011.

Advances in Astronomy 11


