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,e helium burning phase represents the second stage that the star used to consume nuclear fuel in its interior. In this stage, the
three elements, carbon, oxygen, and neon, are synthesized.,e present paper is twofold: firstly, it develops an analytical solution to
the system of the conformable fractional differential equations of the helium burning network, where we used, for this purpose, the
series expansionmethod and obtained recurrence relations for the product abundances, that is, helium, carbon, oxygen, and neon.
Using four different initial abundances, we calculated 44 gas models covering the range of the fractional parameter α � 0.5 − 1
with step Δα � 0.05. We found that the effects of the fractional parameter on the product abundances are small which coincides
with the results obtained by a previous study. Secondly, we introduced the mathematical model of the neural network (NN) and
developed a neural network algorithm to simulate the helium burning network using a feed-forward process. A comparison
between the NN and the analytical models revealed very good agreement for all gas models. We found that NN could be
considered as a powerful tool to solve and model nuclear burning networks and could be applied to the other nuclear stellar
burning networks.

1. Introduction

Nowadays, applications of fractional calculus in physics,
astrophysics, and related science are widely used [1, 2].
Examples of the recent applications of the fractional calculus
in physics are found in [3] in which the author has intro-
duced a generalized fractional scale factor and a time-de-
pendent Hubble parameter obeying an
“Ornstein–Uhlenbeck-like fractional differential equation”
which serves to describe the accelerated expansion of a
nonsingular universe, in [4] in which the author extended
the idea of fractional spin based on two-order fractional
derivative operator and in [5] in which the author has
generalized the fractional action integral by using the

Saigo–Maeda fractional operators defined in terms of the
Appell hypergeometric function.

In astrophysics, many problems have been handled using
fractional models. Examples of these studies are in [6], where
the author introduced an analytical solution to the fractional
white dwarf equation, in [7] in which the authors analyzed
the fractional incompressible gas spheres and in [8, 9] in
which the authors introduced an analytical solution to the
first and second types of Lane–Emden equation in the sense
of modified Riemann–Liouville fractional derivative. Nouh
in [10] solved the fractional helium burning network using a
series expansion method. Abdel-Salam and Nouh [11] and
Yousif et al. [12] introduced analytical solutions to the
conformable polytropic and isothermal gas spheres.
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Simulation of ordinary (ODE) and partial differential
equations (PDE) using an artificial neural network (ANN)
gives very good accuracy when compared with both the
numerical and analytical methods. Many authors dealt with
this issue and developed many neural algorithms to solve
ODE and PDE. Dissanayake and Phan-,ien [13] first in-
troduced the concept of approximating the solutions of
differential equations with neural networks, where training
was carried out by minimizing losses based on the satis-
faction of the network with the boundary conditions and the
differential equations themselves. Lagaris et al. [14] dem-
onstrated that the network shape could be selected by
construction to satisfy boundary conditions and that au-
tomatic differentiation could be used to determine the de-
rivatives that appear in the loss function. ,is approach has
been extended to irregular boundary systems [15, 16], ap-
plied to the resolution of PDEs occurring in fluid mechanics
[17], and software packages have been developed to facilitate
their applications [18–20]. Nouh et al. [21] and Azzam et al.
[22] developed a neural network algorithm to solve the first
and second types of Lane–Emden equations arising in
astrophysics.

,e helium burning stage (also known as the triple-
alpha process) represents the second stage where the stars
undergo the transfer of nuclear energy from the interior to
their surface. In this stage, nuclear energy is almost
converted to light when passing through the stellar at-
mosphere. Helium burning (HB) releases energy per unit
fuel of about 6 ×1023MeV/g ≈ 1018 erg/g. ,e reaction
equations that govern the HB network may be written as
follows [10]:

3He4⟶ C12
+ c + 7.281Mev,

C12
+ He4⟶ O16

+ c + 7.150Mev,

O16
+ He4⟶ Ne20 + c + 4.750Mev,

(1)

where the conversion process from helium to carbon needs
108 K.

Clayton [23] set up a model for the helium burning process
by taking into account the above reactions. If the number of
atoms per unit of stellar material mass for helium, carbon,
oxygen, and neon is represented by x, y, z, and r, respectively,
then the next four equations (also maybe called the kinetic
equations) control the time-dependent change in abundance:

dx

dt
� − 3ax

3
− bxy − cxz,

dy

dt
� ax

3
− bxy,

dz

dt
� bxy − cxz,

dr

dt
� cxz.

(2)

where a, b, and c are the reaction rates.
,e system of equation (2) represents the integer version

of the helium burning network and solved simultaneously by
computational or analytical methods [23–26]. Appendix A
includes clarification of the derivation of the set of equation
(2). ,e fractional kinetic equation (like helium burning
network) has been solved by many authors. In terms of
H-functions, [27] presented a solution to the fractional
generalized kinetic equation. ,e generalized fractional
kinetic equations have been solved by [28]. Chaurasia and
Pandey [29] solved the fractional kinetic equations in a series
form of the Lorenzo–Hartley function.

In the present article, we developed a neural network al-
gorithm to solve the fractional system of differential equations
describing the helium burning network. We use the principles
of the conformable fractional derivative for the mathematical
modeling of the ANN.We used in this research an architecture
of ANN which is the feed-forward network having three layers
and trained using the algorithm of backpropagation (BP) based
on the gradient descent delta rule.

,e analytical solution is developed using the series
expansion method and a comparison between the ANN
and analytical models is performed to declare the effi-
ciency and applicability of the ANN for solving the
conformable helium burning network. ,e paper is or-
ganized as follows: Section 2 introduces the details of the
analytical solution of the conformable helium burning
model using the series expansion method. Section 3 deals
with the mathematical modeling of the neural network
technique with its gradient computations and back-
propagation training algorithm. Section 4 discusses the
results obtained and the comparison between the ANN
and analytical models. Section 5 gives the details of the
conclusion.

2. Analytical Solution to the Conformable
Helium Burning Model

By being certainly valid, the techniques of numerical integration
may provide very accurate models. However, it is surely
worthwhile to obtain modeling with the desired precision if
complete analytical formulas are created. Besides, these ana-
lytical formulas usually providemuchmore deep insight into the
essence of a model than numerical integration.,e power series
solution, on the other hand, may serve as the analytical rep-
resentation of the solution in the absence of a closed analysis
solution for a particular differential equation.

,e fractional form of equation (2) is given by [10]

D
α
t x � − 3ax

3
− bxy − cxz,

D
α
t y � ax

3
− bxy,

D
α
t z � bxy − cxz,

D
α
t r � cxz.

(3)

If T � tα, then x, y, z, r could be represented by
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x � 􏽘
∞

m�0
XmT

m
� X0 + X1T + X2T

2
+ X3T

3
+ · · ·

� X0 + X1t
α

+ X2t
2α

+ X3t
3α

+ · · · ,

y � 􏽘
∞

m�0
YmT

m
� Y0 + Y1T + Y2T

2
+ Y3T

3
+ . . .

� Y0 + Y1t
α

+ Y2t
2α

+ Y3t
3α

+ · · · ,

z � 􏽘
∞

m�0
ZmT

m
� Z0 + Z1T + Z2T

2
+ Z3T

3
+ · · ·

� Z0 + Z1t
α

+ Z2t
2α

+ Z3t
3α

+ · · · ,

r � 􏽘

∞

m�0
RmT

m
� R0 + R1T + R2T

2
+ R3T

3
+ · · ·

� R0 + R1t
α

+ R2t
2α

+ R3t
3α

+ · · · ,

(4)

where Xm, Ym, Zm, Rm are constants to be determined.
In equation (2), the left side of the system depicts the

abundances of those elements in which the abundance of helium
(x) is raised to power 3. To obtain the fractional derivative of un,
we apply the fractional derivative of the product of the two
functions. Using the series expansion method, we obtained the
recurrence relation of the term x3 by the following.

Let Dα
xun � Dα

xG, with u � 􏽐
∞
m�0 Amxαm,C � 􏽐

∞
m�0 Qmxαm.

,at is,

nu
n− 1

D
α
xu � D

α
xG,

or nu
n
D

α
xu � uD

α
xG.

(5)

Performing the fractional derivative to equation (5) k
times, we get

D
︷α,...,α

k times

nGD
α
xu􏼂 􏼃 � D

︷α,...,α
k times

uD
α
xG( 􏼁,

or n 􏽘
k

j�0

k

j
􏼠 􏼡D

︷α,...,α
j+1 times

uD
︷α,...,α
k− j times

G � 􏽘
k

j�0

k

j
􏼠 􏼡D

︷α,...,α
j+1 times

GD
︷α,...,α
k− j times

u,

(6)

and putting X � 0, we get

n 􏽘
k

j�0

k

j
􏼠 􏼡D

︷α,...,α
j+1 times

u(0)D
︷α,...,α
k− j times

G(0)

� 􏽘
k

j�0

k

j
􏼠 􏼡D

︷α,...,α
j+1 times

G(0)D
︷α,...,α
k− j times

u(0).

(7)

Since

D
︷α,...,α
j+1 times

u(0) � α(j+1)
Aj+1, D

︷α,...,α
k− j times

G(0)

� α(k− j)
Qk− j, D

︷α,...,α
j+1 times

G(0) � α(j+1)
Qj+1,

D
︷α,...,α
k− j times

u(0) � α(k− j)
Qj+1,

(8)

we have

n 􏽘
k

j�0

k

j

⎛⎜⎝ ⎞⎟⎠(j + 1)!α(j+1)
Aj+1(k − j)!α(k− j)

Qk− j

� 􏽘

k

j�0

k

j

⎛⎜⎝ ⎞⎟⎠(j + 1)!α(j+1)
Qj+1(k − j)!α(k− j)

Ak− j,

⇒n 􏽘
k

j�0

k

j

⎛⎜⎝ ⎞⎟⎠(j + 1)!(k − j)!α(k+1)
Aj+1Qk− j � 􏽘

k

j�0

k

j

⎛⎜⎝ ⎞⎟⎠(j + 1)!(k − j)!α(k+1)
Qj+1Ak− j.

(9)
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After some manipulations, we get

k!(k + 1)A0Qk+1 � n 􏽘
k

j�0
k!(j + 1)Aj+1Qk− j − 􏽘

k− 1

j�0
k!(j + 1)Ak− jQj+1,

(10)

and putting i � j + 1 and i � k − j in equation (10), we
have

k!(k + 1)A0Qk+1 � n 􏽘
k+1

i�1
k!(i)AiQk+1− i − 􏽘

k

i�1
k!(k + 1 − i)AiQk+1− i.

(11)

If m � k + 1, then

m!A0Qm � n 􏽘

m

i�1
(m − 1)!(i)AiQm− i − 􏽘

m− 1

i�1
(m − 1)!(m − i)AiQm− i.

(12)

Adding the zero value − (m − 1)!(m − m)AmQ0􏼈 􏼉 to the
second summation of the last equation, we get

m!A0Qm � n 􏽘
m

i�1
(m − 1)!(i)AiQm− i − 􏽘

m− 1

i�1
(m − 1)

!(m − i)AiQm− i − (m − 1)!(m − m)AmQ0,

m!A0Qm � n 􏽘
m

i�1
(m − 1)!(i)AiQm− i − 􏽘

m

i�1
(m − 1)!(m − i)AiQm− i.

(13)

From the last equation, we can write the coefficients Qm as

Qm �
1

m!A0
􏽘

m

i�1
(m − 1)!(in − m + i)AiQm− i, ∀m≥ 1.

(14)

Putting n � 3 in equation (14), we have

Qm �
1

m!X0
􏽘

m

i�1
(m − 1)!(4i − m)XiQm− i, ∀m≥ 1, (15)

where
X0 � A0,

Xi � Ai,

Q0 � X
3
0,

Q1 �
3X1Q0

X0
,

(16)

taking fractional differentiation α-derivatives to equation
(4), we get

D
α
t x � 􏽘

∞

n�1
αnXnT

n− 1
,

D
α
t y � 􏽘

∞

n�1
αnYnT

n− 1
,

D
α
t z � 􏽘

∞

n�1
αnZnT

n− 1
,

D
α
t r � 􏽘
∞

n�1
αnRnT

n− 1
,

(17)

and inserting equations (4) and (17) into equation (3), the
series coefficients Xn+1, Yn+1, Zn+1, and Rn+1 could be ob-
tained from

Xn+1 � −
1

α(n + 1)
3aQn + b 􏽘

n

j�0
XjYn− j + c 􏽘

n

j�0
XjZn− j

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Yn+1 �
1

α(n + 1)
aQn − b 􏽘

n

j�0
XjYn− j

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Zn+1 �
1

α(n + 1)
b 􏽘

n

j�0
XjYn− j − c 􏽘

n

j�0
XjZn− j

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Rn+1 �
c

α(n + 1)
􏽘

n

j�0
XjZn− j.

(18)

,e recurrence relations corresponding to the integer
model could be obtained by putting α � 1 in the last four
formulas of equation (18) [26].

At n� 0 and with the initial values of the chemical
composition X0 � x0, Y0 � y0, Z0 � z0, R0 � r0, where
x0, y0, z0, r0 are arbitrary constants, we get
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X1 � −
1
α

3aQ0 + bX0Y0 + cX0Z0􏼂 􏼃

� −
1
α

3ax
3
0 + bx0y0 + cx0y0􏽨 􏽩,

Y1 �
1
α

aQ0 − bX0Y0􏼂 􏼃 �
1
α

ax
3
0 − bx0y0􏽨 􏽩,

Z1 �
1
α

bX0Y0 − cX0Z0􏼂 􏼃 �
1
α

bx0y0 − cx0z0􏼂 􏼃,

R1 �
c

α
X0Z0 �

c

α
x0z0,

Q0 � X
3
0 � x

3
0, Q1 �

3X1Q0

X0
� −

3x
2
0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩,

(19)

at n� 1, we get

X2 � −
1
2α

3aQ1 + b X0Y1 + X1Y0( 􏼁 + c X0Z1 + X1Z0( 􏼁􏼂 􏼃

� −
1
2α

−
9ax

2
0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩 + b

x0

α
ax

3
0 − bx0y0􏽨 􏽩 −

y0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓􏼢

+ c
x0

α
bx0y0 − cx0z0􏼂 􏼃 −

z0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓􏼕

Y2 �
1
2α

aQ1 − b X0Y1 + X1Y0( 􏼁􏼂 􏼃

�
1
2α

−
9ax

2
0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩 + b

x0

α
ax

3
0 − bx0y0􏽨 􏽩 −

y0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓􏼢 􏼣,

Z2 �
1
2α

b X0Y1 + X1Y0( 􏼁 − c X0Z1 + X1Z0( 􏼁􏼂 􏼃

�
1
2α

b
x0

α
ax

3
0 − bx0y0􏽨 􏽩 −

y0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓 − c

x0

α
bx0y0 − cx0z0􏼂 􏼃 −

z0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓􏼔 􏼕,

R2 �
c

2α
X0Z1 + X1Z0( 􏼁 �

c

2α
x0

α
bx0y0 − cx0z0􏼂 􏼃 −

z0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓,

(20)
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and by applying the same scheme, we can determine the rest
of the series terms. So, the product abundance could be
represented by the series solution of equation (3) as

x � 􏽘
∞

m�0
Xmt

αm
� X0 + X1t

α
+ X2t

2α
+ X3t

3α
+ . . .

� x0 −
1
α

3ax
3
0 + bx0y0 + cx0y0􏽨 􏽩t

α

−
1
2α

−
9ax

2
0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼢

+ b
x0

α
ax

3
0 − bx0y0􏽨 􏽩 −

y0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓 + c

x0

α
bx0y0 − cx0z0􏼂 􏼃 −

z0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓􏼕t

2α
+ · · · ,

y � 􏽘
∞

m�0
Ymt

αm
� Y0 + Y1t

α
+ Y2t

2α
+ Y3t

3α
+ · · ·

� y0 +
1
α

ax
3
0 − bx0y0􏽨 􏽩t

α

+
1
2α

−
9ax

2
0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩 + b

x0

α
ax

3
0 − bx0y0􏽨 􏽩 −

y0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓􏼢 􏼣t

2α
+ · · · ,

z � 􏽘
∞

m�0
Zmt

αm
� Z0 + Z1t

α
+ Z2t

2α
+ Z3t

3α
+ · · ·

� z0 +
1
α

bx0y0 − cx0z0􏼂 􏼃t
α

+
1
2α

b
x0

α
ax

3
0 − bx0y0􏽨 􏽩 −

y0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓 − c

x0

α
bx0y0 − cx0z0􏼂 􏼃 −

z0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓􏼔 􏼕t

2α
+ · · · ,

r � 􏽘
∞

m�0
Rmt

αm
� R0 + R1t

α
+ R2t

2α
+ R3t

3α
+ · · ·

� r0 +
c

α
x0z0t

α
+

c

2α
x0

α
bx0y0 − cx0z0􏼂 􏼃 −

z0

α
3ax

3
0 + bx0y0 + cx0y0􏽨 􏽩􏼒 􏼓t

2α
+ · · · .

(21)

It is important to mention that x0, y0, z0, and r0 are
arbitrary initial values that enable us to compute gas models
with different chemical compositions, that is, pure helium or
rich helium models.

3. Neural Network Algorithm

3.1. Mathematical Modeling of the Problem. To simulate the
conformable fractional helium burning network represented
by equation (3), we use the neural network architecture
shown in Figure 1.

Considering the initial conditions
X0 � x0, Y0 � y0, Z0 � z0, R0 � r0, the neural network could
be obtained following the next steps [30].

,e form of the neural approximate solution of equation
(3) will have two terms: the first represents the initial values
and the second represents the feed-forward neural network,
where x is the input vector and p is the corresponding vector
of adjustable weight parameters. ,en, the output of the
neural network Nl(xl, p) is written as

Xt(x, p) � A1(x, ) + f1 x, N1(x, p)( 􏼁,

Yt(y, p) � A2(y) + f2 y, N2(y, p)( 􏼁,

Zt(z, p) � A3(z) + f3 z, N3(z, p)( 􏼁,

Rt(r, p) � A4(r) + f4 r, N4(r, p)( 􏼁.

(22)

,en, neural network output Nℓ(xℓ, p) is given by
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Nℓ xℓ, p( 􏼁 � 􏽘
H

j�1
vijσi zj􏼐 􏼑, ℓ � 1, 2, 3, 4, (23)

where zj � 􏽐
n
i�1 wijxj + βi, wij is the weight from the input

unit j to the hidden unit i, vi is the weight from the hidden
unit i to the output, βi represents the bias of the i

th hidden

unit, and σ(z) is the sigmoid activation function that has the
form σ(x) � (1/(1 + e− x)), σ(y) � (1/(1 + e− y)),
σ(z) � (1/(1 + e− z)), and σ(r) � (1/(1 + e− r)). By differ-
entiating the networks output N with respect to the vector
xj, we get

D
α
xj

N(x, p) � D
α
xj

􏽘

H

i�1
viσ zi � 􏽘

n

i�1
wijxj + βi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � 􏽘
h

i�1
viwijσ

(α)
, σ(α)

� D
α
xσ(x). (24)

Differentiating equation (24) n times gives

D
α,...,α
n times

xj
N(x, p) � 􏽘

n

i�1
viPiσ

(nα)
i , Pi � 􏽙

n

k�1
w

αk

ik , σi � σ zi( 􏼁.

(25)

As a result, the solution of the helium burning network is
given as

Xt(x, p) � x0 + xN1(x, p),

Yt(x, p) � y0 + yN2(y, p),

Zt(x, p) � z0 + zN3(z, p),

Rt(x, p) � r0 + rN4(r, p),

(26)

which fulfills the initial conditions as

Xt(0, p) � x0 + 0.N1(0, p) � x0, Yt(0, p) � y0 + 0.N2(0, p) � y0,

Zt(0, p) � z0 + 0.N3(0, p) � z0, Rt(0, p) � r0 + 0.N4(0, p) � r0,

D
α
xXt(x, p) � x

1− α
N1(x, p) + xD

α
xN1(x, p),

D
α
xYt(y, p) � y

1− α
N2(y, p) + yD

α
xN2(y, p),

D
α
xZt(z, p) � z

1− α
N3(z, p) + zD

α
zN3(z, p),

D
α
r Rt(r, p) � r

1− α
N4(r, p) + rD

α
r N4(r, p).

(27)

3.2. Gradient Computations and Parameter Updating.
Using equation (27) to update the network parameters and
computing the gradient, the error quantity needed to be
minimized is given by
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Figure 1: ANN architecture proposed to simulate conformable fractional helium burning network.
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E(x) � 􏽘
i

D
α
t Xt xi, p( 􏼁 + 3aX

3
t xi, p( 􏼁 + bXt xi, p( 􏼁Yt yi, p( 􏼁 + cXt xi, p( 􏼁Zt zi, p( 􏼁􏽮 􏽯

2

+ 􏽘
i

D
α
t Yt xi, p( 􏼁 − aX

3
t xi, p( 􏼁 + bXt xi, p( 􏼁Yt yi, p( 􏼁􏽮 􏽯

2
+ 􏽘

i

D
α
t Rt ri, p( 􏼁 − cXt xi, p( 􏼁Zt zi, p( 􏼁􏼈 􏼉

2

+ 􏽘
i

D
α
t Zt zi, p( 􏼁 − bXt xi, p( 􏼁Yt yi, p( 􏼁 + cXt xi, p( 􏼁Zt zi, p( 􏼁􏼈 􏼉

2
,

(28)

where

D
α
xXt(x, p) � x

1− α
N1(x, p) + xD

α
xN1(x, p),

D
α
xYt(y, p) � y

1− α
N2(y, p) + yD

α
xN2(y, p),

D
α
xZt(z, p) � z

1− α
N3(z, p) + zD

α
zN3(z, p),

D
α
r Rt(r, p) � r

1− α
N4(r, p) + rD

α
r N4(r, p),

(29)

where Dα
xN(x, p) is given by equation (25). So, the problem

is converted into an unconstrained optimization problem.
To update the network parameters, we train the neural

network for the optimized parameter values. After the
training process, we obtained the network parameters and
computed the following:

Xt(x, p) � x0 + xN1(x, p),

Yt(x, p) � y0 + yN2(y, p),

Zt(x, p) � z0 + zN3(z, p),

Rt(x, p) � r0 + rN4(r, p).

(30)

Now, N with one hidden layer is analogous to the
conformable fractional derivative. By replacing the hidden
unit transfer function with the nth order fractional deriva-
tive, the fractional N gradient differentiating with respect to
vi, βi, and wij could be written as

D
α
vi

N � Piσ
(nα)
i ,

D
α
βi

N � viPiσ
((n+1)α)
i ,

D
α
wij

N � xiviPiσ
((n+1)α)
i + viαjw

1− αj

ij 􏽙
k�1,k≠ j

w
αk

ik
⎛⎝ ⎞⎠σ(nα)

i .

(31)

,e network parameters updating rule can be given as

vi(x + 1) � vi(x) + aD
α
vi

N,

βi(x + 1) � βi(x) + bD
α
βi

N,

wij(x + 1) � wij(x) + cD
α
wij

N,

(32)

where a, b, c are learning rates, i � 1, 2, . . . , n and
j � 1, 2, . . . , h.

In the stellar helium burning model based on ANN, the
neuron is the fundamental processing unit that can process a
local memory and carry out localised information. At each
neuron, the net input (z) is calculated by supplementing the
received weights to obtain an aggregate weight of those
inputs and add it to a bias (β). ,e net input (z) is then
passed by a nonlinear activation function, which results in
the neuron output uj (as seen in Figure 1) [31].

3.3. Training of BP Algorithm. ,e backpropagation (BP)
training algorithm is a gradient algorithm aimed to mini-
mize the average square error between the desired output
and the actual output of a feed-forward network.

It requires continuously differentiable nonlinearity.
Figure 2 displays a flow chart of a backpropagation offline
learning algorithm [32].

,e algorithm is a recursive algorithm that starts at the
output units, working back to the first hidden layer. A
comparison of the output Xj, Yj, Zj, Rj at the output layer
with the desired outputs tx, ty, tz, tr is performed using an
error function which has the following form:

δj � Xj txj − Xj􏼐 􏼑 1 − Xj􏼐 􏼑 + Yj tyj − Yj􏼐 􏼑 1 − Yj􏼐 􏼑 + Zj tzj − Zj􏼐 􏼑 1 − Zj􏼐 􏼑 + Rj trj − Rj􏼐 􏼑 1 − Rj􏼐 􏼑. (33)

For the hidden layer, the error function takes the form:

δj � Xj 1 − Xj􏼐 􏼑 + Yj 1 − Yj􏼐 􏼑 + Zj 1 − Zj􏼐 􏼑 + Rj 1 − Rj􏼐 􏼑􏽮 􏽯 􏽘
k

δkwk, (34)
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where δj is the error term of the output layer, and wk is the
weight between the output and hidden layers. ,e update of
the weight of each connection is implemented by replicating
the error in a backward direction from the output layer to
the input layer as follows:

wji(t + 1) � wji(t) + ηδjuj + c wji(t) − wji(t − 1)􏼐 􏼑.

(35)

,e value of learning rate η is chosen such that it is
neither too large leading to overshooting nor very small
leading to a slow convergence rate. ,e value of the mo-
mentum term found in the last part in equation (36) which is
affixed with a constant c (momentum) is used to accelerate
the error convergence of the backpropagation learning

algorithm and also to assist in pushing the changes of the
energy function over local increases and boosting the
weights in the direction of the overall downhill [33]. ,is
term adds a fraction of the most recent weight values to the
current weight values. Both η and c terms are set at the start
of the training phase and determine the network speed and
stability [31, 34].

,e process is repeated for each input pattern until the
output error of the network is decreased to a prespecified
threshold value. ,e final weight values are frozen and
utilized to get the precise product abundances during the test
session. ,e quality and success of training of ANN are
assessed by calculating the error for the whole batch of
training patterns using the normalized RMS error that is
defined as

Initialize biases and weights 

Introduce input and target output

Compute actual output of hidden 
and output neurons

Change the learning pattern

Learning pattern: 
end

>=

End

Increment of the number of iterations

Start

≠

Erms = 1/PJ (tpj – upj)2
p=1 j=1

P J

Weights are adjusted by-
wji (t + 1) = wji (t) + ηδjuj + γ (wji (t) – wji (t – 1))

If unit j is an output unit,
δj = uj (tj – uj) (1 – uj)

If unit j is a hidden unit,
δj = uj (1 – uj) δkwk

k

Figure 2: Flowchart of an offline backpropagation training algorithm.
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Erms �
1

PJ

���

􏽘

P

p�1

􏽶
􏽴

􏽘

J

j�1
tpj − Xpj􏼐 􏼑

2
+ tpj − Ypj􏼐 􏼑

2
+ tpj − Zpj􏼐 􏼑

2
+ tpj − Rpj􏼐 􏼑

2
􏼚 􏼛 , (36)

where J is the number of output units; P is the number of
training patterns; txpj, typj, tzpj, and trpj are the desired
outputs at unit j, whereas Xpj, Ypj, Zpj, and Rpj are the
actual outputs at the same unit j. A zero error denotes that all
the output patterns computed by the stellar helium burning
model match the expected values perfectly and that the
stellar helium burning model is fully trained. Similarly,
internal unit thresholds are adjusted by supposing they are
connection weights on links from the input with an auxiliary
constant value. ,e previous algorithm has been pro-
grammed using C++ programming language running on
Windows 7 of a CORE i7 PC.

4. Results and Discussion

4.1. Data Preparation. Based on the recurrence relations
(equation (18)), we computed one pure helium gas model,
X0 �1, Y0 � 0, Z0 � 0, R0 � 0, and three rich helium gas
models, X0 � 0.95, Y0 � 0.05, Z0 � 0, R0 � 0; X0 � 0.9, Y0 � 0.1,
Z0 � 0, R0 � 0; and X0 � 0.85, Y0 � 0.15, Z0 � 0, R0 � 0. ,e
fractional parameter covers the range α � 0.5 − 1 with a step
of 0.05.,e calculations are performed for a time T � 2100 s.
Consequently, we have a total sum of 44 fractional helium
burning models.

Figure 3 plots the two product abundances from gas
models calculated at α � 0.95, where the solid lines are for
the pure helium model with initial abundance X0 �1, Y0 � 0,
Z0 � 0, R0 � 0; and the dashed lines are for the rich helium
model with initial abundances, X0 � 0.95, Y0 � 0.05, Z0 � 0,
R0 � 0.,e effects of changing the composition of the gas are
remarkable, especially for the carbon C12.

In Figure 4, we illustrated the effects of changing the
fractional parameters on the product abundances calculated
for a gas model with initial abundance X0 � 0.85, Y0 � 0.15,
Z0 � 0, R0 � 0. It is clear that the effects of the change of the
fractional parameter on the behavior of the product
abundances are small. ,is result is similar to the results
obtained by [10] for the models computed in the sense of the
modified Riemann–Liouville fractional derivative.

4.2.ANNTraining. For the training of ANN used to simulate
the helium burning network, we used part of the data cal-
culated in the previous subsection.,e data used for training
of the ANN are as shown in the second column of Table 1.

,e neural network (NN) architecture used in this paper
for the helium burning network has three layers as shown in
Figure 1. ,ese layers are the input layer, hidden layer, and
output layer. Different configurations of hidden neurons of
10, 20, and 40 have been tested, where we concluded that 20
neurons in a single hidden layer are giving the best model of
the network to simulate the helium burning network. ,is
number of neurons in the hidden layer was found to give the
minimum value of RMS error of 0.000005 in an almost

similar number of training iterations. As a result, the
configuration of the NNwe used was 4-20-4, where the input
layer has four inputs which are the fractional parameter α,
the time t (t takes values from 3 to 2100 in steps of 3 seconds),
two of the initial abundances which are the helium (X0), and
carbon (Y0). We excluded the other two initial abundances
(Z0 and R0) because their values are always zero as indicated
in Table 1. ,e output layer has 4 nodes which are the time-
dependent product abundances for helium (X), carbon (Y),
oxygen (Z), and neon (R).

During the training of the NN, we used a value for the
learning rate (η� 0.035) and for the momentum (c � 0.5).
,ose values for η and c were proved to quicken the con-
vergence of the backpropagation training algorithm without
exceeding the solution. For the demonstration of the con-
vergence and stability of the values computed for weight
parameters of network layers, the behaviors of the con-
vergence of the input layer weights, bias, and output layer
weights (wi, βi, and ]i) for the helium burning network are
displayed in Figure 5. As these figures show, the weight
values are initialized to random values and after somewhat
considerable iterations they converged to stable values.

4.3. Comparison between theNNModel andAnalyticalModel.
After the end of the training phase of NN, we used the final
frozen weight values in the test phase to predict the time-
dependent product abundances for helium (X), carbon (Y),
oxygen (Z), and neon (R). In this test phase, we used values
for a fractional parameter α not being used in the training
phase to predict the helium burning network model. ,ese
values are shown in the third column of Table 1. ,e results
of the predicted values show very good agreement with the
analytical values for different helium modes. A comparison
between the predicted NN model values and analytical
model for two values of the fractional parameters (α� 0.55
and α� 0.95) along with different helium modes shown in
Table 1 are displayed in the range of figures , that is, Figures
6–9 for one pure helium gas model, X0 �1, Y0 � 0, Z0 � 0,
R0 � 0, and three rich helium gas models, X0 � 0.95, Y0 � 0.05,
Z0 � 0, R0 � 0; X0 � 0.9, Y0 � 0.1, Z0 � 0, R0 � 0; and X0 � 0.85,
Y0 � 0.15, Z0 � 0, R0 � 0. In all these figures, the very good
agreement between both the NNmodel and analytical model
is clear, which elects the NN to be considered as a powerful
tool to solve and model nuclear burning networks and could
be applied to the other nuclear stellar burning networks.

From the performed calculations, one can examine the
effect of changing the fraction parameter over four elements.
Figures 6–9 illustrate the fractional product abundances of
He4, C12, O16, and Ne20 as a function of time, where some
features could be obtained. For all gas models, the difference
between the abundances of He4 computed for the two values
of the fractional parameters (α� 0.55, 0.95) is very small
when the time t≤ 200 seconds, after that the difference
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Figure 4: ,e product abundance (C12, O16, and Ne20) computed analytically at X0 � 0.85, Y0 � 0.15, Z0 � 0, and R0 � 0 and for two different
fractional parameters. ,e solid lines represent the helium network with α � 0.9 and the dashed lines represent the helium network α � 0.5.

Table 1: Training and testing data for the helium burning network.

Training phase Testing phase
α 0.5, 0.6, 0.7, 0.8, 0.9, 1 0.55, 0.65, 0.75, 0.85, 0.95
Time 0–2100 sec (∆t� 3) 0–2100 sec (∆t� 3)

Initial abundances of the HB

X0 � 0.85, Y0 � 0.15, Z0 � 0, R0 � 0 X0 � 0.85, Y0 � 0.15, Z0 � 0, R0 � 0
X0 � 0.90, Y0 � 0.1, Z0 � 0, R0 � 0 X0 � 0.90, Y0 � 0.1, Z0 � 0, R0 � 0
X0 � 0.95, Y0 � 0.05, Z0 � 0, R0 � 0 X0 � 0.95, Y0 � 0.05, Z0 � 0, R0 � 0

X0 �1, Y0 � 0, Z0 � 0, R0 � 0 X0 �1, Y0 � 0, Z0 � 0, R0 � 0
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Figure 3: ,e product abundance (C12, O16, and Ne20) computed analytically at α � 0.95 for the two different abundances. ,e solid lines
represent the helium network with X0 �1, Y0 � 0, Z0 � 0, and R0 � 0, and the dashed lines represent the helium network X0 � 0.95, Y0 � 0.05,
Z0 � 0, and R0 � 0.
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becomes larger. Also, it is noticed clearly that the abundance
of C12 has the same behavior.

,e behaviors of the fractional product abundances of O16

andNe20 are different from those ofHe4 andC12.,edifferences

between the fractional product abundances of O16 are large after
just the beginning of the ignition, whereas the differences be-
tween the fractional product abundances of Ne20 are very small
for t≤ 100 seconds and increase after that time.
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Figure 5: Convergence of the weights of input, bias, and output layers for the training of the NN used to simulate helium burning network.
(a) ,e convergence of input layer weights (wi). (b) ,e convergence of bias (βi). (c) Convergence of output layer weights (vi).
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Figure 6:,e distribution of the product abundance with time for the rich helium burning network, X0 � 0.85, Y0 � 0.15, Z0 � 0, and
R0 � 0.

Advances in Astronomy 13



H
e4

X0 = 0.90, Y0 = 0.1, Z0 = 0, R0 = 0

α = 0.95

α = 0.55

500 1000 1500 2000 25000
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Analytical
ANN

(a)

C12

500 1000 1500 2000 25000
Time (s)

Analytical
ANN

X0 = 0.90, Y0 = 0.1, Z0 = 0, R0 = 0

α = 0.95

α = 0.55

0.04

0.06

0.08

0.1

0.12

0.14

0.2

0.18

0.16

(b)

O16

500 1000 1500 2000 25000
Time (s)

X0 = 0.90, Y0 = 0.1, Z0 = 0, R0 = 0

α = 0.55

α = 0.95

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Analytical
ANN

(c)

N
e20

500 1000 1500 2000 25000
Time (s)

Analytical
ANN

X0 = 0.9, Y0 = 0.1, Z0 = 0, R0 = 0

α = 0.95

α = 0.55

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.09

0.08

(d)

Figure 7: ,e distribution of the product abundance with time for the rich helium burning network, X0 � 0.9, Y0 � 0.1, Z0 � 0, and R0 � 0.
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Figure 8:,e distribution of the product abundance with time for the rich helium burning network, X0 � 0.95, Y0 � 0.05, Z0 � 0, and
R0 � 0.
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5. Conclusion

In the current research, we introduced an analytical solution
to the conformable fractional helium burning network via a
series expansion method where we obtained the product
abundances of the syntheses elements as a function of time.
,e calculations are performed for the four different initial
abundances: (X0 �1, Y0 � 0, Z0 � 0, R0 � 0), (X0 � 0.95,

Y0 � 0.05, Z0 � 0, R0 � 0); (X0 � 0.9, Y0 � 0.1, Z0 � 0, R0 � 0)
and (X0 � 0.85, Y0 � 0.15, Z0 � 0, R0 � 0). ,e results of the
analytical solution revealed that the conformable models
have the same behaviors as the fractional models computed
using the modified Riemann–Liouville fractional derivative.
Second, we used the NN in its feed-forward type to simulate
the system of the differential equations of the HB. To do that,
we performed the mathematical modeling of a NN to
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Figure 9: ,e distribution of the product abundance with time for the pure helium burning network, X0 �1, Y0 � 0, Z0 � 0, and R0 � 0.
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simulate the conformable helium burning network. We
trained the NN using the backpropagation delta rule algo-
rithm and used training data for models with the fractional
parameter range α � 0.5 − 1 with step Δα � 0.1. We pre-
dicted the fractional models for the range α � 0.55 − 0.95
with step Δα � 0.1. ,e comparison with the analytical
solutions gives a very good agreement for most cases, a small
difference obtained for the model with fractional parameters
α � 0.55. ,e results obtained in this research prove that
modeling of nuclear burning networks using NN gives very
good results and validates the NN to be an accurate, robust,
and trustworthy method to solve and model similar net-
works and could be applied to other nuclear stellar burning
networks comprised of conformable fractional differential
equations.

Appendix

A. The Helium Burning Network

Kinetic equations governing the change in the number
density Ni of species i over time are describing the nucle-
osynthesis of the elements in stars [35]:

dNi

dt
� − 􏽘

j

NiNj≺συ≻ij + 􏽘
k,l≠i

NlNk≺συ≻kl, (A.1)

where ≺συ≻mn for the interaction involving species m and n
constitutes the reaction cross section and all the reactions
producing or destroying species i shall be summed up. ,e
number density Ni of the species i is expressed by its
abundance Xi by the relation

Ni �
ρNAXi

Ai

, (A.2)

where NA is Avogadro’s number and Ai is the mass of i in
mass units.

,e reaction rate is given by

rij � ρ2N2
A

Xi Xj

AiAj

≺συ≻ij. (A.3)

For the helium burning reactions, the rates of the three
reactions in the units of s− 1 could be written as [23]

r3α � ≺συ≻3α He4􏼐 􏼑
3
,

rα12 � ≺συ≻α12He4C12
,

rα16 � ≺συ≻α16He4O16
.

(A.4)

Now, by putting x � He4, y � C12, z � O16, r � Ne20
for the helium, carbon, oxygen, and neon abundances in
number density (in units of cm− 3), respectively,
and implementing equations (A.2)–(A.4), the
abundance differential equation (Equation (A.1)) could
be written as

dN1

dt
�
ρNA

Ax

dx

dt
� − ≺συ≻3α x

3
− ≺συ≻α12 xy − ≺συ≻α16 xz,

dN2

dt
�
ρNA

Ay

dy

dt
� ≺συ≻3αx

3
− ≺συ≻α12xy,

dN3

dt
�
ρNA

Az

dz

dt
� ≺συ≻α12xy − ≺συ≻α16xz,

dN4

dt
�
ρNA

Ar

dr

dt
� ≺συ≻α16xz.

(A.5)

Using equations (A.4) and (A.5) could be written as

dx

dt
� − r3αx

3
− rα12xy − rα16xz,

dy

dt
� r3αx

3
− rα12xy,

dz

dt
� rα12xy − rα16xz,

dr

dt
� rα16xz,

(A.6)

where the abundances x, y, z, and r are expressed in number
instead of number density. By replacing the reaction rates
r3α, rα12, and rα16 in equation (A.6) by a, b, and c, respec-
tively, we obtained equation (2).
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