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We present a new statistical analysis of the large-scale stellar mass distribution in the Sloan Digital Sky Survey (data release 7). A
set of volume-limited samples shows that the stellar mass of galaxies is concentrated in a range of galaxy luminosities that is very
different from the range selected by the usual analysis of galaxy positions. Nevertheless, the two-point correlation function is a
power-law with the usual exponent c � 1.71 − 1.82, which varies with luminosity. (e mass concentration property allows us to
make a meaningful analysis of the angular distribution of the full flux-limited sample.With this analysis, after suppressing the shot
noise, we extend further the scaling range and thus obtain c � 1.83 and a clustering length r0 � 5.8 − 7.0 h− 1Mpc. Fractional
statistical moments of the coarse-grained stellar mass density exhibit multifractal scaling. Our results support a multifractal model
with a transition to homogeneity at about 10h− 1 Mpc.

1. Introduction

It is claimed that we are entering the era of precision cos-
mology, in which the fundamental parameters of the uni-
verse are known within a few percent precision and only
remain to progressively refine them [1, 2]. In addition to the
global parameters of the FLRW model, we have the pa-
rameters that determine the primordial density perturba-
tions and hence the formation of large-scale structure. A
particularly interesting parameter is the amplitude of the
primordial density perturbations, usually measured in terms
of the present linear-theory mass dispersion on a scale of
8 h− 1 Mpc, named σ8. (e scale of 8 h− 1 Mpc comes from
Peebles’ observation that galaxy counts on this scale have an
rms fluctuation approximately equal to one [3]. In general,
the mass dispersion over the length R, σ(R), defines a scale
such that σ(R) � 1. (is scale separates the linear and quasi-
homogeneous regime of the evolution of density fluctuations
from the nonlinear regime of strong clustering.

A similar scale is the distance r0 such that ξ(r0) � 1, where
ξ(r) is the reduced galaxy-galaxy correlation function. Actu-
ally, this function is well approximated by the power-law:

ξ(r) �
r0

r
􏼒 􏼓

c

, (1)

for distances not much larger than r0 [3]. (e scale such that
the rms dispersion of galaxy counts is equal to one is related
to r0 by a c-dependent factor [3]. Historically, the power-law
form of ξ(r) was deduced from the angular positions of
galaxies, yielding c � 1.8 and r0 � 4.7 h− 1 Mpc [4, 5].
Nowadays, good galaxy redshift surveys are available, but the
angular positions are still useful. In particular, the angular
correlation function w(θ) is used, in combination with other
data, to determine precision values of σ8 [2, 6].

(e amplitude of the primordial density perturbations is
not theoretically constrained and determines the present
scale of transition to homogeneity, which can have any
value, once given the global cosmological parameters. (e
transition to homogeneity has been the subject of numerous
studies, some of them motivated by the bold proposal that
the scale of homogeneity is too large to be accessible or even
that no such transition exists [7–9]. (is proposal, namely,
that the mass distribution is fully scale invariant, at all scales
in a Newtonian cosmology, has been called the “fractal
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universe” [3]. Actually, equation (1) corresponds to a fractal
distribution on scales r≪ r0, for any magnitude of r0.

(e scale and specific form of transition to homogeneity
determine the size of the largest structures, although these
structures can have a length much larger than r0 [10]. An
examination of the literature shows values of the scale of
transition to homogeneity that go from the standard value of
5 h− 1Mpc [3] tomore than 20h− 1Mpc [11–14].(e range that
these values span is quite long. In contrast, the current pre-
cision values of σ8 are assigned a relative error of about one
percent [2]. (is precision is surprisingly good, in comparison,
given that σ8 determines the scale of transition to homogeneity.

Most of the literature about the large-scale structure of
the universe based on the statistical analysis of galaxy cat-
alogs is limited to the distribution of the galaxy positions. We
make here, following up on Gaite [15], a new statistical
analysis of the large-scale structure, adding an important
ingredient: the stellar masses of galaxies, that is to say, we
study the large-scale distribution of stellar mass. (e dis-
tribution of stellar mass in the SDSS has already been studied
by Li and White [16], employing the projected correlation
function w(rp), on scales rp < 30 h

− 1Mpc (rp is the sepa-
ration perpendicular to the line of sight [17]). Li and White
find thatw(rp) is very well represented, over the range 10 h− 1

kpc < rp < 10 h
− 1 Mpc, by a power law that corresponds to

equation (1) with c � 1.84 and r0 � 6.1 h− 1 Mpc. (ese re-
sults basically agree with the analysis of the SDSS galaxy
positions by Zehavi et al. [18], but Li and White deem the
scaling of the stellar mass to be better. At any rate, the stellar
mass and galaxy number distributions can be shown to be
very different, thus warranting further statistical analysis.

Besides, we must take into account that the “projection”
that produces w(rp) is performed on the correlation
function ξ(r) and is not associated to an actual projected
distribution but to a set of local orthogonal projections on
the tangent planes to the surface of the unit sphere (a rather
unwieldy construction from the mathematical standpoint).
Arguably, the direct study of the angular projection of the
stellar mass distribution is preferable. On the other hand,
there are statistical measures not based on the two-point
correlation function. Our study combines the analysis of a
set of volume-limited samples with an angular analysis and,
moreover, involves various statistical measures.

(e importance of galaxy masses in the study of galaxy
clustering was recognized years ago [8]. Furthermore, Pie-
tronero [8] argued that a full multifractal analysis of galaxy
clustering is necessary. A multifractal model was also pro-
posed by Jones et al. [19], without considering the galaxy
masses. Pietronero and collaborators initiated the multi-
fractal analysis with masses of galaxies derived from the
observed luminosities by assuming a simple mass-lumi-
nosity relation [9, 20]. Meanwhile, the large-scale structure
has been known to consist not just of clusters but of a web
structure [21, 22]. (is structure can be described as a
multifractal [15, 23]. Multifractality has become essential to
the scaling analysis of the distribution of galaxies, although
normally without considering the galaxy masses [24, 25].

As we shall see, most of a multifractal structure is
preserved in an angular projection. Pietronero [8] already

considered some basic properties of the angular projection
of a fractal galaxy distribution. (is question was further
studied by Coleman and Pietronero [9] and Durrer et al.
[26], assuming a monofractal model.

Our galaxy data come from the Sloan Digital Sky
Survey, data release 7 (SDSS DR7) [27], as provided by the
New York University Value-Added Galaxy Catalog
(NYU-VAGC) [28]. (e NYU-VAGC contains the stellar
masses of the galaxies, calculated with the method de-
scribed by Blanton and Roweis [29] (which gives similar
results to the method of [30]). In fact, we use the same data
as Li and White [16]; which facilitates the comparison of
the respective results. Moreover, the SDSS DR7 is well
studied and, in particular, there is a careful analysis of its
galaxy-galaxy angular correlation function [31]. We have
already employed the same data to make a multifractal
analysis of the stellar mass distribution based on the
convergence of multifractal spectra for a shrinking scale
[15]. (e present treatment of scaling laws is much more
elaborate, allowing us to compare with the preceding
studies of scaling in the SDSS and to study the transition
to homogeneity.

Our plan is as follows: we begin in Section 2 with a short
discussion of scaling, fractality, and homogeneity in galaxy
surveys and of the role played by the scale-dependent mass
variance. In Section 3, we apply these concepts to the study of a
set of volume-limited samples from the SDSS DR7 and to the
analysis of scaling of the respective mass variances. Multi-
fractality is proved by the analysis of fractional statistical
moments in Section 4. We next consider the theory of pro-
jection of fractal distributions in Section 5, and we connect this
theory with the standard theory of the angular two-point
correlation function of galaxies (Section 5.1). After this theo-
retical study, we undertake the analysis of the angular pro-
jection of the SDSS DR7 in Section 6, where we deal with the
increased shot noise (Section 6.1) and we obtain r0 from the
variance of the coarse-grained angular density (Section 6.2).
We end with a general discussion (Section 7).

2. Scaling, Fractality, and Homogeneity in
Galaxy Surveys

It is pertinent to begin with some general considerations
about scaling and homogeneity in galaxy surveys, and, in
particular, about how to characterize fractality and how to
determine the scale of transition to homogeneity. Let us
assume that we can obtain the three-dimensional stellar
mass distribution, which requires a redshift survey with
galaxy stellar masses and the construction of volume-limited
samples.

Taking the two-point correlation function as the basic
statistic, the fundamental scaling law is the power-law re-
duced correlation function in equation (1). (is law is
supposed to hold when ξ(r) is not small, that is to say, for r

not much larger than r0 (but it could also be valid for r≫ r0).
(e coarse-grained mass fluctuation δMR/MR, namely, the
scale-dependent rms fluctuation of the stellar mass in a cell
of linear dimension R, derives from the reduced two-point
correlation function of the mass distribution. If this function
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follows the power law (1), the mass variance follows a power
law with the same exponent, namely,

δMR

MR

􏼠 􏼡

2

� C(c)
r0

R
􏼒 􏼓

c

, (2)

where the form of C(c) depends on the shape of the cell [3].
Regardless of any scaling property, δMR/MR must de-

crease with R and the scale of homogeneity can be defined
just by the condition δMR/MR � 1. However, this condition
is insufficient for homogeneity. Indeed, let us notice that a
positive random variable with an rms dispersion equal to its
mean value cannot be approximately Gaussian; for example,
let us consider the lognormal distribution (see [32]; p. 5). A
suitable criterion for homogeneity is the mass variance
(δMR/MR)2 � 0.1, as assumed by Gaite [15]; indeed, a
lognormal distribution function with this variance is hardly
skewed ([32]; p. 5). Whether or not the scale defined by
(δMR/MR)2 � 0.1 is close to the one defined by δMR/MR �

1 depends on how sharp the transition to homogeneity is. To
analyze this question, we naturally choose the power-law
form in equation (2).

For a spherical cell of radius R, C(c) in equation (2) is
given by Peebles [3]. (e scale R such that δMR/MR equals a
given number is a definite function of c. For δMR/MR � 1, R
is only a little larger than r0, whereas, for (δMR/MR)2 � 0.1,
it is between 4.7r0 and 12r0 (the larger, the smaller c is). In
conclusion, the scale such that δMR/MR � 1 is roughly
equivalent to r0, but the scale where the probability dis-
tribution is approximately Gaussian can be several times
larger. (is observation reveals that the values r0 � 5.4 h− 1

Mpc and c � 1.8 are compatible with the presence of rel-
atively large structures, for example, cosmic voids of size
≃30 h− 1 Mpc [3]. Actually, even larger structures can be
observed, provided that ξ(r) does not fall too rapidly for
r≫ r0 [10].

After clarifying our concept of homogeneity, let us now
recall several aspects of scale invariance and fractal geometry.
First of all, let us remark that the fractal geometry of a mass
distribution consists in some sort of scale invariance in the
strongly inhomogeneous or strong clustering regime. Its most
general form is called multifractality and is expressed in terms
of the multifractal spectrum f(α) or, alternatively, of the
Rényi dimension spectrum Dq [33, 34]. (e multifractal
spectrum f(α) is a basic function that represents how mass
concentrates, in terms of the number of mass concentrations
of a given “strength,” measured by the local dimension α,
while the Rényi dimensions provide a sort of averaged in-
formation. (e functions f(α) and Dq are related by a
Legendre transform in terms of the variables α and q. (e
Rényi dimension Dq expresses the scaling of the statistical
q-moment of the coarse-grained mass distribution and is, in
general, a nonincreasing function of q. (e second-order
moment has an intuitive meaning, and the corresponding
Rényi dimension is D2 � 3 − c. General q-moments and their
scaling relations are studied in Section 4.

It is to be remarked that the primary concept of fractal
dimension and its various definitions are concerned with the
small-scale behavior of sets or mass distributions, and

fractality is roughly equivalent to asymptotic scaling in the
limit of vanishing scale, as described in standard fractal
geometry textbooks [33, 34]. In consequence, multifractal
measures are defined for anymass distribution, regardless of
its behavior on large scales. An arbitrary mass distribution is
not expected to be such that it becomes homogeneous on
large scales, tending to a uniformly homogeneous state, as
occurs in cosmology because of the cosmological principle.
(is is why raw statistical q-moments 〈Mq〉 are employed in
fractal geometry, instead of central moments, which require
a globally defined mean density.

To make the cosmological principle compatible with
fractal models of strong clustering, Mandelbrot [7] proposed
the conditional cosmological principle, in which “every
possible observer” is replaced with “every observer located at
a material point.” (us, the natural measure for the fractal
analysis of strong clustering is the conditional density,
namely, the average density at a distance r from an occupied
point [7, 9, 20]. It can be expressed as

Γ(r) �
〈ϱ(r)ϱ(0)〉

〈ϱ〉
� 〈ϱ〉(ξ(r) + 1). (3)

But, it is conceptually independent of the mean density
〈ϱ〉 in spite of the fact that it appears in these expressions.

Motivated by these ideas, some authors look for scaling
of the conditional density Γ(r) of the galaxy distribution (or
of its integral in the ball of radius r). When calculated with
this method, the scale of homogeneity is often large [11, 13].
(e conditional density is not used by traditional cosmol-
ogists, who are accustomed to the function ξ(r). If 〈ϱ〉≠ 0,
then the conditional density Γ(r) is conceptually useful but
can be expressed in terms of ξ(r), by equation (3), and it
scales as ξ(r) + 1. Naturally, the condition for fractal scaling
is ξ≫ 1, which makes ξ and ξ + 1 equivalent. However, the
condition is never fulfilled in a sufficiently long range of r.
(erefore, the values of r0 and c obtained from power-law
fits of either function differ, namely, r0 is larger when cal-
culated from ξ + 1. Let us illustrate this point with an ex-
ample, employing a sample from Gaite [15].

Gaite [15] uses a method of multifractal analysis based
on coarse-graining cells that are adapted to the SDSS sample
geometry. (ese cells are not spherical nor have a simple
shape but have equal volume, which serves to measure their
size. Let this volume be v. (e second moment of the coarse-
grained density is

μ2(v) �
〈ϱ2v〉
〈ϱv〉

2, (4)

and the density variance (mass variance) is

μ2(v) − 1 �
〈δϱ2v〉
〈ϱv〉

2 �
〈δM

2
v〉

〈Mv〉
2 . (5)

(e scaling law (1) is equivalent to the scaling law for the
mass variance (2). Likewise, a scaling law for ξ(r) + 1 is
equivalent to a scaling law for μ2(v). An example of both the
scaling laws for μ2(v) and μ2(v) − 1 is displayed in Figure 1,
which we now explain.
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Figure 1 refers to a volume-limited sample of 1765
galaxies in the redshift range (0.003, 0.013), defined by Gaite
[15] and called VLS1. (is sample was adequate to compute
a quite complete multifractal spectrum and is now useful to
test the two options for the scaling law that yields D2. (e
solid blue lines in Figure 1 are the graphs of μ2 and μ2 − 1.
(e fit to the power-law

μ2 �
v

v0
􏼠 􏼡

− c/3

, (6)

in the interval v ∈ [3, 190]Mpc3/h3 yields v0 � (1960 ±
180)Mpc3/h3 and c � 1.57 ± 0.01, that is to say, D2 � 3 − c �

1.43 ± 0.01 (the power-law fit is a least-squares linear fit of
log μ2 versus log v). An analogous fit to the power-law,

μ2 − 1 �
v

v0
􏼠 􏼡

− c/3

, (7)

yields v0 � (850 ± 300)Mpc3/h3 and D2 � 1.20 ± 0.06
(c � 1.80 ± 0.06). Both fits are represented by dashed red
lines in Figure 1. (e latter fit, with c � 1.80 and
v1/30 � 9.5Mpc/h, basically agrees with the canonical values
of c and r0 (from the reduced two-point correlation function
of galaxy positions). However, both fits are questionable for
calculating D2, because the fractal regime demands
μ2 − 1 ≈ μ2≫ 1, but the fitted range extends beyond the
small scales where this condition holds. (erefore, some
intermediate values of v0 and c should be more appropriate.
(ese values are uncertain because we have too small a range
of scales with both μ2≫ 1 and negligible discreteness effects.
(ese effects make D2 shrink towards D2 � 0, as the steeper
left ends of the graphs reflect.

(e uncertainties of 20% in D2 and 30% in v1/30 due to the
limited scaling range can be compared with the uncertainties
in galaxy positions and masses. Gaite [15] has analyzed how
these uncertainties affect the multifractal spectrum of VLS1,
with the result that only the right-hand side part of the
spectrum is affected (left-hand side of Figure 4 in [15]). (is
implies that only the (Rényi) dimensions Dq with q< 0 are
affected. (erefore, the evaluation of D2 should not be

affected. To confirm it, we calculate now the uncertainty of
μ2(v) due to the uncertainty of galaxy positions and masses.
To do it, we employ the same procedure as Gaite [15],
namely, we generate ten variant samples, with values of
redshift and stellar mass given by, respectively, Gaussian and
lognormal distributions with variances in accord with the
literature. (e variant samples yield ten values of μ2 for each
value of v, and we compute for each v the standard deviation
of those ten values.(e result is that the relative error of μ2 is
always smaller than 4.2% (the corresponding error bars in
Figure 1 would hardly be visible).

As regards errors in the linear fits, their magnitude grows
as one tries to fit more points, and the natural criterion to
stop is to minimize the rms error per degree of freedom (the
number of degrees of freedom is the number of points minus
two). In most of the fits here, these errors are quite small in
comparison with errors from other sources. (e relative
small uncertainty due to statistical errors in galaxy positions
and masses combined with the smallness of errors in the
linear fits shows that the major uncertainty in the fractal
analysis is due to discreteness effects, that is to say, to
limitations imposed by a small fractal scaling range.

Gaite [15] observes that the low-redshift VLS1 obtains a
multifractal spectrum that is more complete than the ones
obtained from higher-redshift volume-limited samples. We
find that higher-z samples are also less useful to directly
calculate D2 as above. (e higher z is in a volume-limited
sample the more luminous the galaxies in it and the smaller
their number density (as we shall discuss when we construct
a set of volume-limited samples in Section 3). A smaller
number density implies that discreteness effects take over
growing ranges of the smaller scales, reducing the interval of
scales where the fractal regime can be measured, that is to
say, the interval where μ2 − 1 ≈ μ2≫ 1.

However, we may consider the scaling of just μ2(v) − 1,
in the longest possible interval, without demanding that
μ2(v) − 1> 1. For example, one can dismiss the upper graph
in Figure 1, corresponding to μ2, and think of extending the
scaling of μ2 − 1 below the line μ2 − 1 � 1. Likewise, equation
(1) usually extends to ξ < 1 (weak correlations). Besides, we
remark that the frequently employed projected correlation
function w(rp) (e.g., the one in [16] or [18]) is a dimensional
function that renders obscure the strength of correlations.
(e range with ξ < 1 is the appropriate one for the molecular
correlations in statistical physics, and scale invariance takes
place in critical phenomena. In this regard, we can expect
that equation (1) holds from the small scales where ξ≫ 1 to
the large scales where ξ≪ 1, encompassing the fractal and
critical-fluid regimes [10].

At any rate, what we conclude from the analysis of VLS1
is that the statistical analysis of the stellar mass distribution
in the SDSS DR7 by means of volume-limited samples is
plagued with errors, especially, discreteness errors. An al-
ternative to it is the study of the projected angular distri-
bution, which has two advantages. On the one hand, we
avoid the influence of redshift space distortions on the
statistics, which is considerable [18]. On the other hand, we
have all points in the angular region, whereas volume-
limited samples span the same angular region but occupy
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Figure 1: Fits to scaling for sample VLS1: moments μ2(v) and
μ2(v) − 1 (v in Mpc3/h3), with fits to the scaling (v/v0)

− c/3, rep-
resented as dashed lines. (e crossing of each dashed line with the
horizontal gray line gives v0.
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very different three-dimensional regions (which are awk-
wardly shaped, in addition). We see next the information
obtained from a systematic study of volume-limited samples
and leave the study of the angular projection to Section 5.

3. Volume-Limited Samples

To be systematic in the study of the three-dimensional mass
distribution, we construct volume-limited samples in suc-
cessive intervals of absolute magnitude; for example, in the
SDSS, one can take intervals in which it changes by one unit.
We follow the procedure and conventions of Zehavi et al.
[18] (the absolute magnitude is denoted by Mr, not to be
confused with our notation of M as a mass).

We employ the same SDSS-DR7 data from the NYU-
VAGC as in Gaite [15], and we also select the apparent
magnitude range 12.5<mr < 17.77. (e angular ranges are
defined in terms of equal-area coordinates sl � sin λ and f �

η + 0.567 radians, where the angles λ and η constitute the
SDSS coordinate system. (e available ranges of our co-
ordinates are − 0.760< sl< 0.793 and − 0.0227<f< 1.200
(radians), providing a total solid angle Ω � 1.554 · 1.222 �

1.899 steradians. We further restrict the sample to z< 0.34,
obtaining 529655 galaxies.

(e main characteristics of our volume-limited samples
are reported in Table 1. Naturally, the redshift intervals are
almost coincident with the ones of Zehavi et al. [18], but the
number of galaxies in each sample is larger, because the
angular region is larger. (e number of galaxies grows with
absolute luminosity, up to Mr ∈ (− 21, − 22), with
N � 101350. (is growth might suggest that discreteness
effects are reduced up to this point, but the number density
shrinks and the overall effect is that discreteness progres-
sively hinders the detection of strong clustering, as noticed
in Section 2. For instance, the sample with Mr ∈ (− 21, − 22)

and number density 0.00159 has a volume per galaxy of
629Mpc3/h3, that is to say, the equivalent length is
8.6Mpc/h, as large as the expected value of r0.

As regards number density, the best sample is the first
one, with Mr ∈ (− 14, − 15) and number density 0.08550 (this
sample is somewhat like the VLS1 studied in Section 2).
However, we are studying here the distribution of mass
rather than the distribution of individual galaxies and the
sample represents a fraction of the total mass density that
only amounts to 0.009. (us, the clustering properties of the
full mass distribution are hardly influenced by the galaxies
with Mr ∈ (− 14, − 17), in spite of their abundance.

(e last variable in Table 1 is the galaxy mass, and we can
observe the evident correlation between galaxy mass and
absolute luminosity. (is correlation is significant in the
multifractal analysis, because this analysis distinguishes the
strength of mass concentrations, measured by the local
dimension α. To be precise, the concentration strength is
measured in coarse multifractal analysis by the logarithm of
the mass in each cell, namely, α � − log m/ln l, ([34], applied
to cosmology by [35]). However, galaxies are not equal-size
mass concentrations and, actually, the galaxy sizes are not
even part of the data. Nevertheless, it is to be expected that
the stellar mass in the more luminous samples is more

concentrated. (erefore, we also expect that the set of values
of α and hence the dimension Dq of each sample are smaller
the more luminous the galaxies in it.

3.1. Scaling of Cell Mass Variances. Here, we examine if cell
mass variances are power-law functions of the cell volume v,
according to equation (7) and employing the coarse-graining
method of Gaite [15] as in Section 2. We focus on the three
galaxy samples in Table 1 in the interval Mr ∈ (− 19, − 22),
whose contribution to the totalmass density is dominant (more
than 78%). But, we also examine, to be thorough, the two
adjacent samples, to include most of the total mass density as
well as most galaxies in the set of samples.

(e results of the calculation and plotting of μ2(v) − 1
appear in Table 2 and Figure 2. To wit, in Figure 2 are the log-
log plots of μ2(v) − 1 for the three samples with
Mr ∈ (− 19, − 22), and in Table 2 are the numerical results of
the log-log linear fits corresponding to the five volume-limited
samples of Table 1 with higher mass density. We obtain a
nontrivial scaling for intermediate values of v, which crosses
over, for small v, to the trivial scaling corresponding to isolated
points (D2 � 0). It is remarkable that the scalings displayed in
Figure 2 hold in considerable ranges that go across the point of
unit variance, extending from the moderately strong clustering
regime to the quasi-homogeneous regime.

Regarding the values of the scaling exponent c in Table 2,
we can observe a definite growing trend, except in the sample
with Mr ∈ (− 20, − 21) (an anomaly in this range is also noted
by [18]). (e length scale v1/30 , which we can take as a ho-
mogeneity scale, also grows with luminosity. (e growing
trends of both c and the homogeneity scale are also obtained
in the analysis of galaxy positions (Table 1 of [18]).

In the (moderately) strong clustering regime, the scaling of
the mass variances denote fractality, with D2 � 3 − c ∈ (1, 1.5),
the lower values for the larger luminosities. (is decreasing
trend of fractal dimension as a function of luminosity is ex-
pected, as explained at the end of Section 3. Let us notice that the
galaxies with Mr ∈ (− 19, − 22), which concentrate most of the
mass, correspond to a narrow interval of the scaling exponent,
namely, c ∈ (1.75, 1.83), and hence to a narrow interval of D2.
(e concentration ofmass in a small range of fractal dimensions
is indeed expected in a multifractal [33, 34]. (e consequences
of the phenomenon of mass concentration for a general sta-
tistical analysis are considered in the next section.

4. Fractional Statistical Moments

(e analysis in the preceding section is based on the order
two statistical moment μ2(v) and, specifically, on the vari-
ance μ2(v) − 1. However, the variance is a sufficient statistic
only for the normal distribution. Some conclusions about
the importance of other moments can be drawn in general,
without appeal to scaling arguments.

It has been remarked earlier that a positive random
variable with an rms dispersion equal to its mean value is not
nearly normal. From the general statistical moment in-
equality μk ≥ μk− 1

2 , k ∈ N ([36]; p. 55), we deduce a lower
bound to the skewness:
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Table 1: Characteristics of the volume-limited samples: absolute magnitude, redshift, number of galaxies, number density (h3Mpc− 3),
fraction of the total mass density, and galaxy mass (M⊙).

Mr z N n Dens. Mass
(− 14, − 15) 0.0011 − 0.0073 554 0.08550 0.009 (2.7 × 104, 1.4 × 108)
(− 15, − 16) 0.0017 − 0.0115 885 0.03472 0.010 (4.1 × 105, 4.0 × 108)
(− 16, − 17) 0.0026 − 0.0181 1708 0.01717 0.012 (9.4 × 106, 9.2 × 108)
(− 17, − 18) 0.0042 − 0.0284 6625 0.01728 0.039 (1.7 × 106, 2.8 × 109)
(− 18, − 19) 0.0066 − 0.0444 17416 0.01202 0.089 (1.2 × 107, 6.1 × 109)
(− 19, − 20) 0.0105 − 0.0689 46204 0.00870 0.203 (2.1 × 107, 2.3 × 1010)
(− 20, − 21) 0.0165 − 0.1058 97847 0.00522 0.333 (1.7 × 106, 6.6 × 1010)
(− 21, − 22) 0.0260 − 0.1613 101350 0.00159 0.247 (1.2 × 107, 1.7 × 1011)
(− 22, − 23) 0.0406 − 0.2444 30680 0.00015 0.056 (7.5 × 108, 4.4 × 1011)
(− 23, − 24) 0.0632 − 0.3597 1460 2.4 × 10− 6 0.002 (7.7 × 109, 7.9 × 1011)

Table 2: Results for scaling in the five volume-limited samples with higher mass density (v1/30 in Mpc/h).

Mr c v1/30

(− 18, − 19) 1.52 ± 0.07 13.5 ± 1.6
(− 19, − 20) 1.71 ± 0.04 12.4 ± 0.8
(− 20, − 21) 1.616 ± 0.013 14.2 ± 0.3
(− 21, − 22) 1.818 ± 0.007 16.9 ± 0.2
(− 22, − 23) 1.93 ± 0.02 29.4 ± 0.6
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Figure 2: Variance μ2(v) − 1 of the stellar mass distribution (v in Mpc3/h3), for three volume-limited samples: Mr ∈ (− 19, − 20) (a),
Mr ∈ (− 20, − 21) (b), and Mr ∈ (− 21, − 22) (c). (e linear fits yield the values of c and v1/30 in Table 2.
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〈δM
3
v〉

〈Mv〉
3 ≥ μ2 − 1( 􏼁 μ2 − 2( 􏼁. (8)

Hence, μ2≫ 1 implies that the probability distribution
function is very skewed. (e lognormal distribution is an ex-
ample that goes fromnearly normal for μ2 ≳ 1 to very skewed for
μ2≫ 1. Furthermore, this distribution is heavy-tailed, namely,
not exponentially bounded, so its moment generating function
is ill-defined [32]. For such distributions, high-order moments
are not meaningful. Actually, heavy-tailed probability distri-
butions may not have high-order integral moments, but they
can be analyzed using fractional low-order moments [37]. (is
type of analysis connects with the analysis ofmultifractals, which
are mass distributions with very skewed probability functions
and are related to the lognormal model [38, 35].

Indeed, a complete multifractal analysis requires the full
set of fractional q-moments. In the standard method of
coarse multifractal analysis [33, 34], a region that contains
the mass distribution is coarse-grained with a partition in
cells of linear size l. Using this partition, fractional statistical
moments are defined as

Mq(l) � 􏽘
i

mi

M
􏼒 􏼓

q

, q ∈ R, (9)

where the index i runs over the set of nonempty cells, mi is
the mass in the cell i, and M � 􏽐imi is the total mass. (en,
multifractal behavior is given, for l⟶ 0, by

Mq(l) ∼ l
τq , (10)

and the Rényi dimension spectrum is given by

Dq �
τq

q − 1
, (11)

(in particular, D2 � τ2).
(e fractional moments of the mass distribution,

namely,

μq(v) �
〈ϱqv〉
〈ϱv〉

q �
〈Mq

v〉
〈Mv〉

q, (12)

are related to Mq by

μq(v) �
Mq(v)

v
q− 1 , (13)

where v is the cell volume (e.g., [23]).We restrict ourselves to
moments with q> 0, which aremore interesting and easier to
calculate from data. From equations (10)–(13), the scaling
exponent of μq(v) is

τq

3
− (q − 1) � (q − 1)

Dq − 3􏼐 􏼑

3
. (14)

Let us remark that this exponent is negative for q> 1, so
that μq(v) grows as v shrinks, and the probability function
becomes more skewed.

Conversely, μq(v)⟶ 1 as v⟶∞. Naturally, cumu-
lants, which express the departure from Gaussianity, are
useful in this limit and are standard in cosmology; e.g., the
skewness and the excess kurtosis [3]. However, cumulants are
not useful to study very skewed probability distributions,
such as the mass distribution in the strong clustering regime.
If we want to replace μq with some moment that vanishes at
homogeneity, we may consider the central absolute mo-
ments, defined as

〈 δMv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
q〉

〈Mv〉
q , q ∈ R, (15)

or consider just μq(v) − 1, because both the quantities
generalize the variance to q≠ 2 (but are not equal).

Actually, there is more information about the multi-
fractal properties of a mass distribution in its q-moments
with q noninteger and close to one than in its q-moments
with integer q> 1. (is is because the mass is concentrated
on the singularities that fulfill D1 � α1 � f(α1), where α1 is
the local dimension corresponding to q � 1 [33, 34].
However, μ1 � 1 (at any scale) and μq is close to one for q

close to one.(erefore, we have to take q not too close to one
to have a measurable change with scale. Let us see what
happens in one example.

Taking q � 1.5 and employing the sample with absolute
magnitudes Mr ∈ (− 21, − 22), for example, we find that both
μ1.5(v) − 1 and the corresponding central absolute moment
do have scaling ranges that are almost as large as possible,
with exponents − 0.54 and − 0.41, respectively. However, on
closer inspection, the scaling with exponent − 0.54 splits into
one part in the strong clustering regime, with exponent
− 0.51, and another in the quasi-homogeneous regime, with
exponent − 0.57. Both these exponents can be explained. (e
first value, using equation (14) for the exponent of
μ1.5(v) ≈ μ1.5(v) − 1, gives D1.5 � − 0.06, that is to say, it
corresponds to the vanishing dimension of a set of isolated
points. (e exponent − 0.57 should give, according to
equation (14), D1.5 � − 0.42 (now hardly compatible with a
vanishing dimension), but it is not sensible to calculate a
fractal dimension only in the quasi-homogeneous regime.
Nevertheless, we can understand the value − 0.57 of the
exponent as follows.

In the quasi-homogeneous regime, anymass distribution
approaches normality. (is is realized, in particular, by the
lognomal model, whose moments are easily calculated [32],
giving

μq � e
q(q− 1)σ2/2

. (16)

For small σ2, μq ≳ 1, and we obtain the ratio

μq − 1
μ2 − 1
≈

q(q − 1)

2
. (17)

Indeed, the exponent − 0.57 of μ1.5(v) − 1 is close to − 0.61,
which is the exponent of μ2(v) − 1 (equal to − c/3, with c from
Table 2). Moreover, if we compute the ratio
(μ1.5(v) − 1)/(μ2(v) − 1) along the quasi-homogeneous
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interval, then we find that it goes from 0.33 to 0.38, in
progressively better accord with equation (17), which gives
0.375.

Regarding the scaling of

〈 δMv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1.5〉

〈Mv〉
1.5 , (18)

with exponent − 0.41, we have no interpretation, but it is
evident that it cannot correspond to a sensible value of D1.5:
to see this, let us use expression (14), recalling that Dq is a
nonincreasing function of q and D2 > 1.

Since μ1.5(v) − 1 or the central absolute moment have no
useful scaling in the quasi-homogeneous regime, we may try
to find the scaling of just μ1.5(v) in the strong clustering
regime. Here and henceforth, we employ the sample with
absolutemagnitudesMr ∈ (− 21, − 22). A fit in themoderately
strong clustering regime yields the exponent 0.19 ± 0.04 and
hence D1.5 � 1.8 ± 0.2. (is value is not very precise but is in
accord with the also quite imprecise value deduced from the
multifractal spectrum f(α) found by Gaite [15].

(e dimension of the mass concentrate, D1, cannot be
calculated as the Dq with q≠ 1, because M1 � μ1 � 1.
However, the limit q⟶ 1 is easily taken in equation (11),
using equations (9) and (10), and it yields the so-called
entropy dimension [33]

D1 � liml⟶0
􏽐i mi/M( 􏼁log mi/M( 􏼁

log l
. (19)

With a linear fit of the numerator of this formula versus
log v, again in the moderately strong clustering regime, we
obtain D1 � 1.9 ± 0.2. It is somewhat smaller than the value
found by Gaite [15], but it is compatible with it.

Statistical moments with integer q> 2 give us little
information. Of course, low-order cumulants are useful in
the quasi-homogeneous regime. Moreover, we observe
that the skewness has better scaling behavior than, for
example, μ3(v) − 1 or the corresponding central absolute
moment. (e scaling of higher-order cumulants might
play a role. Nevertheless, the relevant information about
the fractal regime is provided by fractional low-order
moments.

Although the above quoted results refer to the sample with
Mr ∈ (− 21, − 22), we have conducted an exploration of general
scaling properties, for other samples and values of q, finding
that the slight rise of scaling exponent with luminosity already
seen for q � 2 in Section 3.1 holds in general. (is general rule
confirms the expected multifractal behavior, namely, the
smaller values of Dq for more luminous galaxy subsamples
(Section 3). At any rate, the change of dimension is quite small
for the subsamples with Mr ∈ (− 19, − 22), which concentrate
most of the stellar mass. (is quasi-uniformity of scaling
properties, which reflects the phenomenon of concentration of
mass in multifractal geometry, justify us to consider all the
galaxies at once for some purposes and, in particular, to study
the angular projection of the full apparent-magnitude sample,
without concern about mixing galaxies in a broad range of
luminosities.

5. Fractal Projections

(e study of fractal projections has tradition in mathematics
[34, 39]. In cosmology, the properties of the angular pro-
jection of a fractal set have been considered in regard to the
possibility of a fractal universe with no transition to ho-
mogeneity [7, 9, 26]. Of course, the study of the angular
projection of the distribution of galaxies, that is to say, of
angular galaxy surveys, is old and predates the study of
redshift surveys [4, 5]. In fact, Peebles [3] uses basic
properties of the angular distribution of galaxies as an ar-
gument against a fractal universe with no transition to
homogeneity. (e argument is also applicable to the stellar
mass distribution.

To study the angular distribution of stellar mass, we
have to consider the generalization of the theory of pro-
jection of fractal sets to the theory of projection of fractal
measures, which has been developed more recently [39].
(is is a necessary step because the large-scale mass dis-
tribution has to be treated not as a set but as a measure, the
measure being the mass. A useful concept is the support of a
mass distribution, namely, the smallest closed set that
contains all the mass. (e large-scale mass distribution
appears to be a multifractal mass distribution of non-
lacunar type, that is to say, with support in the full space
[15]. (is property amounts to the absence of totally empty
cosmic voids. (ese concepts are explained in detail by
Gaite [23].

Regarding lacunarity, let us recall that Durrer et al. [26]
argued that the angular projection of a fractal set can have a
vanishing lacunarity, by noting that the projection of a
fractal with dimension 2 or higher is nonfractal and ap-
pealing to galaxy properties (apparent sizes and opacities). If
the three-dimensional stellar mass distribution is already
nonlacunar, then the issue is no longer meaningful. Fur-
thermore, the presence of a small lacunarity would also give
rise to a nonlacunar projection, as a consequence of the
almost certain fact that the fractal dimension of the support
of the mass distribution in space is larger than two [15].

(e study of multifractal projections is not reduced to
the behaviour of lacunarity. (e main question is how to
characterize the behavior of dimensions under a projection.
(is question has been partially answered by Hunt and
Kaloshin [40], in terms of the Rényi dimension spectrumDq.
(e answer is the natural generalization of the standard and
intuitive result obtained for fractal sets [34, 39]: the di-
mension of the projection of a fractal set onto a plane (or a
smooth surface), in particular, equals the dimension of the
set if it is smaller than two and it is two otherwise (this
statement has to be qualified for nonrandom fractals, which
can have special projections along some directions). (is
result is still valid for the dimension spectrum Dq of a mass
distribution, with the restriction that 1< q≤ 2 [40]. (e
restriction is due to technical reasons and may not apply to
every type of mass distribution. Anyway, we are mostly
interested in that interval and, especially, in the correlation
dimension D2. Since we expect that D2 is in the range 1–1.5
for the stellar mass distribution (Sections 2 and 3.1), it has to
be preserved under angular projections.
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Here, we should notice that some authors find that
D2 ≥ 2 (Table 1 of [25]). However, large values of D2 often
come from power-law fits of ξ(r) + 1 on scale ranges that
extend too far and include a quasi-homogeneous range, thus
being biased towards D2 � 3, as explained in Section 2.
Moreover, all those values of D2 do not refer to the stellar
mass distribution but to the galaxy number distribution.

To apply coarse multifractal analysis to an angular pro-
jection, we partition the projected region in cells of solid angle
Ω and replace in (9) the length l byΩ1/2. Now, the formula that
is analogous to equation (13) and gives the moment μq(Ω) is

μq(Ω) �
〈ϱqΩ〉
〈ϱΩ〉

q �
Mq(Ω)

Ωq− 1 , (20)

where is assumed that q> 0. (e expected scaling exponent
of μq(Ω) is, in analogy with equation (14):

τq

2
− (q − 1) � (q − 1)

Dq

2
􏼠 􏼡 − 1􏼠 􏼡. (21)

In particular, μ2(Ω) is expected to scale with exponent
D2/2 − 1. Naturally, the exponent (q − 1)(Dq/2 − 1) is only
valid provided that Dq < 2, because 2 is the maximal fractal
dimension of a two-dimensional projection.

Let us now recall and generalize some standard results
about the angular two-point correlation function, in the light
of the theory of fractal projections.

5.1. Angular Correlation of Galaxies. (e reduced two-point
correlation function of the angular positions in a flux-
limited sample is denoted by w(θ12), where θ12 is the angular
distance between two points. (is function can be expressed
as an integral of the two-point correlation function of or-
dinary positions ξ(r12) over the radial coordinates r1 and r2.
(e integral can be simplified if ξ(r) is a power law, equation
(1). (en, in the small angle approximation, θ≪ 1 (in ra-
dians), the integral gives

w(θ) � Kθ1− c r0

d∗
􏼠 􏼡

c

􏽚
∞

− ∞

dx

1 + x
2

􏼐 􏼑
c/2, (22)

where K is a nondimensional constant that depends on c

and the radial selection function and d∗ is the characteristic
sample depth [3]. (e integration variable is
x � (r2 − r1)/(r1θ). (e integral over x is left unevaluated to
show that the present approximation fails if the integral is
divergent, namely, if c≤ 1. In this case, the projected cor-
relation function is dominated by pairs of points at large
relative radial distances.

Of course, all the above is as applicable to the stellar mass
distribution as to the galaxy number distribution. To the
scaling exponent c corresponds the fractal dimension
D2 � 3 − c, so the cases c> 1 or c≤ 1 correspond, respec-
tively, to D2 < 2 or D2 ≥ 2, the latter being the case of
nonfractal projection. If c> 1, then the projected correlation
function is dominated by pairs of points at small relative
radial distances, and the three-dimensional fractal structure
is preserved in the projection.

It is also relevant that K and the integral in equation (22),
for c> 1 and not too close to one, are factors of the order of
unity, so the magnitude of w(θ) is ruled by the quotient
r0/d∗ [3]. If the characteristic sample depth is much larger
than r0, as is normal in deep surveys, the angular correla-
tions are small, except at very small angles. (is means that
the projected fractal structure is only observable at very
small θ, where w(θ)≫ 1 and the mass fluctuations are large.

Notice that the fractal structure appears blurred and the
cosmic web features are hardly perceptible in angular images
of the galaxy distribution; for example, in the image of the
Lick survey ([3]; p. 41). Images like this one show that w≪ 1,
which is a proof of large-scale homogeneity, namely, of a
small ratio r0/d∗. (ese images do not reveal the web fea-
tures that are so conspicuous in slices of three-dimensional
redshift surveys. In the angular projection of an ideal
mathematical fractal, the relevant features must always
appear on very small angles. But the galaxies have discrete
nature. Although x is integrated down to zero in equation
(22), correlation functions are actually calculated as sums
over pairs of points in a finite set. In particular, there is some
pair at a minimal distance, while the density of projected far
points on the angular location of that pair keeps growing as
d∗ grows. It is evident that uncorrelated far points must blur
the small scale features and obliterate them at some stage. In
fact, the projection of uncorrelated pairs of points adds a sort
of Poisson distributed component, thus making the average
angular density ϱΩ grow without altering its fluctuations.
(erefore, the variance (δϱΩ/ϱΩ)

2 gets uniformly depressed,
with no change of the scaling behavior (if it exists).

Peebles ([3]; p. 220) shows log-log plots of w(θ) for the
Zwicky, Lick, and Jagellonian catalogs. In fact, only the
Zwicky catalog, with limiting apparent magnitude m � 15,
has a range of small θ with w(θ)> 1. However, the absolute
value of the slope grows in that range and tends to two, the
value that corresponds to D2 � 0, that is to say, to a dis-
tribution of isolated points. Something similar happens in
the plot of w(θ) for successive slices of the APM catalog with
Δm � 0.5 ([3]; p. 221). Analyses of modern and hence deeper
catalogs seldom show any w> 1. For example, Wang et al.
[31] only show a very small range of θ with w(θ) > 1.

In conclusion, any strong angular correlations are likely
to be buried in a homogeneous background, as indeed
happens in our case (Section 6).

6. Angular Analysis of the Stellar
Mass Distribution

We employ the same set of 529655 galaxies as in Section 3, in
the angular rectangle defined therein. (e lattice of cells and
coarse-graining system are the same as in Section 3 (from
[15]), without the radial coordinate, that is to say, a 4 × 3
basic lattice and a sequence of binary subdivisions. To cover
larger solid angles, we add a coarser lattice, namely, a 3 × 2
lattice. All the cells have an aspect ratio close to one, which is
convenient.

According to equation (22), the average of w(θ) over a
small cell of solid angle Ω is proportional to Ω(1− c)/2.
(erefore, the expected scaling of the cell mass variance is
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μ2(Ω) − 1 �
〈δM

2
Ω〉

〈MΩ〉
2 �
Ω
Ω0

􏼠 􏼡

− (c− 1)/2

, (23)

where Ω0 is the solid angle at which the projected distri-
bution approaches homogeneity and can be expressed in
terms of K, r0/d∗, and c. If μ2≫ 1, then equation (23) is a
particular case of the fractal scaling of q-moments (20), with
exponent (21), in this case, D2/2 − 1 � (3 − c)/2 − 1.

In Figure 3 is the log-log plot of μ2(Ω) − 1 (Ω is nor-
malized to the total solid angle from now onwards, unless
the unit “steradian” appears explicitly). (e exponent of the
power-law fit of μ2(Ω) − 1 in Ω ∈ [8 · 10− 5, 8 · 10− 2] turns
out to be somewhat large in absolute value, namely,
(c − 1)/2 � 0.486 ± 0.008, giving c � 1.97 ± 0.02. In the
fitted range, μ2 − 1≪ 1, while μ2 grows for small Ω and c

tends to three, due to the effect of discreteness.
(erefore, in the range of Ω where the projected stellar

mass distribution can be considered as a continuous mass
distribution, it is quite uniform, with small fluctuations that
are power-law correlated. (e mass fluctuations are reduced
by the projection, as explained in Section 5.1. Presumably,
we can have a better representation of the correlation
function for small Ω by suppressing the shot noise.

6.1. Shot Noise Suppression. (e Poissonian fluctuations of
an uncorrelated distribution of points in some volume are
characterized by a number density variance equal to 1/N,
where N is the mean number of points. (is term is also
present when the points are correlated. In the case of a
distribution of particles with different masses, such as gal-
axies, and assuming that masses are statistically independent
of positions, the shot noise term becomes ([3]; 509–510):

〈m2〉
〈m〉

2
N

. (24)

In the coarse multifractal analysis of a sample of N

particles, when the cell size is so small that no cell contains
more than one particle and therefore the sums over cells and
over particles coincide, the calculation of the momentM2 by
equation (9) obtains the shot noise term:

􏽐 m
2
i

􏽐 mi( 􏼁
2 �
〈m2〉

〈m〉
2
N

, (25)

where the index i of the sums runs over the set of particles. If
we start with a cell size such that no cell contains more than
one particle and let the size grow, then, at some point, some
cells contain more than one particle andM2 grows, because
the restricted sum over these cells is larger than the sum over
the particles in the cells [for a cell with two particles,
(m1 + m2)

2 >m2
1 + m2

2]. (erefore, the value given by (25) is
the minimum value of M2, and while M2 stays constant,
D2 � 0, according to equations (10) and (11). At some larger
scale, M2 is definitely growing, and there is a crossover to a
scaling with D2 > 0.

Peebles [3] says about the shot noise term that “in most
applications to be discussed here, this shot noise term is
subdominant and will be dropped” and advises that, where

the shot noise term is appreciable, it is to be subtracted. We
subtract the shot noise term (25) from M2(Ω) and see the
effect in Figure 4, to be compared with Figure 3. It is now
possible to extend the power-law range to Ω ∈ [1.3 · 10− 6,

8 · 10− 2], with exponent (c − 1)/2 � 0.415 ± 0.007 (a long
scaling range and a small error). (is exponent gives
c � 1.83, which agrees with the values found in Section 3. It
also agrees with the results of Li andWhite [16] and ofWang
et al. [31] (the latter for galaxy positions). (eir procedure
for calculating the correlation function automatically sup-
presses the shot noise.

6.2. Finding the Scale r0. (e scale r0 can be found from the
projected distribution by first finding the angular scale of
homogeneity Ω0 in equation (23). According to equation
(23), Ω0 is the solution of the equation μ2(Ω0) − 1 � 1. (e
scale of homogeneity of the three-dimensional distribution
is found by expressing the mass variance μ2(Ω) − 1 as the
average of w(θ), which is in turn given by equation (22). (e
equation that relates Ω0, r0/d∗, K, and c follows from
equations (22) and (23) and is written as

Ω(c− 1)/2
0 � Ω(c− 1)/2

􏽚
dΩ1dΩ2
Ω2

w θ12( 􏼁

� K
r0

d∗
􏼠 􏼡

c

kc 􏽚
dΩ1dΩ2
Ω2

θ12
Ω1/2

􏼠 􏼡

1− c

,

(26)

where kc is the integral in equation (22), and the integral
over Ω1 and Ω2 extends over a cell.

Given c, the evaluation of kc and the integral overΩ1 and
Ω2 are straightforward numerical computations (for this
integral, we take into account the small size of the relevant
cells to ignore the spherical geometry and carry out the
computation in the plane). To calculate the constant K,
which is an integral that contains the luminosity function,
we can use the Schechter model [3]. (is model has two
parameters, namely, the characteristic galaxy luminosity L∗
and the slope α, but K only depends on the latter. We take
α ∈ (− 1.2, − 0.8), according to Zandivarez and Mart́ınez [41]
and references therein.

10–5 0.001
Ω

0.1

0.01

0.1

1

μ 2
 –

 1

Figure 3: Scale-dependent variance of the projected stellar mass,
with a power-law fit giving c � 1.97.
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To solve for r0/d∗ we have to fix c and Ω0. Taking the
value of c found in Section 6.1, we obtain that Ω0 � 9.53 ·

10− 7 steradians. With c � 1.83, we compute that kc � 3.58
and that the integral over and Ω2 is 2.33, while
K ∈ (0.89, 1.17) (the uncertainties in kc and the integral are
negligible, in comparison). Employing equation (26) (and
neglecting the uncertainty in Ω0), we obtain

r0

d∗
� 0.0134 ± 0.0010, (27)

where the uncertainty is small enough to assume that it is
normally distributed.

To estimate the characteristic sample depth d∗, which is
proportional to the square root of L∗, we take M∗, the
absolute magnitude corresponding to L∗, to be

M∗ − 5log10h � − 20.6 ± 0.2. (28)

(is value is based on the analysis of Zandivarez and
Mart́ınez [41] and is in the interval of magnitudes of the most
representative galaxies by mass density (Table 1). We obtain

d∗ � 10pc × 100.2 17.77+20.6±0.2− 5log10h( )

� (470 ± 40)Mpc/h,
(29)

where the uncertainty is again small enough to assume that it
is normally distributed. Hence,

r0 � (6.3 ± 0.7)Mpc/h. (30)

(is is the clustering length of equation (1), in contrast
with the (luminosity-dependent) homogeneity scale v1/30 of
Section 3, which is tailored to the sample geometry and
coarse-graining method. (e value of r0 agrees with the
value of Li and White [16].

7. Summary and Discussion

(e standard scaling law of galaxy clustering is the power-
law correlation function of galaxy positions, with canonical
exponent c � 1.8 and clustering length r0≃5 h

− 1 Mpc, which
dates back over 50 years, since the early analyses of the

galaxy-galaxy angular correlation function w(θ). We have
shown that there are two important ingredients that are
missing in most analyses of the galaxy distribution, namely,
galaxy masses and relevant statistics other than the variance.
Indeed, more important than the distribution of galaxy
positions is the distribution of stellar mass, which is a proxy
for the distribution of baryonic matter. Besides, statistics
appropriate to describe strong galaxy clustering are the
fractional moments, seldom employed. We have shown that
a complete study of scaling laws of the distribution of stellar
mass reveals novelties that are worth considering.

Our study is based on the theory of multifractal ge-
ometry. (is theory assumes scaling laws for the growth of
mass fluctuations on small scales, which define dimensions.
(e correlation dimension D2, which is only one of many
dimensions Dq, derives from the scaling of the second-order
statistical moment of the mass probability function. (is
moment also yields the scale of homogeneity. It is usually
defined as the clustering length r0, but a coarse-graining
analysis obtains a volume v0 (which depends somewhat on
the method). In Section 2, we have seen that v1/30 ≃ r0 but
that the mass fluctuations at the scale v0 are still consid-
erable. A state of quasi-homogeneity is reached only for
length scales that are almost an order of magnitude larger.

Conversely, the strong clustering regime, where fractal
geometry applies, takes place for length scales that are almost
an order of magnitude smaller, close to 1 Mpc. Unfortu-
nately, there is not even one galaxy, on average, in a volume
of such diameter; especially, if the volume is extracted from a
volume-limited sample of galaxies. (is leads to strong
discreteness effects, which appear as errors in the calculation
of D2 and v0. We have indeed shown that a strict definition
of fractal scaling leads to considerable errors, namely, rel-
ative errors of 20% in D2 and of 30% in v1/30 .

Nevertheless, a definition of scaling that encompasses
the quasi-homogeneous regime leads to more precise results.
(e cell mass variance decreases in this regime yet the
scaling continues, allowing us to calculate a precise scaling
exponent c. Although c is somewhat dependent on the
volume-limited sample that we consider, its growth with
luminosity is expected in a multifractal stellar mass distri-
bution. Indeed, galaxy luminosity and stellar mass are
strongly correlated and the stellar mass of a galaxy is cor-
related with the local dimension of the stellar mass distri-
bution at its position. However, most stellar mass is
concentrated in a restricted range of dimensions, namely,
D2 � 1.2–1.3 (c � 1.7 − 1.8), which is representative of the
full stellar mass distribution. (e homogeneity scale v1/30 also
grows with luminosity, being about 15 h− 1 Mpc for the set of
galaxies that concentrates most of the mass.

It is to be remarked that the concentration of stellar mass
in a range of galaxy luminosities that contains a small
fraction of the galaxy number density makes the analysis of
the stellar mass distribution a subject in its own right, quite
different from the usual analysis of the galaxy number
distribution. Nevertheless, the values of c and r0 from both
analyses are compatible (we recall our calculation of r0
below). In this regard, we agree with the results of Li and
White [16].
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Figure 4: Values of μ2(Ω) − 1 after shot noise suppression, for the
distributions of stellar mass, with linear fit (dashed line). It gives
c � 1.83.
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(e mass variance is not a sufficient statistic in the
fractal regime and must be complemented with fractional
moments μq, for q ∈ R, especially, q≳ 1. (e study of
fractional moments confirms the multifractal nature of
the stellar mass distribution but shows no way to redefine
q-moments (with q≠ 2) that extends the multifractal
scaling to the quasi-homogeneous regime. In this regime,
fractional moments simply adopt the values that corre-
spond to a Gaussian distribution, as shown using the
lognormal model, which interpolates between strong
clustering and homogeneity. (e long scaling range of the
mass variance, which goes across the transition to ho-
mogeneity into the quasi-homogeneous regime, is surely a
consequence of its origin in the linear evolution of
Gaussian initial conditions.

Even the comparatively long scaling range of the mass
variance is limited to less than two orders ofmagnitude in length
(v1/3), as obtained from our volume-limited samples. (is
limitation is due to discreteness errors. In an attempt to reduce
the discreteness errors, we study the angular distribution of the
full flux-limited sample, which avails the 529967 galaxies in our
angular rectangle. However, in the calculation of μ2(Ω) − 1,
many pairs of galaxies in a given angular region correspond to
galaxies at very large distances, which are uncorrelated. So to
speak, we enhance both the signal and the noise. After sup-
pressing the shot noise, the range of scaling of the angular stellar
mass distribution grows to Ω ∈ [2.5 · 10− 6, 1.6 · 10− 1] sr, with
exponent c � 1.83. (is range of Ω, almost five orders of
magnitude, is equivalent to a linear range of half of that, namely,
two and half orders of magnitude.

From the angular scale of transition to homogeneity Ω0, it
is possible to calculate r0 by expressing Ω0 in terms of r0 and
several calculable magnitudes. In particular, this calculation
involves the characteristic parameters of the galaxy luminosity
function, which are somewhat uncertain. We obtain a rea-
sonable value of r0, in the range 5.8 − 7.0 h− 1 Mpc.

To recapitulate and conclude, we have carried out a
multifractal analysis of the stellar mass distribution, com-
bining a set of volume-limited samples with the angular
distribution. (e methods developed here constitute an
appealing alternative to other methods, such as methods that
only use the galaxy positions or the two-point correlation
function. Given that the important cosmological parameter
σ8 is theoretically defined in terms of the fluctuations of the
full mass distribution, our methods can be relevant in the
calculation of precision values of σ8.
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