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A shooting method has been introduced for determining the numerical solution of the ordinary differential equations which
describe the Newtonian magnetohydrodynamic laminar fluid flow due to an unsteady stretching sheet together with the presence
of thermal radiation and variable heat flux. *e variable viscosity and variable conductivity are taken into consideration. Absence
of magnetic field in some studies restricts the development of the energy-efficient heat transfer mechanism as is desired in
numerous applications. *e present study encompasses parameters such as unsteadiness parameter, porous parameter, viscosity
parameter, magnetic number, radiation parameter, and conductivity parameter. It has been consummated that the proposed
model is superior to other existing models for the industrial fluid.

1. Introduction

Fluid flow and heat transfer mechanisms with the magne-
tohydrodynamic considerations play an important role in
many astrophysical processes, space physics, and engi-
neering [1, 2]. As a result, there has been considerable in-
terest in bringing accurate and reliable numerical methods
concerning such heat and mass transfer phenomena. In this
regard, several numerical methods were developed during
the last five decades to solve these types of flow problems
[3–5]. In industrial and engineering applications and in
many branches of manufacturing operations and technology
such as paper production, polymer processes, reactor flu-
idization, annealing and tinning of copper wires, and metal
spinning [6–9], improvement of the thermal performance of
the mechanism of heat transfer devices is often desired. One
way of enhancing the performance of heat mechanism is to

investigate some of the underlying important physical
processes, which actually affect the heat transfer surface
[10, 11]. A generalization for the fluid flow models regarding
the unsteady flow can be found in [12–17]. Another im-
portant phenomenon that can actually affect the heat process
mechanism is the heat flux. A number of studies [18–20]
have therefore been introduced on these topics and it has
been shown that the fluid flow together with the heat flux is
very important in some of the manufacturing processes. Liu
et al. [21] were the pioneers in innovating the variable heat
flux model which coincides with the unsteady flow models
under various conditions. However, our knowledge of the
precise nature of heat transfer mechanism is still incomplete.

One of the objectives of the current study is to introduce
an elaboration, as complete as possible, of the variable fluid
properties on the laminar MHD Newtonian fluid flow and
heat transfer past an unsteady stretching sheet which is
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embedded in a porous medium, and especially in the
presence of variable heat flux.

2. Mathematical Formulation

*e basic idea of this section is to introduce an adequate
description, as complete as possible, for all equations that
administer the flow of laminar boundary layer fluid for an
incompressible two-dimensional viscous flow and heat
transfer due to an unsteady stretching sheet.

*e fine study is easier to describe even with the physical
properties that can be taken into account, such as the surface
velocity Uw(x, t), the fluid viscosity μ, and the fluid thermal
conductivity κ, since they are assumed to be universal. *is
model involves the variable heat flux q(x, t), which is
previously introduced in detail by Liu et al. [21], and is given
as follows:

q(x, t) � − κ
zT

zy
� T0

dx
r

(1 − at)
m+(1/2)

, (1)

where T0 is a reference temperature, a is a positive constant,
d is a constant, and r and m are space and time indices,
respectively. Further, the applied transverse magnetic field
can be introduced as follows [22]:

B � B0(1 − at)
(− 1/2)

, (2)

where B0 is a constant. *is special form for the applied
transverse magnetic field will allow the existence of the
dimensionless magnetic field parameter governing the flow
velocity inside the boundary layer. Herein, we must mention
that the MHD phenomenon is crucial owing to the wide
applicability of the present consideration to other fields such
as the medical science. It is a well-known fact that the human
blood flow rate can be reduced by exerting an external
magnetic field. So, the magnetic field can be used to regulate
blood flow, in particular, during surgery [22]. Furthermore,
we must refer that the choice for this form has also been
studied by Mahmoud and Megahed [23] and Prasad et al.
[24].

According to Liu et al. [21], the governing equations that
describe the physical situation are expressed as follows:
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where u and v are the velocity components along the x and y

directions, respectively. t is the time, ρ∞ is the fluid density
away from the sheet, σ is the electrical conductivity, k is the
permeability of the porous medium, T is the temperature of
the fluid, cp is the specific heat at constant pressure, and qr

indicates the radiative heat flux which is expressed in terms
of T as introduced previously by Prasad et al. [24] as follows:

qr � −
4σ∗

3k
∗

zT
4

zy
, (6)

where σ∗ is the Stefan–Boltzmann constant and k∗ is the
Rosseland mean absorption coefficient. It should be noted
that, by using the Rosseland approximation, the present
analysis is limited to optically thick fluids. If the temperature
differences within the flow are sufficiently small, then
equation (5) can be linearized by expanding T4 into the
Taylor series about T, and neglecting higher-order terms, we
get

T
4 ≈ 4T

3
∞T − 3T

4
∞. (7)

Equations (3)–(5) are subject to the following boundary
conditions:

u � Uw,

v � 0,

− κ
zT

zy
� q(x, t) aty � 0,

u⟶ 0, T⟶ T∞ asy⟶∞,

(8)

where T∞ is the fluid temperature at the ambient and Uw is
the surface velocity which can be defined as

Uw �
bx

1 − at
. (9)

To preserve the dimension for the velocity U, we observe
that both the positive constants a and b have dimension t− 1.

*e governing equations (3)–(5) can be rewritten in the
form by using the following variables:

η �
b
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1/2

(1 − at)
(− 1/2)
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(10)

θ(η) �
T − T∞

q(x, t)/κ∞)
�����
]∞/b

􏽰
(1 − at)

(1/2)
,􏼐

(11)

where ψ(x, y) is a stream function in which u � zψ/zy and
v � − (zψ/zx). Also, ]∞ is the kinematic viscosity at the
ambient, θ(η) is the dimensionless temperature, and f(η) is
the dimensionless stream function.

In addition, the fluid viscosity μ and the fluid thermal
conductivity κ are considered to vary as a function of
temperature as follows [23, 25]:

μ
μ∞

� e
− αθ

,

κ
κ∞

� (1 + ϵθ),

(12)

where μ∞ is the viscosity at the ambient, α is the dimen-
sionless viscosity parameter with α> 0 for liquid and α< 0

2 Advances in Astronomy



for gases, κ∞ is the thermal conductivity away from the
surface, and ϵ is the thermal conductivity parameter.

Using equations (10) and (11), the continuity equation
(3) is satisfied automatically, but equations (4) and (5) are

then reduced to the system of highly nonlinear coupled
ordinary differential equations given as follows:

e
− αθ

f
‴

− αθ′f″􏼒 􏼓 + ff″ − f′
2

− S
η
2
f″ + f′􏼒 􏼓 − Mf′ − ce

− αθ
f′ � 0, (13)

1
Pr

(1 + R + εθ)θ″ + εθ′2􏽨 􏽩 + fθ′ − rf′θ − S
η
2
θ′ + mθ􏼒 􏼓 � 0. (14)

Also, the transformed boundary conditions become

f(0) � 0,

f′(0) � 1,

θ′(0) �
− 1

1 + R + ϵθ(0)
,

(15)

f′ ⟶ 0,

θ⟶ 0 as η⟶∞.
(16)

*e last part of equation (15) is due to the heat flux that
basically depends on R and ε in which they serves as the
radiation parameter and the conductivity parameter, re-
spectively. Here, M � σB2

0/bρ∞ is the magnetic number, S �

a/b is the unsteadiness parameter, c � μ∞(1 − at)/ρ∞kb is
the local Darcy number, R � 16σ∗T3

∞/3κ∞k∗ is the radiation
parameter, and Pr � μ∞cp/κ∞ is the Prandtl number.
Herein, it is worth mentioning that both the velocity field
and temperature field are coupled to each other as we can
observe from equations (13) and (14). On the other hand, it is
noted that, for steady problem (S � 0), in the absence of
thermal radiation (R � 0), magnetic field, and porous pa-
rameter (M � c � 0) and the viscosity not a function of
temperature (α � 0), the velocity field was solved analytically
by Crane [26] with f � 1 − e− η.

*e most important characteristics of fluid flow which
can be appeared in the part of resistance force or the fric-
tional drag between the stretching sheet and the moving
fluid are the nondimensional local skin-friction (Cfx) or the
frictional drag coefficient which is defined by [21]

Cfx �
2τw

ρU
2
w

, (17)

where τw � − [μ(zu/zy)]y�0.
Additionally, cooling process is one of the most im-

portant engineering applications ranging from the cooling of
the food products to hot processing of solid metals.
Mathematically, the factor which can measure this impor-
tant process is the local Nusselt number (Nux) defined as
follows [21]:

Nux �
xq(x, t)

κ∞ Tw − T∞( 􏼁
, (18)

where Tw � T∞ + T0(dxr/κ∞
������
(b/]∞)

􏽰
)(1 − at)− mθ(0).

Using the nondimensional equations (10) and (11), the
local skin-friction coefficient and local Nusselt number can
be written as

Cfx

Re(1/2)
x

2
� − e

− αθ(0)
f″(0),

NuxRe
(− 1/2)
x �

1
θ(0)

,

(19)

where Rex � Uwx/]∞ is the local Reynolds number. It is
obvious from the above equation (17) that the local Nusselt
number Nux is reciprocal to θ(0). On the other hand, from
the same equation, it is clear that the local skin-friction
coefficient is proportional to f′′(0) and it also depends on
the surface temperature θ(0) and the viscosity parameter α.

3. Numerical Solution

*e common techniques for solving boundary value
problems are linear and nonlinear shooting methods
[27–29]. *erefore, in this section, we are primarily inter-
ested in shooting techniques. Shooting method has been
employed to solve the Newtonian fluid flow model defined
by equations (13) and (14) with boundary conditions (15)
and (16). For the numerical integration, we use the fourth-
order Runge–Kutta method. To proceed, we define the
following:

y1 � f,

y2 � y1′,

y3 � y2′,

y4 � θ,

y5 � y4′.

(20)

Equations (13) and (14) are then reduced to a system of
first-order ordinary differential equations, i.e.,
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y1′ � y2,

y1(0) � 0

y2′ � y3,

y2(0) � 1

y3′ � αy5y3 + e
αy4 y

2
2 − y1y3 + S

η
2
y3 + y2􏼒 􏼓 + My2􏼒 􏼓 + cy2, y3(0) � ε1,

y4′ � y5,

y5(0) �
− 1

1 + R + ϵy4(0)
,

y5′ �
1

1 + R + ϵy4
Pr ry2y4 − y1y5 + S

η
2
y5 + my4􏼒 􏼓􏼒 􏼓 − ϵy2

5􏼒 􏼓, y5(0) � ε2,

(21)

where ε1 and ε2 are determined such that the outer boundary
conditions y2(∞) and y4(∞) are satisfied. *e shooting
method is used to guess ε1 and ε2 by iteration until the outer
boundary conditions are satisfied. *e resulting differential
equations can be integrated by fourth-order Runge–Kutta
integration scheme. *e above procedure is repeated until
we get the results up to the desired degree of accuracy, 10− 5.

4. Validation of the Proposed Method

To assess the validity and accuracy of the present numerical
scheme, some wall temperature values θ(0) for some values
of thermal conductivity parameter and Prandtl number have
been compared to those of the earlier steady-state problems
of Prasad et al. [30] and the results of comparison are given
in Table 1. Clearly our results are in excellent agreement with
those of Prasad et al. [30].

5. Results and Discussion

*ere is potentially a wide parameter domain to scout, but
we observe that the computations for larger values of
governing parameters are particularly complicated because
of inability of numerical convergence. Consequently, in this
section, we present results for a very finite domain of
physical parameters, chosen to explain the main trends.
Influence of magnetic parameter, unsteadiness parameter,
radiation parameter, viscosity parameter, Darcy number,
Prandtl number, and variable thermal conductivity is dis-
cussed in this section. *e flow parameter values are α �

ϵ � r � m � 0.4, R � 1.0, S � 0.5, M � 0.5, Pr � 0.71 as input
to acquire the results for complete production. *e results
are enumerated with Figures 1–10. Figures 2(a) and 2(b)
show the deviations of magnetic parameter on velocity and
temperature profiles. From these figures, it is clear that the
temperature profile rises for boost up values of M.
Figure 2(a) shows that velocity decelerates with inflation in
magnetic parameter. In general, the increment in Hartmann
number generates the Lorentz force known as resistive force.

*e influence of different values of R on thermal and
velocity profiles is shown in Figures 3(a) and 3(b). It shows
that the thermal boundary layer thickness and temperature
distribution are improved for increasing values of R. Higher
values of R afford more temperature to the fluid flow which
generates an increment in temperature and thermal
boundary layer thickness and the opposite effect is seen in
Figure 3(b).

*e velocity and temperature profiles for various values
of the parameter c are shown in Figures 4(a) and 4(b),
respectively. A large value of c parameter corresponds to a
low velocity distribution and high temperature distribution
as illustrated from both figures.

*e numerical results given in Figures 5(a) and 5(b)
show that the velocity distribution diminishes with en-
hancement of α, while the sheet temperature θ(0) and the
dimensionless temperature increases with increase in the
viscosity parameter α.

Figures 6(a) and 6(b) depict the velocity profile f′(η)

and the temperature profile θ(η) for varying the unsteadi-
ness parameter S. It is interesting to note that the tem-
perature presents a maximum distribution at small
unsteadiness parameter S via the imposed thermal boundary
condition. *e velocity profiles show a similar trend.

*e influence of different values of thermal conductivity
parameter ϵ on both velocity and temperature profiles is
shown in Figures 7(a) and 7(b). It is revealed from
Figure 7(a) that the velocity f′(η) enhanced when we es-
calate the values of ϵ. Also, from Figure 7(b), it can be
deduced that a high conductivity parameter ϵ causes a
considerable increase of the temperature beside the sheet.

To get a clear view of the flow field, the stream line
patterns are plotted in Figures 8–10 with different values of
magnetic parameter M, unsteady parameter S, and Darcy
number. Figures 8(a) and 8(b) show the effect of M on
stream line pattern. Overstock of stream lines is observed as
M diminished. Figures 9(a) and 9(b) exhibit the impact of S
on stream line pattern. Clearly, a retardation in the flow
pattern is observed as S enhanced. Figures 10(a) and 10(b)
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Table 1: Comparison of wall temperature θ(0) values when α � M � c � S � 0, r � 1 with Prasad et al. [30] (Newtonian case (n � 1), β � 0,
and ϵ � 0.0, 0.1).

ϵ Pr Prasad et al. [30] Present work
0.0 0.7 1.2470 1.2490
0.0 1.0 0.9986 0.9991
0.0 2.0 0.6575 0.6576
0.0 5.0 0.3922 0.3922
0.1 0.7 1.3714 1.3712
0.1 1.0 1.0758 1.0757
0.1 2.0 0.6894 0.6891
0.1 5.0 0.4032 0.4032
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Figure 1: Physical model and coordinate system.
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Figure 3: (a) Velocity distribution for R. (b) Temperature distribution for R.
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show the effect of c on the stream line pattern. *e same
behavior of the stream line pattern for altering the parameter
is similar to the magnetic parameter M.

Table 2 is presented to elucidate the behavior of the local
skin-friction coefficient Cfx(Re(1/2)

x /2) and the local Nusselt

number NuxRe(− 1/2)
x with changes in thermal conductivity

parameter ϵ, viscosity parameter α, unsteadiness parameter
S, radiation parameter R, and the magnetic number M. We
can then see from Table 2 that the local skin-friction co-
efficient increases with the increase of unsteadiness
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Figure 4: (a) Velocity distribution for c. (b) Temperature distribution for c.
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Figure 5: (a) Velocity distribution for α. (b) Temperature distribution for α.
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Figure 6: (a) Velocity distribution for S. (b) Temperature distribution for S.
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Figure 9: Stream lines for S� 0.0. (b) Stream lines for S� 1.0.
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parameter, radiation parameter, Darcy number, magnetic
number, and thermal conductivity parameter, while the local
Nusselt number increases with the increase of the un-
steadiness parameter, the thermal conductivity parameter,
and radiation parameter. Also, the local Nusselt number
decreases with increase in the viscosity parameter, Darcy
number, and the magnetic parameter.

6. Conclusions

Numerical solutions have been obtained to study the effects
of variable properties and variable heat flux in a laminar flow
of an incompressible fluid past an unsteady stretching

surface which embedded in a porous medium. *e obtained
similar ordinary differential equations are solved numeri-
cally by using shooting method. All values of parameters
corresponding to predominate the shear stress for fluid flow
and heat transfer are tabulated for different physical pa-
rameters. *e obtained highly nonlinear ordinary differ-
ential equations which describe our physical problem were
solved numerically by using the shooting method. We have
found that the local Nusselt number is strongly dependent
on the values of the unsteadiness parameter, radiation pa-
rameter, and thermal conductivity parameter and dependent
to a lesser extent on the values of the magnetic parameter,
Darcy number, and viscosity parameter. Also, as the vis-
cosity parameter and the magnetic parameter increase, the
rate of heat transfer was found to be decreased. Furthermore,
the rate of cooling for the surface was found to be increased
as the thermal conductivity parameter, unsteadiness pa-
rameter, and radiation parameter increase.
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