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With the rapid growth in astronomical spectra produced by large sky survey telescopes, traditional manual classification processes
can no longer fulfill the requirements of precision and efficiency of spectral classification. +ere is an urgent need to employ
machine learning approaches to conduct automated spectral classification tasks. Feature extraction is a critical step which has a
great impact on any classification result. In this paper, a novel gradient-based method together with principal component analysis
is proposed for the extraction of partial features of stellar spectra, that is, a feature vector indicating obvious local changes in data,
which corresponds to the element line positions in the spectra. Furthermore, a general feature vector is utilized as an additional
characteristic centering on the overall tendency of spectra, which can indicate stellar effective temperature.+e two feature vectors
and raw data are input into three neural networks, respectively, for training and each network votes for a predicted category of
spectra. By selecting the class having the maximum votes, different types of spectra can be classified with high accuracy. +e
experimental results prove that a better performance can be achieved using the partial and general methods in this paper. +e
method could also be applied to other similar one-dimensional spectra, and the concepts proposed could ultimately expand the
scope of machine learning application in astronomical spectral processing.

1. Introduction

Stellar spectrum analysis is an important precondition for
astrophysicist and astronomers to have a better under-
standing of the physical and chemical properties of stars.
Stellar spectra classification is based on the MK standard and
plays an important role in spectra analysis. +e traditional
method to address the spectral classification of stars is to
combine photometric and spectroscopic data of stars. +is
task is very difficult for O/B stars, generally embedded in the
gas of HII regions. Nolan and Edward [1] presented the Atlas
for morphological investigations of OB spectra based on
digital data which can help distinguish O/B stars. Lennon [2]
developed the criteria for B-type supergiants contained in the
Small Magellanic Cloud (SMC) and Evans and Howarth [3]
addressed the relationship between spectral type and physical
properties for A-type supergiants in the SMC. Bresolin et al.
[4] presented the first spectral catalog of supergiant stars in
the Local Group dwarf irregular galaxy WLM.

Feature extraction is still regarded as a difficult and vital
issue at the beginning of machine learning task processing.

One spectrum from the Sloan Digital Sky Survey (SDSS
[5, 6]) or the Large Sky Area Multiobject Fiber Spectroscopic
Telescope (LAMOST) [7, 8]) can be viewed as a data item
where every single feature represents the flux of each optical
wavelength, usually ranging from about 3,800 to 9,000 Å.
+erefore, there are over 5,000 features to be processed in
each spectrum. When using traditional machine learning
classifiers, such a mass of features will produce a large
amount of calculations. +us, feature extraction or selection
process is of great necessity to save computational time.

+ere are several generally used feature extraction al-
gorithms, such as principal component analysis (PCA) [9]
and Linear Discriminant Analysis (LDA) [10], which per-
form well in dimensionality reduction. +ese algorithms can
be directly used for most types of data processing. However,
due to their generality, the results still have room for im-
provement when the reduced data is classified subsequently.
+erefore, taking the present application into account, it is
indispensable to work out certain algorithms that could
exclusively be applied to the feature extraction of spectral
data.
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+e main idea of this paper is to use SDSS stellar spectra
as experimental data and extract spectral features from two
perspectives, which corresponds to two different properties
of spectra, namely, stellar effective temperature and ele-
ments. +e purpose of this paper is to verify whether this
method has the practical application value and can be
implemented into the pipeline. +e paper proceeds as
follows:

(1) In Section 2, a brief introduction about the desig-
nation of our algorithms and the rationality of some
methods used in this paper is given. Particularly, we
introduce three extracted feature vectors applied for
the training of three neural networks.

(2) Section 3 illustrates the implementation of three
feature extracting methods and three neural net-
works. +en, we draw lessons from ensemble
learning to design ways of training of three neural
networks simultaneously.

(3) We utilize frameworks like TensorFlow and Scikit-
learn to train three networks and show the experi-
mental results in Section 4. For demonstration
purposes, this section only carries out binary clas-
sification tasks. To prove that the feature extraction
methodsmentioned are insensitive to signal-to-noise
ratio (SNR), this section also shows experiments on
different SNR spectra.

(4) Section 5 proposes some improvements for
extending the function of the algorithm mentioned
in this paper, for example, the method to complete
multiple classifications.

(5) Finally, wemake a brief summary of the core concept
and achievements in this paper and propose some
future works that could be adopted for astronomy.

2. Features’ Extraction from
Different Perspectives

+ere are various feature extraction or selection methods
used with machine learning which have definitive advan-
tages. For example, convolutional neural network (CNN)
[11] is an artificial neural network that has specialization for
being able to detect patterns and make sense of them. CNN
has multiple layers, including convolutional layer, nonlin-
earity layer, pooling layer, and fully connected layer. Con-
volutional layers apply a convolution operation to the input,
passing the result to the next layer. A convolution converts
all the pixels in its receptive field into a single value. For
example, if a convolution is applied to an image, it will
decrease the image size and bring all the information in the
field together into a single pixel.+e final output of the CNN
is a vector and can be seen as the result of feature extraction.
PCA [12] is used in exploratory data analysis and for making
predictive models. It is normally used for dimensionality
reduction by projecting each data point onto the first few
principal components to obtain lower-dimensional data
while preserving as much of the data’s variation as possible.
+erefore, it is beneficial to adopt a method which combines

multiple extraction features together to fully utilize existing
feature extraction algorithms. Rivard et al. [13] have pro-
posed that, by employing preexisting techniques to extract
features at different scales, the diversity of information
obtained could be improved and the personal variability in
signature verification might be mitigated. With regard to
one-dimensional celestial spectra, in general, it can be
roughly divided into partial and general features from two
perspectives, which usually correspond to physical prop-
erties of spectra.

2.1. Partial Feature Vector. To improve classification accu-
racy, the feature extraction process should focus more on
local spectral features, such as emission lines and absorption
lines. Absorption lines generally observed in stellar spectra
are Balmer series. In the field of deep learning for image
recognition, the designation of the CNN proposed weight
sharing [14] based on the local connectivity of images, to
reduce the number of parameters in the network and also to
improve calculation speed. +e reason for weight sharing is
that one image can include a large amount of features.
However, it should be noted that, compared to image data,
celestial spectra have sparser features and therefore they
could be analysed without any complicated calculation.

To prove the property of feature sparsity, that is, the
overall features can be expressed by just a few features, we
have designed an experiment based on PCA. +e variance
contribution rate in PCA is used to describe the ability to
express high-dimensional data with data having few features.
According to the theory of PCA, Z � XU is valid for di-
mension reduction. Suppose X is the data set before di-
mensionality reduction, Z is the data after reduction, and U
is the principal component feature matrix. On the contrary,
the process of data recovery requires only the execution of
Xrec� ZUT, where Xrec represents the data recovered
through the inverse process of PCA. +e variance contri-
bution rate in PCA, also known as the data recovery rate, is
shown as

􏽐
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(i)
− x

(i)2
rec

􏽐
m
i�1 ‖x(i)‖

, (1)

where x(i) represents each data in X and x(i)
rec is each data in

Xrec. In formula (1), the numerator part stands for the square
of average projection error, and the denominator part in-
dicates the average distance from the training sample to the
origin. In other words, it shows how much the original data
can be preserved after dimensionality reduction. Figure 1
shows the respective variance contribution rates of the first
five principal components when PCA is applied to SDSS
spectra. It can be seen from the figure that the variance
contribution rate of the first principal component is 96.59%,
and the variance contribution rate of the second principal
component is 3.07%. +e total variance contribution rate of
the first five principal components has reached 99.85%,
indicating that PCA can theoretically be used to reduce the
A-type stellar spectra to a vector with only five features while
retaining most of the information.
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As can be seen in Figure 1, the recovery rate achieves
96.59% even when the overall features are reduced to just one,
which demonstrates that A-type spectral features are suitable
to be expressed sparsely. Other types of spectra are similar to
class A, although there exist some numerical differences. In
general, all spectral features are sparse. In the field of com-
puter vision, the Histogram of Oriented Gradient (HOG)
feature [15] is the type of feature extracting method used to
gain a small number of local features from large images. Based
on this method, we propose a gradient-based algorithm to
extract the edge or partial features of spectra and Vpar is a
feature vector extracted by this algorithm. Vpar is used for
training one of the three neural networks.

2.2. General FeatureVector. In addition to local features, the
overall characteristics of spectral data should also be taken
into consideration. General characteristics of spectral data
refer to the changing shape or trend of spectrum flux as the
wavelength increases, which depends on the physical nature
of spectra.

It only focuses on the trend of one specific spectrum,
regardless of the absorption lines in a small wavelength range.
To obtain the general feature vector, spectra should be
smoothed to eliminate the effect of partial features, the size of
spectral data should also be decreased into a small feature
vector, and Vgen is the feature vector that only simultaneously
represents the general features. Contrary to the partial feature
vector, the general features’ extraction process focuses on
eliminating the edge features instead of maintaining them.

2.3. Learning Strategy. An obvious difference between ma-
chine learning and deep learning is that deep learning does
not need to complete the feature extraction process; instead,

it applies deep neural networks to achieve the features au-
tomatically. In our model, we also take the convolutional
neural network into consideration. After achieving a partial
and general feature vector, we also defined Vraw, it is the raw
spectral feature vector that having 3,522 features. To syn-
thesize the effect of these three vectors, three neural net-
works are trained, respectively. +is idea comes from
ensemble learning [16], that is, training different classifiers to
obtain the most possible results through statistical princi-
ples. For convenience, these three networks are denoted as
Npar, Ngen, and Nraw. +ese networks adopt standardized
Vpar, Vgen, and Vraw as input separately and produce an
output denoting the predicted category of input data. In
order to display the experimental model intuitively, Figure 2
demonstrates the architecture of the whole process.

As shown in Figure 2, Vpar is used as the input of the
Npar network, Vgen is used as the input of the Ngen network,
Vraw is used as the input of the Nraw network, and finally, the
output of the three classifiers is used for voting. Although the
three methods show large differences, the processing is
essentially the same. All three methods firstly finish feature
extraction and then train a neural network.+is is consistent
with the flow of classic machine learning problems. +e
difference is that when using convolutional networks, it can
be considered that feature extraction is largely unnecessary.

After completing the training process of the three net-
works, test data is entered. Finally, categories having the
highest votes among the three network outputs are chosen as
the final decision. For example, assuming that classes only
contain 0 and 1, if the output of the three networks is 0, 0,
and 1, respectively, then the test spectrum classification
would be labelled 0. It should be noted that networks Npar
and Ngen are normal neural networks while Nraw is a
convolutional network.

3. Partial and General Method

3.1. Gradient-Based Algorithm. To extract partial features
and ignore the general trends of spectral data, gradient is an
ideal way, due to its representation of local changes of
spectra. In the field of computer vision, the HOG constructs
features by calculating and grading gradient direction his-
togram of the local region of image [17].+e essence of HOG
is the statistical information of the gradient, which mainly
exists at the edge of images. HOG firstly divides the image
into small connected areas, which are also called cell units. A
histogram of the gradient direction of each pixel in the cell
unit is then acquired. Finally, these histograms can then be
combined to form a feature descriptor.

However, the traditional HOG method cannot be di-
rectly applied for celestial spectra, mainly because of the
noise contained in spectral data which would cause flux
disturbance in any adjacent wavelength range; thus, the
derivation of each feature would be meaningless. +erefore,
before calculating derivatives, the data should be firstly
smoothed, which enables spectral data to be derived at each
feature point. +us, we use PCA mentioned above in this
paper to smooth each feature point of the spectrum so that
the derivative of the point is not affected by noise
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Figure 1: Take A-type stellar spectra as an example. +e respective
variance contribution rate of the first five of principal components
when PCA is used in 6,000 spectra from SDSS. +e value of the
brown point represents the total variance distribution rate and the
blue point represents the variance distribution rate of the specific
principal component.
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disturbance. +e specific approach is to firstly reduce the
number of the features from the data from 3,522 to 2 by
PCA, thereby decreasing unimportant components.+en we
aim to recover the data to the original 3,522 features using
reverse PCA. In this process, noise is almost eliminated and
most local or partial features are successfully preserved. For a
specific classifier, we will therefore achieve higher accuracy
for data reduced by PCA while the raw data is lower because
of data noise.

While different from continuous functions, spectral
data is discrete so that the gradient can be approximately
calculated by adjacent feature points. On the other hand,
both spectral data and image data are discrete data, and
the difference between them is that, for spectral data, it
only needs to calculate the gradient in one direction, while
the gradient in image data should have multiple direc-
tions. Above all, the gradient features’ map xder of the
spectrum can be obtained by applying the formula as
follows:

x
(i)
der

0, (i � 0),

x
(i)
der − x

(i− 1)
der

i − (i − 1)
, (i≠ 0).

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

After calculating the gradient, xder is also a vector having
3,522 features. However, it just preserves the partial features
of spectra such as emission lines and absorption lines and it
eliminates the effect of the general trend, that is, continuum.
At this point, we apply PCA again to reduce the gradient
vector xder to only 12 features maintaining a large variance
contribution rate; thus, the reduced 12 features could in-
clude almost all the partial features of spectral data. +e
vector consisting of these 12 features is the VPar mentioned
above, which will be the input of NPar.

In general, the process of extracting Vpar utilizes the
principal components of the spectral data gradient map
instead of the principal components of our original data.
Figure 3 summarizes the entire extraction process. +e
spectral segments in the box represent local features.

In the process, the raw data experiences both PCA and
inverse PCA processes to firstly reduce the noise in data and
then calculate the derivation of each feature point to obtain a
gradient map representing the partial features of raw data.
+e final step is to reduce the dimensionality by PCA again
to form a partial feature vector Vpar.

3.2. Pooling for General Features’ Extraction. Partial features
like emission and absorption lines represent the local fea-
tures of spectra. General features such as continuum of the
whole spectrum describe the overall trend of the data. Both
of them are crucial for improving classification accuracy and
should be taken into consideration for classification.

Figure 4 illustrates the general shapes of four classes of
stellar spectra.

As can be seen from the figure, when ignoring the
emission and absorption lines in the spectrum and just
focusing on the entire tendency, as the wavelength increases,
it could be found that the flux of the O-type spectrum
decreases while the K-type spectrum experiences a rising
phase followed by a gradual decrease. Furthermore, the flux
of the M-type spectrum shows an upward tendency in
general. However, it is difficult to classify K-type and F-type
spectra because when partial characteristics are discounted,
they show a strong similarity in general. +is situation
explains the reason for extracting various spectral features
for classification, that is, using one feature vector to com-
pensate for the defect of another feature vector, so that data
information can be obtained comprehensively.
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Vgen
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Figure 2: Experimental model architecture.
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Figure 4: O-type, K-type, M-type, and F-type spectra.
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We have now completed this method to extract partial
feature vector. For general features, we draw on the idea of
average pooling [17], that is, for the CNN to reduce the
resolution of data and reduce spectral data of 3,522 features to
only 7 features which are smooth enough to represent the
overall trend of spectra. Firstly, 22 random sample points are
eliminated for the convenience of calculation. For a partial
feature analysis, it is unreasonable to drop feature points
randomly. However, it has little impact on the general trend of
spectral data. Here, the pooling unit slides by a certain step
length until reaching the end. +is step is repeated four times
and finally, seven-feature data set can be gained. Figure 5
demonstrates the whole procedure and effect of generating the
general feature vector. It should be noted that both emission
lines and absorption lines together with noise in each spectrum
can be completely eliminated; thus, average pooling is used
instead of max pooling or other pooling models.

Convolutional neural network [18] is a feed-forward
network used for image classification and recognition. Al-
though images are two-dimensional data, while spectra are
data with one dimension, both of them have the property of
local continuity. Because of the similarity between these two
data sets, when just focusing on one dimension, meaning
that the convolutional kernels only slip horizontally in
spectral data, the network can also achieve high classification
accuracy by extracting convolutional features from original
data. +erefore, with the third network, the original data is
directly input without the process of feature extraction.

According to the interpretability and visualization theory
of the convolutional neural network [19], some partial features
can be recognized in shallow network layers and more
thorough characteristics can be extracted in a deep network
convolutional kernel. +is illustrates that the more the net-
work layers, the more complex the extracted features.
Moreover, it does not need complex network architecture
because it may achieve overfitting [20] and much noise in
spectra could be extracted. Finally, we decided to apply a
structure similar to LeNet-5 [21], where the version is used for
two-dimensional digits’ recognition. Figure 6 shows the dis-
tinctions between LeNet-5 and the network used in this paper.

4. Results and Discussion

A complete machine learning process is implemented after
the architecture of the three networks is designed. In this
experiment, the task flow includes data preprocessing,
feature extraction, model training and testing, model eval-
uation, and final optimization. Because of the process of
feature extracting, the amount of data has increased.
+erefore, the three feature vectors can be stored as three
separate files and be trained simultaneously by a multicore
processor or a graphic processing unit (GPU) to improve
training speed. It is a simple way for achieving parallelization
in this experiment.

4.1. Data Collection. +e experiment uses stellar spectra
from A-type to M-type to complete a binary classification
task. Each group has 5,000 spectra from the SDSS database

[22], respectively. +ese stars are in the Milky Way and have
already been applied to the reddening correction and sub-
traction of sky lines. SDSS data is stored in the form of Flexible
Image Transport System files (FITS). +ese files can contain
both images and binary data tables in a well-defined format.
Stellar spectral data is stored in a FITS file in a one-di-
mensional file format. +is experiment intercepted the 3,800
to 9,000 Å part of each spectrum and converted it into 3,522
feature points to form the experimental data set. SNR (signal-
to-noise ratio) is a primary indicator to test the quality of
spectra. +e SNR of “15” is an empirical value for qualified
spectra. We conducted a query in the database of SDSS with
the criterion of SNR over 15 and can achieve 5,000 spectra for
each group.+us, in the first phase of the experiment, in order
to achieve higher accuracy and guarantee the experimental
number, only spectra with an SNR over 15 are selected for the
experiment and low-quality spectra are eliminated to guar-
antee the reliability of the model.

4.2. Data Preprocessing. Flux of the same type of spectra will
be of great difference under the influence of various factors.
In other words, the same type of spectra has the same
pattern, but there is a gap in their order of magnitude.
+erefore, the spectra need to be normalized to a certain
scale. For example, in an image processing field, each pixel
value ranges from 0 to 255 while all pixels can be normalized
from 0 to 1. In this experiment, each spectrum is mapped
with an [0–1] interval through min-max normalization [23]
to ensure that all data has the same order of magnitude:

xnorm �
x − xmin

xmax − xmin
. (3)

x in this formula represents the flux of the single feature
in the stellar spectrum, xmin and xmax represent the mini-
mum and maximum flux in the stellar spectrum, respec-
tively, and xnorm is the normalized result. Besides, in
addition to raw data, we also obtain partial feature vectors
and general feature vectors by using the methods mentioned
above, and these newly generated data should also be
standardized in the same way.

4.3. Networks Designing and Training. +e complexity of
data for classification is usually relevant to the number of
network layers, which should be considered when designing
a network structure. In large-scale image recognition tasks,
some neural networks can even consist of hundreds of layers.
Nevertheless, after our experiment for spectral feature ex-
traction, Vpar and Vgen are small feature vectors, while a
network with three or four layers is sufficient for their
classification task. Deeper network structures can easily lead
to overfitting. As mentioned earlier, the 1D convolutional
network is similar to the LeNet-5. According to the above,
we designed three networks as shown in Tables 1–3, re-
spectively. “Net” indicates the name of the network, “Layer”
indicates a specific layer in the network, “Neuron” indicates
the number of neurons in this layer, and “Activation
function” indicates the activation function used in this layer,
while “Type” indicates the type of this layer.
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4.4. Splitting a Table into Multiple Horizontal Components.
We used TensorFlow to construct the network architecture
and apply the minibatch gradient descent method to train
them for 20 epochs, of which the whole data set is used for
training once. For the sake of consistency, a common loss
function cross-entropy is chosen. Moreover, in order to test
the accuracy, we divided the data set into a training set (75%)
and a testing set (25%).

4.5. Classification Results. +e loss functions of the three
networks have decreased to a small value after training and
their training times (epochs) also vary for different com-
plexities of the three networks. Simultaneously, the accuracy
of the final vote increases continually. Figure 7 illustrates the
training process of the three networks.

+e structure and input vector of the three networks are
different, and the loss function curve during the training
process is different too. It can be seen from Figure 7 that as
the training progresses, the loss values of the three networks
all decrease quickly during the first period of time, and the
accuracy of the model increases quickly simultaneously. +e
classification accuracy in the testing data reaches 99.86%

Input

Convolution-1
Pooling-1

Convolution-2
Pooling-2

Fully connected

Output

Figure 6:+e network architecture based on LeNet-5 with two convolutional layers, two pooling layers, and two fully connected layers in total.

(3500, ) (350, ) (35, ) (7, )

Figure 5: +e procedure of average pooling for extracting general features of spectral data.1D convolutional neural network for spectral
classification.

Table 1: Network details of NPar.

Net Layer Neuron Activation function
NPar 1 (12) ReLU
NPar 2 (8) ReLU
NPar 3 (4) ReLU
NPar 4 (2) Softmax

Table 2: Network details of Ngen.

Net Layer Neuron Activation function
Ngen 1 (7) ReLU
Ngen 2 (4) ReLU
Ngen 3 (2) Softmax

Table 3: Network details of Nraw.

Net Layer Neuron Activation function Type
Nraw 1 (705, 32) ReLU Convolution
Nraw 2 (88, 32) — Pooling
Nraw 3 (18, 64) ReLU Convolution
Nraw 4 (2, 64) — Pooling
Nraw 5 (64) ReLU Full-connect
Nraw 6 (2) Softmax Full-connect

Advances in Astronomy 7



overall. Besides, the results of the three individual networks
reach 98.92%, 98.60%, and 99.76%, respectively.

+e primary result indicates that the ensemble method
shows better performance than individual results. It can be
explained that the ensemble method considers features of
spectra more comprehensively than individual methods. In
order to prove that methods mentioned in this paper can be
widely applied in all types of spectral data, we used various
types of spectral data in the SDSS database to conduct ex-
periments for comparison and the results are shown in
Table 4. For proving that extracted features can replace raw
data with 3,522 features, a comparison with an individual
neural network is made in addition.

+e accuracy of each classification task exceeds 99.00%.
Even K and F class data can achieve an accuracy of 99.27%,
which means that although one feature extraction method is
unstable, the other two methods can make up for the
shortcomings of this method. It demonstrates that the
feature extraction methods and classifier designation are
robust enough to be directly used for stellar spectral
classification.

+e SNR is also an important factor for the classification
result. In the above experiment, data with an SNR larger than
15 are chosen. However, low SNR data are also plentiful. If
our methods can achieve a high accuracy rate for these data,
it would be of great significance.

Accordingly, we designed another experiment to com-
pare the classification accuracy on diverse data having a
different SNR range, which is illustrated in Figure 8.

It can be seen from the figure that as the SNR of the
stellar spectra increases, the accuracy of the binary classi-
fication of each group of stars does not rise steadily. Even in
the K-type and F-type binary classification experiments, the
spectra of stars with SNR less than 15 can get better clas-
sification accuracy than the spectra of stars with SNR greater
than 15. +is may be due to the fact that stars with a higher
SNR stellar spectrum in the data set are relatively small. +e
experimental results show the insensitivity for SNR of partial
and general feature extraction methods, indicating that the
SNR cannot influence the effect of the algorithms in this
paper to a large extent. Because spectra with a high SNR are
limited, which affects the training of neural networks, the
classification effect of higher SNR data is not as good as that
of the data having a lower SNR.+e robustness of our model
is proven again according to the results.

4.6. Improvements and Future Works. When class voting is
performed using the methods described above, only two-
class tasks can be completed because there are just three
classifiers, and if the number of classes increases, it would
produce contradictory classification results. When consid-
ering multiclassification tasks, it is certainly possible to use
the One-versus-One (OvO) or One-versus-Rest (OvR)
methods as is in traditional machine learning, but it is also
feasible to achieve multiclassification by increasing the
number of classifiers. In the simplest case, if there are N

target categories, we can set N + 1 classifiers for classifica-
tion and then select the category with the highest number of
votes. Furthermore, if we increase the number of networks to
several hundred such as those used for random forest, the
model’s generalization capability would increase
remarkably.

Another method is to set up multiple neural network
classifiers while giving each classifier a weight. For instance,
in this paper, it is workable to obtain the classification ac-
curacy when three networks are used for classification, re-
spectively. Assume that they obtained a classification
accuracy of 100%, 90%, or 80%, respectively, then give
higher weight to the network with higher classification
accuracy, for example, the weights of these three networks
are set as 0.371, 0.333, and 0.296, respectively. Specific weight
values could then be set according to the experimental
results.

Above all, the improved methods can be integrated as
shown in Figure 9. For any future improvement for mul-
ticlassification, the experiment set M feature extraction
methods and N classifiers (N>M) could be utilized. One
extracted feature vector could be adopted as inputs of
multiple classifiers while each classifier is assigned a weight,
which is calculated in the final ensemble process for voting.

In future work, we could attempt to search for the
spectra of special and rare stars such as carbon stars and
cataclysmic variables (CVs). Two of the feature vectors
proposed could also be improved. For example, the partial
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Figure 7: +e values of loss functions and accuracy vary with the
training process of three neural networks.

Table 4: Classification results of comparison.

Ensemble networks Individual network
Stellar type Accuracy (%) Stellar type Accuracy (%)
A&M 99.86 A&M 99.71
F&O 99.89 F&O 99.88
K&F 99.27 K&F 98.56
G&M 99.60 G&M 99.52
& equals and.
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feature vector can be modified to record locations of each
emission line and absorption line, instead of using PCA to
obtain the feature vector.

5. Conclusions

Stellar spectrum analysis is crucial for the in-depth study and
further development of astrophysics. +ere is a great need for
automatic classification of specified objects inmassive spectra.
+is paper designs three feature extraction methods and three
neural networks for spectral data classification. +e input of
each neural network comes from different feature vectors, and
the classification of each spectrum is carried out by the
number of class votes.+e experiment classifiesA andM class
spectra taken from the SDSS database and achieves high
classification accuracy. Finally, we propose some practical
recommendations and methods to expand the scope of al-
gorithmic applications. +e idea forming this paper has been
tested through the appropriate experiments and could be
widely applied in completing all kinds of classification tasks.
In the future, we hope to develop and implement our method
for the LAMOST data processing pipeline.
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