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In this research, an approximation symbolic algorithm is suggested to obtain an approximate solution of multipantograph system of type
delay differential equations (DDEs) using a combination of Laplace transform and variational iteration algorithm (VIA). )e corre-
sponding convergence results are acquired, and an efficient algorithm for choosing a feasible Lagrangemultiplier is designed in the solving
process.)e application of the Laplace variational iteration algorithm (LVIA) for the problems is clarified.With graphics and tables, LVIA
approximates to a high degree of accuracy with a few numbers of iterates. Also, computational results of the considered examples imply
that LVIA is accurate, simple, and appropriate for solving a system of multipantograph delay differential equations (SMPDDEs).

1. Introduction

Many physical phenomena are formulated by delay differ-
ential equations which are similar to ordinary differential
equations, but their development at assured time instant
depends on past values. Pantograph equations are one of the
most prominent kinds of functional differential equations
with proportional delay and the pantograph kind equations
have been studied extensively because of the various
implementations in which these equations arise. )e name
of the pantograph is begun from being crafted by Ockendon
and Tayler on the gathering of current by the pantograph
head of an electric loco; this equation has appeared in many
scientific models which is exceedingly applicable in physics,
mathematics, engineering, and biology as in astrophysics,
population models, probability theory, quantum mechanics,
number theory, nonlinear dynamic system, electronic sys-
tem, cell growth, and so forth (for further, see [1–3] and the
references therein). Numerous examinations were done on
the estimated arrangement of the referenced condition in the

one-dimensional case. As of late, a collocation method based
on the Genocchi delay operational matrix and the opera-
tional matrix of fractional derivative for solving generalized
fractional pantograph equations is given in [4]. Some papers
like [5, 6] have presented the solution for a system of
multipantograph delay differential equations (SMPDDEs)
with higher order by two different algorithms. A collocation
method based on the Genocchi operational matrix for
solving generalized pantograph equations is given in [7].
)en, again, the mathematical resolvability of another form
of differential issues can be found in [8–18] and the refer-
ences therein. )e pantograph equation,

y′(t) � αy(t) + f(t, y(βt)), 0< β< 1,

y(0) � y0,
(1)

is one of the important types of DDE that emerge in nu-
merous scientific models which appear in dynamical sys-
tems, population studies, electrodynamics, and number
theory. In particular, it was used by [3] to research how the
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electric current is composed through the pantograph of an
electric locomotive, from where it gets its name. In this
research, we are building on our work in [5] to develop the

Laplace variational iteration algorithm (LVIA) for
SMPDDEs:

y1′(t) � α1,1y1(t) + α1,2y2(t) + · · · + α1,nyn(t) + g1 t, y1 β1,1t , y2 β1,2t , . . . , yn β1,nt  

y2′(t) � α2,1y1(t) + α2,2y2(t) + · · · + α2,nyn(t) + g2 t, y1 β2,1t , y2 β2,2t , . . . , yn β2,nt  

⋮

yn
′(t) � αn,1y1(t) + αn,2y2(t) + · · · + αn,nyn(t) + gn t, y1 βn,1t , y2 βn,2t , . . . , yn βn,nt  ,

(2)

subject to the initial conditions:
yi t0(  � yi,0, i � 1, 2, 3, . . . , n, (3)

where 0 � t0 < t≤T, αi,j, yi,0 are finite constants, gi are
analytical functions such that 0< βi,j < 1, i, j � 1, 2, . . . , n,
which verify all needed requirements for finding a unique
solution, and yi(t), i � 1, 2, . . . , n, are functions that need to
be found on the given interval. We were motivated to apply
LVIA to find approximate solutions for SMPDDEs. By
choosing a suitable value for the initial approximation, LVIA
can easily be applied to the given problems. Moreover, the
solution and its derivative are usable for each arbitrary point
in the interval. LVIA provides a direct scheme for solving the
problem with no physically unsuitable assumptions, dis-
cretization, linearization, transformation, or perturbation.
Generally, in applications of LVIA to IVP (initial value
problem) of SMPDDEs, one generally follows the following
three proceedings:

(a) Establishment of the correction functional
(b) Identifying the Lagrange multipliers
(c) Defining the initial iteration

LVIA is worth mentioning that the method is capable of
decreasing the size of the computational work as compared
to the classic methods while yet maintaining the elevation
accuracy of the numerical results. )e main feature of the
variational iteration algorithm over decomposition restraint
of Adomian is that the previous algorithm gives the solution
of the problem without calculating Adomian’s polynomials
which requires complex calculations. Accordingly, it is not
affected by calculation round-off errors and one is not re-
puted with the requirement of large PC time and memory.
Generally, by using LVIA, one iteration results in an ac-
curate solution if the initial solution is closely chosen. )e
convergence of the method is a systematical debate in [8].
)e remainder of this study is ordered as follows: in Section
2, we presented the basic idea of LVIA together with the
analysis of the method. In Section 3, the symbolic ap-
proximate solutions for (2)-(3) can be provided using the
extended LVIA. Depending on the above-mentioned, some
of the numerical applications are given to explain the ad-
equacy of LVIA in Section 3. )e computations show that
the approximate solutions can be achieved accurately and
efficiently with a few iterations. Finally, Section 4 gives
a brief conclusion.

2. Methodology Basic Ideas of Laplace
Variational Iteration Algorithm (LVIA)

To clarify the basic connotation of LVIA, firstly, we rewrite
(2)-(3) as the next form:

Y′(t) � αY(t) + G(t,Y(βt)), (4)

with the initial conditions:

Y t0(  � Y0, (5)

where Y′(t) � y1′(t) y2′(t) . . . yn
′(t) 

T ∈Rn, Y(t) �

y1(t) y2(t) . . . yn(t) 
T ∈Rn, α,β ∈Rn×n, G� g1 g2 . . .

gn]T ∈Rn where gi � gi(t,y1(βi,1t), y2(βi,2t), . . . ,yn(βi,nt)),
and Y0 � y1,0 y2,0 . . . yn,0]

T ∈Rn. )e idea of the VIA for (4)
is to construct the next correction functional:

Yk+1(t) � Yk(t) + 
t

0
μ(t, ρ)Yk

′(ρ) − αY(ρ) − G(ρ,Y(βρ))dρ,

(6)

where μ is the Lagrange multiplier which has a critical part
in this study; it is recognized ideally by variety hypothesis
and Yk(t), k≥ 0 is the n-th approximate solution order for
the exact solution Y(t), which will be gotten by utilizing
starting approximation Y(0), which is acquired from (5).
So, when n tends to infinity, the approximate solution
Yk(t) converges to Y(t). )e numerical procedure of LVIA
delineates how LVIA is utilized to approximate the solu-
tion of SMPDDEs. )e basic steps included are given as
follows:

(i) )e correction functional is acquired by taking the
Laplace transform of (4):

Yk+1(s) � Yk(s) + μ(s) sYk(s) − Y(0)(

+ L − αY(t) − G( t,Y(βt) ,
(7)

(ii) where Y(s) � L Y(x){ } � 
∞
0 e− sxY(x)dx, L is

used to indicate Laplace transform.
(iii) To find the optimal value of μ(s), take the variation

with respect to Yk. Let (7) be stationary with respect
to Yk and Y(0) � 0; then, we obtain
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δ
δYk

Yk+1(s) �
δ

δYk

Yk(s) +
δ

δYk

μ(s) sYk(s) − Y(0) + L − αY(t) − G(t,Y(βt) ( ( . (8)

(iv) Considering the terms L − αY(t) − Gt,Y(βt)  as
constrained variations, then we get

δYk+1(s) � δYk(s) + μ(s) sδYk(s)( . (9)

(v) From (9), we derive the Lagrange multiplier as

μ(s) � −
1
s
. (10)

(vi) By using the inverse of Laplace transform L− 1 for
(7), we can obtain the succeeding approximations
which give

Yk+1(t) � Yk(t) + L
− 1 μ(s)(sYk(s) − Y(0) + L − αYk(t) − G t,Yk(βt)(   

� L
− 1 Y(0)

s
  + L

− 1 1
s
L(αY(t) + G(t,Y(βt)) ,

(11)

and initial approximation Y0(t) can be determined by

Y0(t) � L
− 1 Y0

s
+ · · · +

Y(k− 1)
(0)

s
k

 

� Y(0) + Y′(0)t + · · · +
Y(k− 1)

(0)t
k− 1

(k − 1)!
.

(12)

Beginning with an initial approximation Y0(t), we ob-
tain the sequential approximations, and the exact solution
can be acquired by using

Y(t) � lim
k⟶∞

Yk(t). (13)

Now, we display that the sequence Yk(t) 
∞
k�1 given by

(9) with Y0(t) � Y0 converges to the exact solution of (4)-
(5). To do this, we declare the following theorem.

Theorem 1 (see [9]). LetY(t) ∈ (C1(R))n, t ∈ R � [0, T] be
the exact solution of (4) andYn(t) ∈ (C1(R))k be the solution
of the sequence

Yk+1(t) � Yk(t) + L
− 1 μ(s) sYk(s) − Y(0) + L( − αYk(t) − G t,Yk(βt)(  

� L
− 1 Y(0)

s
  + L

− 1 1
s
L(αY(t) + G(t,Y(βt)) ,

(14)

with the initial approximation Y0(t).

If Extk(t) � Y(t) − Yk(t) and ‖(d/dt)Extk(t)‖2 ≤
‖Extk(t)‖2, then the functional sequence Yk(t) 

∞
k�1 defined

by the above sequence converges to Y(t).

Proof. To prove this theorem, we follow the same proof of
)eorem 1 in [9].

)e accompanying considerable definitions given un-
derneath are needed for this work and furthermore are
needed for the convergence analysis in the next corollary. □

Corollary 1. Let yi,k(t), i � 1, 2, . . . , m and k � 1, 2, . . . , n,
be series for any iteration k; then the LVIA will attain ap-
proximately to the exact solution of (2)-(3). Now, we report
some types of errors which are as follows:

(a) Residual error Reski (t) defined by Reski (t) � |yi,k
′(t) −

αi,1y1,k(t) − αi,2y2,k(t) − · · · − αi,mym,k(t) − gi(t, y1,k

(βi,1t), y2,k(βi,2t), . . . , ym,k(βi,mt))|

(b) Exact error (absolute error) Extki which is defined by
Extki � |yi,exact(t) − yi,k(t)|

(c) Relative error Relki , which is defined by Relki �

(|yi,exact(t) − yi,k(t)|/|yi,exact(t)|)

(d) Consecutive error Conk
i , which is defined by

Conk
i � |yi,k+1(t) − yi,k(t)|

3. Applications and Numerical Discussion

In this section, six numerical examples are given to illustrate
the accuracy and the convergence of LVIA which is de-
scribed in Section 2. In contrast, numerical results show that
this method gives a good approximation to the exact
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solution for all possible values of t, while the accuracy is in
continuous increase by using only a few approximations. For
comparison purposes, the solution intervals of problems are
chosen generally the same as those in the references.
)roughout this research, all the symbolical and compu-
tations results used Maple 18.0 software program.

Example 1. Regarding the SMPDDEs [19],

y1′(t) − y1(t) + y2(t) − y1
t

2
  � f1(t),

y2′(t) + y1(t) + y2(t) + y2
t

2
  � f2(t),

t> 0 (15)

subject to the initial conditions:

y1(0) � 1,

y2(0) � 1,
(16)

where f1(t) � e− t − e(t/2), f2(t) � et + e− (t/2), with the exact
solutions y1(t) � et and y2(t) � e− t.

We apply LVIA for solving system (15) and (16); we
begin with selecting the initial conditions of the ap-
proximations such as y1,0(t) � y1(0) � 1 and
y2,0(t) � y2(0) � 1. )en, let us seek the approximate
solutions y1,k(t) and y2,k(t) where k is a positive integer
number greater than or equal to zero. By taking L for
system (15)-(16), we obtain

sy1(s) − y1(0) � L − y2(t) + y1(t) + y1
t

2
  + f1(t) ,

sy2(s) − y2(0) � L − y2(t) − y1(t) − y2
t

2
  + f2(t) .

(17)

)e iteration formulas thus are

y1,k+1(s) � y1,k(s) + μ(s) sy1,k(s) − y1,0(0) − L y1,k(t) − y2,k(t) + y1,k

t

2
  + f1(t)  ,

y2,k+1(s) � y2,k(s) + μ(s) sy2,k(s) − y2,0(0) − L − y1,k(t) − y2,k(t) − y2,k

t

2
  + f2(t)  ,

(18)

with the Lagrange multiplier μ(s) � − (1/s), and by taking
L− 1, we obtain

y1,k+1(t) � y1,k(t) − L
− 1 1

s
sy1,k(s) − y1,0(0) − L y1,k(t) − y2,k(t) + y1,k

t

2
  + f1(t)   

� L
− 1 1

s
  + L

− 1 1
s

L y1,k(t) − y2,k(t) + y1,k

t

2
  + f1(t)   ,

y2,k+1(t) � y2,k(t) − L
− 1 1

s
sy2,k(s) − y2,0(0) − L y1,k(t) − y2,k(t) − y2,k

t

2
  + f2(t)   

� L
− 1 1

s
  + L

− 1 1
s

L − y1,k(t) − y2,k(t) − y2,k

t

2
  + f2(t)   .

(19)

)erefore,

y1,k+1(t) � L
− 1 1

s
  L y1,k(t) − y2,k(t) + y1,k

t

2
  + f1(t)    + 1,

y2,k+1(t) � L
− 1 1

s
  L − y1,k(t) − y2,k(t) − y2,k

t

2
  + f2(t)    + 1,

(20)

with the initial iteration y1,0(t) � y1(0) � 1,

y2,0(t) � y2(0) � 1. Now, in order to obtain the first
approximation y1,1(t) and y2,1(t) of the LVIA solution for
system (15) and (16), we put k � 0 through (20) to get
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y1,1(t) � 4 − e
− t

− 2e
(t/2)

+ t,

y2,1(t) � 2 − 2e
− (t/2)

− 3t + e
t
,

(21)

by using the first approximation y1,1(t) and y2,1(t); then, the
second approximation y1,2 and y2,2(t) of the LVIA solution
for system (15)-(16) can be written as follows:

y1,2(t) �
18 − 8e

(t/4)
− 6e

(t/2)
− 2e

− (t/2)
+ 6t − e

t
+ 9

4t
2 ,

y2,2(t) �
14 − 8e

− (t/4)
− e

− t
+ 2e

(t/2)
− 6e

− (t/2)
− 8t + 7

4t
2 ,

(22)

and by proceeding with the comparable style, the third and
the fourth iterations for the LVIA solution of (15)-(16) lead
to the following outcomes:

y1,3(t) �
176 − 24e

− (t/4)
− 2e

− t
− 56e

(t/4)
− 20e

(t/2)
− 8e

− (t/2)
+ 17t

3/48  + 22t − 64e
(t/8)

− e
t

+ 17

2t
2 ,

y2,3(t) � 108 − 56e
− (t/4)

− e
− t

+ 24e
(t/4)

+ 8e
(t/2)

− 20e
− (t/2)

−
71t

3

48
− 46t − 64e

− (t/8)
+ 2e

t
+ 3t

2
,

y1,4(t) � 2884 − 96e
− (t/4)

− 1024e
(t/16)

− 400e
(t/4)

− 60e
(t/2)

− 20e
− (t/2)

+
61t

3

24
+ 244t

+
721t

4

1536
− 320e

− (t/8)
− 960e

(t/8)
− 3e

t
+
79t

2

2
,

y2,4(t) � 2012 − 400e
− (t/4)

− 3e
− t

− 1024e
− (t/16)

+ 96e
(t/8)

+ 20e
(t/2)

− 60e
− (t/2)

−
49t

3

12
− 392t

+
503t

4

1536
− 960e

− (t/8)
+ 320e

(t/8)
+
47t

2

2
.

⋮

(23)

To clarify the convergence of the solution of the pro-
posed method yi,k(t) to the exact solution yi(t), i � 1, 2,
w.r.t. the number of iterations k of the solutions, we set
numerical values graphically. Figure 1(a) shows the exact
solution yi(t), i � 1, 2, t ∈ [0, 3], and yi,k(t), k � 3, 5, 7, 9,

i � 1, 2, respectively. )ese plots detect that LVIA is an
effective and appropriate method to solve SMPDDEs with
fewer calculations and numbers of iterations. Figure 1(b)
illustrates the efficiency of the method whether it has an
exact solution or not by using the residual error values which
shows that the residual error Resk

i (t) decreases as k in-
creases. Table 1 shows the CPU times of the present method
for Example 1 to get 10th-order approximate symbolic so-
lutions with variable t. )e accuracy of the method can be
spotted with the numerical results and by comparing the
absolute errors of LVIA for k � 4, 5, 6 and the Laplace de-
composition algorithm (LDA) [19] is given in Table 2. It is
obvious that, from this table, the approximate solutions are
proven to be similar to the exact solution for all likely values
of t in [0,1].

Example 2. Consider SMPDDEs [20]:

y1′(t) − sin(t)y1
t

2
  − cos(t)y2

t

2
  � f1(t),

y2′(t) + cos(t)y1
t

2
  − sin(t)y2

t

2
� f2(t) ,

t≥ 0

(24)

subject to the initial conditions:

y1(0) � 0,

y2(0) � 1,
(25)

where f1(t) � cos(t) − cos(t/2), f2(t) � − sin(t) − sin(t/2)

with the exact solutions y1(t) � sin(t) and y2(t) � cos(t).
By the same procedures of Example 1, we apply the LVIA
approach for solving (24)-(25), according to (11). Table 3
shows the CPU times of the LVIA for Example 2 to get 10th-
order approximate symbolic solutions with variable t. To
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Figure 1: (a) Comparison between yi,k(t), k � 3, 5, 7, 9, i � 1, 2 solutions of the LVIA and the exact solution for Example 1. (b))e residual
error Resk

i (t), i � 1, 2 of LVIA solutions of (13) at k � 4, 6, 8, respectively, for Example 1.

Table 2: Comparison of the absolute errors (Extki , i � 1, 2) for Example 1.

t Exact solution y1(t)
y1,k(t) LDA [19] y1,k(t) (presented method)

k � 4 k � 6 k � 4 k � 5

0.2 1.2214027581602 1.210 × 10− 5 1.210 × 10− 5 1.576 × 10− 5 2.276 × 10− 6

0.4 1.4918246976413 4.238 × 10− 4 3.170 × 10− 6 5.057 × 10− 4 9.470 × 10− 5

0.6 1.8221188003905 3.499 × 10− 3 5.583 × 10− 5 3.981 × 10− 3 8.488 × 10− 5

0.8 2.2255409284925 1.594 × 10− 2 4.460 × 10− 4 1.736 × 10− 3 4.721 × 10− 4

1.00 2.7182818284591 5.236 × 10− 2 2.259 × 10− 3 5.484 × 10− 3 1.810 × 10− 4

Exact solution y2(t)
y2,k(t) LDA [19] y2,k(t) (presented metdod)

k � 4 k � 6 k � 4 k � 5
0.2 0.8187307530780 5.219 × 10− 5 7.807 × 10− 8 1.725 × 10− 5 8.753 × 10− 6

0.4 0.6703200460356 1.668 × 10− 3 1.310 × 10− 5 5.739 × 10− 4 1.407 × 10− 5

0.6 0.5488116360940 1.266 × 10− 2 2.227 × 10− 4 4.271 × 10− 3 5.764 × 10− 5

0.8 0.4493289641172 5.338 × 10− 2 1.668 × 10− 3 1.765 × 10− 2 2.080 × 10− 4

1.0 0.3678794411714 1.632 × 10− 1 7.956 × 10− 3 5.284 × 10− 2 3.014 × 10− 4

Table 1: CPU times (per second) of LVIA for Example 1.

k 1 2 3 4 5 6 7 8 9 10
CPU 0.143 0.254 0.415 0.544 0.744 0.936 1.158 1.442 1.720 2.078
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clarify the convergence of the solution of the proposed
method yi,k(t) to the exact solutions yi(t), i � 1, 2, with
respect to the iteration number of the solution, we set
numerical values graphically. Figure 2 shows the exact so-
lution yi(t), i � 1, 2, t ∈ [0, 5], and some iterated approxi-
mations yi,k(t), k � 1, 2, 3, 4, i � 1, 2, respectively. )is

graph and the results obtained in Table 4 detected that the
LVIA is a very accurate and effective method to solve
SMPDDEs with fewer computational and iteration steps.

Example 3. Consider the two-dimensional nonlinear pan-
tograph equations [19]:

y1′(t) + y1(t) + e
− t cos

t

2
 y2

t

2
  + 2e

(− 3/4)t cos
t

2
 sin

t

4
 y1

t

4
  � 0,

y2′(t) − e
t

y1
t

2
  

2
+ y2

t

2
  

2
� 0,

0≤ t≤ 1, (26)

the initial conditions in which the system subjected to

y1(0) � 1,

y2(0) � 0.
(27)

)e exact solutions are y1(t) � e− t cos(t) and y2(t) �

sin(t). By the same procedures of Example 1, we apply LVIA

for solving (26)-(27), according to (11). To clarify the
convergence of yi,k(t) to yi(t), i � 1, 2, with respect to the
iteration number of the solution, we present numerical
results of Example 3 graphically where Figures 3(a) and 3(b)
show the exact solution and the approximate solution of
LVIA for yi,k(t), i � 1, 2, k � 1, 2, 3, respectively. )ese
plots clarify that LVIA is a good accurate method for
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Figure 2: Plots of the LVIA solutions yi,k(t), i � 1, 2, k � 1, 2, 3, 4, respectively, and the exact solution yi(t), i � 1, 2, of Example 2 on [0, 5],
where yi(t) is represented by a straight line and yi,k(t) is represented by a dashed line.

Table 4: Error analysis.

t Absolute error Ext101 Relative error Rel101 Consecutive error Con101 Residual error Res101 (t)

Error analysis of y1(t) for Example 2 on [0, 1]

0.2 1.34 × 10− 32 6.77 × 10− 32 1.34 × 10− 32 7.32 × 10− 31

0.4 2.29 × 10− 29 5.87 × 10− 29 2.29 × 10− 29 5.99 × 10− 28

0.6 1.36 × 10− 27 2.401 × 10− 27 1.35 × 10− 27 2.13 × 10− 26

0.8 1.39 × 10− 26 1.94 × 10− 26 1.39 × 10− 26 9.50 × 10− 26

1.0 6.61 × 10− 26 7.86 × 10− 26 6.62 × 10− 26 1.87 × 10− 24

Error analysis of y2(t) for Example 4 on [0, 1]

0.2 4.66 × 10− 33 4.75 × 10− 33 4.66 × 10− 33 2.79 × 10− 31

0.4 1.80 × 10− 29 1.95 × 10− 29 1.80 × 10− 29 5.33 × 10− 28

0.6 2.11 × 10− 27 2.56 × 10− 27 2.11 × 10− 27 5.00 × 10− 26

0.8 2.76 × 10− 26 8.27 × 10− 26 5.76 × 10− 26 8.14 × 10− 26

1.0 6.83 × 10− 25 1.26 × 10− 24 8.83 × 10− 25 7.39 × 10− 24

Table 3: CPU times (per second) of LVIA for Example 2.

k 1 2 3 4 5 6 7 8 9 10
CPU 0.153 0.311 0.571 0.909 01.523 2.722 2.997 3.243 3.508 3.792
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solving such SMPDDEs with fewer calculations and
numbers of iterations. Also, Figure 3(c) displays the ab-
solute errors obtained by LVIA for k � 1, 2, 3 of (26)-(27).
From Figure 4(c), the approximate solutions at k � 1, 2, 3
are identical to the exact solution for all values of t in [0,1].
)ese plots clarify that LVIA is an efficient method for
solving such a system with a few iterations. We note that
the error decreases while the value k increases.

Example 4. Consider the 2-dimensional nonlinear
SMPDDEs [21]:

y1′(t) − y1′(t − 1) − 4y2(t) � 0,

y2′(t) − y1(t) + y1(t − 1) � 0,
0≤ t≤ 2, (28)

subject to the initial functions:
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Figure 3: (a) Comparison between y1,k(t), k � 1, 2, 3 solutions of the LVIA and y1(t) for Example 3. (b) Comparison between y2,k(t), k �

1, 2, 3 of LVIA and the exact solution y2(t) for Example 3. (c) Comparison of Extki for k � 1, 2, 3, respectively, for yi,k(t), i � 1, 2 of Example 3.
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y1(t) � e
− 2t

,

y2(t) �
1
2

e
− 2(t− 1)

− e
− 2t

 , − 1≤ t≤ 0.

(29)

)e exact solutions are y1(t) � e− 2t and
(1/2)(e− 2(t− 1) − e− 2t). By using the given initial functions
and also using the same procedures of Example 1, we apply
the LVIA approach for solving (28)-(29), according to (11).
Without loss of generality, we will test the accuracy of LVIA
for Example 4 using error analysis of yi(t), i � 1, 2, t ∈ [0, 1]

for (28)-(29) with a step size of 0.2 as well as comparison
among the absolute errors, relative errors, consecutive er-
rors, and residual errors of 10th-order approximate LVIA
solutions shown in Table 5. Also, to illustrate the conver-
gence of yi,k(t) to yi(t), i � 1, 2, with respect to the order of
k for the solutions, we ready numerical results of Example 4
graphically where Figure 4 shows the exact solutions
yi(t), i � 1, 2, and approximate solutionsyi,k(t), i � 1, 2, and
k � 2, 4, 6, 8, 10, respectively. )ese plots clarify that LVIA is
an efficient method for solving such a system with a few
iterations. We note that the error decreases while the value k

increases.)e results show that the LVIA provides us with the
precise approximate solutions of (28)-(29). Moreover, we can
control the error also by evaluating more iterations.

Example 5. Consider 3-dimensional SMPDDEs [22]:

y1′(t) − 2y2
t

2
  − y3(t) � f1(t),

y2′(t) + 2 y3
t

2
  

2
� f2(t), t≥ 0,

y3′(t) − y2(t) + y1(t) � f3(t),

(30)

subject to the initial conditions:

y1(0) � − 1,

y2(0) � 0,

y3(0) � 0,

(31)

where f1(t) � − t cos((1/2)t), f2(t) � 1 − t sin(t) and
f3(t) � − t cos(t) with the exact solutions y1(t) � − cos(t),
y2(t) � t cos(t), and y3(t) � sin(t). Using the LVIA
method for solving (30)-(31), at first we select the initial
values of the approximations such as y1,0 � − 1 and
y2,0(0) � y3,0(0) � 0; then, let us seek the approximate
solutions y1,k, y2,k, and y3,k. Taking L for (30)-(31), we
obtain

sy1(s) − y1,0(0) � L 2y2
t

2
  + y3(t) + f1(t) ,

sy2(s) − y2,0(0) � L − 2 y3
t

2
  

2
+ f2(t) ,

sy3(s) − y3,0(0) � L y2(t) − y1(t) + f3(t) .

(32)
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Figure 4: Plots of the LVIA solutions yi,k(t), i � 1, 2, k � 2, 4, 6, 8, 10, respectively, and the exact solution yi(t), i � 1, 2, of Example 4 on
[0, 2], where yi(t) is represented by a straight line and yi,k(t) is represented by a dashed line.
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)e iteration formulas thus are

y1,k+1(s) � y1,k(s) + μ(s) sy1,k(s) − y1,0(0) − L 2y2,k

t

2
  + y3,k(t) + f1(t)  ,

y2,k+1(s) � y2,k(s) + μ(s) sy2(s) − y2,0(0) − L − 2 y3,k

t

2
  

2
+ f2(t)  ,

y3,k+1(s) � y3,k(s) + μ(s) sy3,k(s) − y3,0(0) − L y2,k(t) − y1,k(t) + f3(t)  ,

(33)

with the Lagrange multiplier μ(s) � − (1/s), and by taking
L− 1, we obtain

y1,k+1(t) � y1,k(t) − L
− 1 1

s
sy1,k(s) − y1,0(0) − L 2y2,k

t

2
  + y3,k(t) + f1(t)   

� L
− 1 − 1

s
  + L

− 1 1
s

L 2y2,k

t

2
  + y3,k(t) + f1(t)   ,

y2,k+1(t) � y2,k(t) − L
− 1 1

s
sy2,k(s) − y2,0(0) + L − 2 y3,k

t

2
  

2
+ f2(t)   

� L
− 1 1

s
L − 2 y3,k

t

2
  

2
+ f2(t)   ,

y3,k+1(t) � y3,k(t) − L
− 1 1

s
sy3,k(s) − y3,0(0) − L y2,k(t) − y1,k(t) + f3(t)   

� L
− 1 1

s
L y2,k(t) − y1,k(t) + f3(t)   ,

(34)

with the initial iterations above. Now, in order to obtain the
first approximation y1,1(t), y2,1, and y3,1(t) of LVIA solu-
tion for (30)-(31), we put k � 0 through (34) to get

y1,1(t) � − 2t sin
t

2
  − 4 cos

t

2
 ,

y2,1(t) � t cos(t) − sin(t) + t,

y3,1(t) � − t sin(t) − cos(t) + t + 1,

(35)

Table 5: Error analysis.

t Absolute error Ext101 Relative error Rel101 Consecutive error Con101 Residual error Res101 (t)

Error analysis of y1(t) for Example 4 on [0, 1]

0.2 1.02 × 10− 12 1.52 × 10− 12 8.00 × 10− 13 4.28 × 10− 11

0.4 2.02 × 10− 9 4.49 × 10− 9 1.15 × 10− 9 2.94 × 10− 8

0.6 1.69 × 10− 7 5.61 × 10− 7 6.03 × 10− 8 9.13 × 10− 7

0.8 3.88 × 10− 6 1.92 × 10− 5 5.44 × 10− 7 3.19 × 10− 6

1.0 4.40 × 10− 5 3.24 × 10− 4 3.38 × 10− 6 8.45 × 10− 5

Error analysis of y2(t) for Example 4 on [0, 1]

0.2 3.25 × 10− 12 1.52 × 10− 12 3.23 × 10− 12 1.77 × 10− 10

0.4 6.44 × 10− 9 4.49 × 10− 9 6.38 × 10− 9 1.74 × 10− 7

0.6 5.40 × 10− 7 5.61 × 10− 7 5.32 × 10− 7 9.66 × 10− 6

0.8 1.24 × 10− 5 1.92 × 10− 5 1.21 × 10− 5 1.65 × 10− 4

1.0 1.40 × 10− 4 3.24 × 10− 4 1.37 × 10− 4 1.48 × 10− 3
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by using the first approximations y1,1(t), y2,1(t), and y3,1(t)

and then the second approximations yi,2(t), i � 1, 2, 3, of
LVIA solution for (30)-(31) which can be written in the form

y1,2(t) � 2t cos
t

2
  

2
− 4 sin

t

2
 cos

t

2
  + t

2
+ 4 cos

t

2
  − 5,

y2,2(t) �
1
2
cos

t

2
 sin

t

2
 t

2
− 7 cos

t

2
 sin

t

2
  + 12t sin

t

2
  + 16 sin

t

2
  + 5t cos

t

2
  

2

− 2 cos
t

2
 t

2
−

1
4t

3 − 4t cos
t

2
  − t

2
+ 24 cos

t

2
  −

9
2t

− 24,

y3,2(t) � 2 cos
t

2
  

2
− 4t cos

t

2
  +

1
2t

2 + 16 sin
t

2
  − 3t − 2.

(36)

Using a similar approach, we get the 4th-order ap-
proximations yi,4(t), i � 1, 2, of the LVIA solution for (30)
and (31) leading to the following results:

y1,3(t) � 8 cos
t
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−
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26192
9
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+ 64 cos
t
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To clarify the convergence of yi,k(t) to yi(t), i � 1, 2, 3,
with respect to the number of iterations of the solution, we
present numerical solutions of Example 5 graphically, where
Figure 5 shows the exact solutions yi(t), i � 1, 2, 3, and the
approximate solution of LVIA for yi,k(t), i � 1, 2, 3 and
k � 1, 3, 5, respectively. We will test the accuracy of LVIA for
Example 5 by using error analysis of yi(t), i � 1, 2, 3,
t ∈ [0, 1] for (30)-(31) with a step size of 0.2 as well as
comparison among the absolute errors, relative errors,
consecutive errors residual errors, and computing times
(CPU) of 4th-order approximate LVIA solutions shown in
Table 6.

Example 6. Consider 3-dimensional nonlinear SMPDDEs
[23]:

y1′(t) � y
2
2(t),

y2′(t) �
1
2
y1

t

2
 , t≥ 0,

y3′(t) � e
(5/2)t

y2(t) + 9e
2t

y3(t)
t

3
 ,

(38)

subject to the initial conditions:

y1(0) � 1,

y2(0) � 1,

y3(0) � 0.

(39)

)e exact solutions are y1(t) � et, y2(t) � e(t/2), and
y3(t) � te3t. By comparing between the absolute errors of

Table 6: Error analysis and CPU times.

t Absolute error Ext42 relative error Rel42 consecutive error Con42 residual error Res43(t) CPU

Error analysis and CPU times of y1(t) for Example 5 on [0, 1]

0.2 5.77 × 10− 5 5.89 × 10− 5 7.87 × 10− 5 1.24 × 10− 4 0.058
0.4 4.16 × 10− 5 4.52 × 10− 5 2.27 × 10− 3 1.37 × 10− 3 0.057
0.6 6.72 × 10− 4 3.69 × 10− 3 1.08 × 10− 2 6.66 × 10− 3 0.051
0.8 2.57 × 10− 3 3.69 × 10− 3 3.41 × 10− 2 2.23 × 10− 2 0.049
1.0 7.43 × 10− 3 1.38 × 10− 2 8.30 × 10− 2 5.71 × 10− 2 0.047
Error analysis and CPU times of y2(t) for Example 5 on [0, 1]

0.2 1.27 × 10− 5 4.86 × 10− 4 7.34 × 10− 6 7.27 × 10− 6 0.054
0.4 6.88 × 10− 5 3.91 × 10− 3 1.56 × 10− 4 6.16 × 10− 5 0.061
0.6 3.17 × 10− 5 1.39 × 10− 2 1.30 × 10− 3 4.43 × 10− 4 0.053
0.8 1.18 × 10− 4 3.64 × 10− 2 5.49 × 10− 3 1.95 × 10− 3 0.050
1.0 9.11 × 10− 4 8.53 × 10− 2 1.65 × 10− 2 6.06 × 10− 3 0.048
Error analysis and CPU times of y3(t) for Example 5 on [0, 1]

0.2 9.33 × 10− 6 4.70 × 10− 5 7.87 × 10− 5 2.74 × 10− 4 0.077
0.4 1.88 × 10− 4 4.84 × 10− 4 2.27 × 10− 3 2.38 × 10− 3 0.057
0.6 1.49 × 10− 3 2.64 × 10− 3 1.08 × 10− 2 1.19 × 10− 2 0.057
0.8 6.57 × 10− 3 9.15 × 10− 3 3.14 × 10− 2 3.97 × 10− 3 0.051
1.0 2.08 × 10− 2 2.47 × 10− 2 8.30 × 10− 2 9.92 × 10− 2 0.049
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Figure 5: Plots of the LVIA solutions yi,k(t), i � 1, 2, 3, k � 1, 3, 5, respectively, and the exact solution yi(t), i � 1, 2, 3 of Example 5 on [0, 1],
where yi(t) is represented by a straight line and yi,k(t) is represented by a dashed line.
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LVIA for four iterations approximations and Adomian
decomposition method (ADM) [23] which are shown in
Table 7, it is obvious that, from this table, the approximate
solutions are identical to the exact solutions for all possible

values of t in [0, 1]. Figure 6 shows that the residual error is
the difference between both sides of equation (38), in-
dicating that the two sides are identical with the increase of
k, which shows the efficiency of the proposed method.
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Figure 6: )e residual error Resk
i (t), i � 1, 2, 3 of LVIA solutions of (38) at k � 4, 6, 8, 10, respectively, for Example 6.

Table 7: Comparison of (absolute error) Extki for Example 6.

t
y1,4(t) y2,4(t) y3,4(t)

ADM [23] LVIA ADM [23] LVIA ADM [23] LVIA

0.0 0 0 0 0 0 0
0.1 1.00 × 10− 9 2.31 × 10− 11 0 1.39 × 10− 12 3.00 × 10− 9 2.57 × 10− 11

0.2 9.10 × 10− 8 1.59 × 10− 9 1.00 × 10− 9 9.13 × 10− 11 4.30 × 10− 8 2.08 × 10− 9

0.3 1.06 × 10− 6 1.90 × 10− 8 1.60 × 10− 8 1.07 × 10− 9 3.00 × 10− 9 3.00 × 10− 8

0.4 6.03 × 10− 6 1.14 × 10− 7 9.10 × 10− 8 6.14 × 10− 9 5.05 × 10− 7 2.14 × 10− 7

0.5 2.34 × 10− 5 4.60 × 10− 7 3.52 × 10− 7 2.40 × 10− 8 2.87 × 10− 6 1.04 × 10− 6

0.6 7.084 × 10− 5 1.47 × 10− 6 1.06 × 10− 6 7.36 × 10− 8 1.01 × 10− 5 3.94 × 10− 6

0.7 1.81 × 10− 4 3.92 × 10− 6 2.69 × 10− 6 1.90 × 10− 7 3.16 × 10− 5 1.26 × 10− 5

0.8 4.10 × 10− 4 9.28 × 10− 6 6.03 × 10− 6 4.35 × 10− 7 8.86 × 10− 5 1.36 × 10− 5

0.9 8.45 × 10− 4 2.00 × 10− 5 1.23 × 10− 5 9.03 × 10− 7 2.28 × 10− 4 9.26 × 10− 5

1.0 1.62 × 10− 3 4.00 × 10− 5 2.33 × 10− 5 1.74 × 10− 6 5.40 × 10− 4 2.22 × 10− 4
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4. Conclusion

)e main objective of this paper is to adapt Laplace
variational iteration algorithm to investigate SMPDDEs.
)is work aims to show the power of LVIA by reducing the
numerical calculation which does not need any pertur-
bations, discretization, and other restrictive hypotheses
which may change the framework for the problem being
solved. LVIA gives fast convergent successive approxi-
mations. We approve that the accuracy for LVIA gives it
numerous wider applicability. Additionally, the results
obtained by LVIA have the ability to be successful and
furthermore helpful in linear and nonlinear cases since
they do not require much computational work. It is ob-
vious from the tables and figures that the absolute errors
relief as k rises. In any case, the numerical results show
that LVIA is a reliable technique for SMPDDEs. LVIA is
a relatively new approach to provide a symbolic ap-
proximation, in a rapidly convergent series by using the
initial conditions only and without tedious calculations
which show the solution in a closed form, for linear and
nonlinear problems and it changes SMPDDEs to the re-
currence sequence of functions. )ough the LVIA leads to
convergent solutions for a wider region as in Examples 1
and 2, but in certain situations, the series converges very
quickly in a very small zone or neighborhood of the
boundary points, and it has a very slow convergence rate
in the wider and/or outer zone.
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