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Newton-Kantorovich and Smale uniform type of convergence theorem of a deformed Newton method having the third-order
convergence is established in a Banach space for solving nonlinear equations. The error estimate is determined to demonstrate the

efficiency of our approach. The obtained results are illustrated with three examples.

1. Introduction

In this paper, we study the problem of approximating a
unique solution x* of a nonlinear operator equation

F(x) =0, @)

where F is a Fréchet-differentiable operator defined on an
open convex Q) of a Banach space X with values in a Banach
space Y.

There are many iterative methods (see [1-3]), which have
been used for finding a solution of (1). For example, the well-
known iterative method for solving (1) is Newton’s method
defined by

Xy =%, - F'(x,) 'F(x,), n=0) (x,€Q). (2

Under the appropriate assumptions, Newton’s method is
the second-order convergence. Kantorovich (see [4]) pre-
sented the famous convergence result regarding a solution
of (1). Many Newton-Kantorovich type of convergence the-
orems were given in papers [5-11]. Frontini and Sormani (see
[12]) presented a new deformed Newton method with

| rwd=ton) s (25). o

2

The deformed Newton method can be written as follows:

~ f(x,)
" fl (xn_f(xn)/zf,(xn)))

(4)

Xpy1 = X

where f is a real or a complex function. In papers [13-17],
the local convergence theorem has been established and the
deformed method in a real or a complex space was discussed.

In the paper, we generalize the deformed Newton method
[18] in a Banach space. The deformed Newton method [18] is
shown as follows:

Yn = X~ F,(xn)_lF (xn) >
(5)

1{ X +y -1
xn+1=xn_F<%> F(xn)’

where F is defined on an open convex subset Q) of a Banach
space X with values in a Banach space Y, F(x) has Fréchet
derivatives in Q, and F'(x) " exists.

We establish Newton-Kantorovich and Smale uniform
type convergence theorem (see [18]) for the deformed New-
ton method with the third-order in a Banach space with
new sufficient conditions for the existence of a well-defined
sequence which converges to a unique solution x* of (1).



2. Main Results

Denote g(t) = fot(t —u)L(u)du -t +n,u € (0,R),n>0,and
suppose L(u), L'(u) are the positive and nondecreasing con-

tinuous functions, lim, _, z+g(t) = g(R") > 0, _[OR L(w)du > 1,

_[: Lu)du = 1 fora € (O,R), f = « — _[:(oc —u)L(u)du =
[ uL(w)du.

Assume that sequences {t,}, {s,} are generated by the
following formulae [18]:

Sy =ty — gl(tn)_lg (tn) >

_ 6)
t,o+s, \7! (
L =ty _g,<%> g(tn)’ ty = 0.

Firstly, we give some lemmas.

Lemmal. Ify < B, then the function g(t) has two positive real
rootstry, t, (0 <ry <a<r, <R).

Proof. Because g(0) =1 > 0, g(R") > 0, and g”(t) = L(t) >
0, we know that g(t) is the convex function for ¢t € (0,R).
Hence, « is a unique positive root of g'(t) = f; L(w)du - 1.
So, the necessary and suflicient condition that g(t) has two
positive roots for t € (0,R) is that the minimum of g(t)
satisfies the condition g(«) < 0, which holds for # < . This
completes the proof of Lemma 1. O

Lemma 2. Suppose the sequences {t,}, {s,} are generated by
(6). Then, for n < f3, the sequences {t,,}, {s,} are increasing and
converge to the minimum positive root of g(t), and

0<t,<s,<t,, <r. (7)
Proof. Denote
g (x) g (x)
U(x)=x- , V() =x- .
(=X (=% e+ U@ 2
(8)

On [0,r,), we know g(t) > 0, g'(t) < 0, g”(t) > 0,
and g"(t) is increasing. Denoting y = (x + U(x))/2 = x -
g(x)/Zg'(x), then

g(x)g" (x) N

U' (x) = 7T 0,
! ’ o N _n g (x)
90 =g @] =g" O - =-0"® 575,
§e(xy),

Vi) =1- <g' g () - %g 4" (»)

(s
g'(x)
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x(d())"
94" ()
29'(y)’
LI ") g"E 9w
29'(x)%g'(y)? 9 () 29 ()

X " X " ' '
L
LIWG" (-9 g" @ _ gg"®

29'(y)’ 29'(»)’g' (%)
9w 90d" () -9xg"®)
2g' (x) 2g’(y)2

- ) -gd W]+

0.

)

Therefore, U(x), V(x) are increasing on [0, r,]. Thus, for
x €[0,r)),U(x) <U(r)) =1, V(x) < V(r;) = r;. Moreover,

t =V (tn) >

hence we can easily prove Lemma 2 by the induction.

Suppose X and Y are the Banach spaces, O ¢ X is an
open convex subset, F : 3 ¢ X — Y has the second-
order Fréchet derivative, F'(x,) ™" exists for x, € Q, and the
following conditions hold:

"F’(xo)AF (xo)" <1,

[F' o)™ (" (0 - F" )] ()

s, =U(t,), tp=0<r;  (10)

[E (o) F" (%) < L),

p(x.y) ,
gJ L' (wdu, x,yeQ, p(x,y)<a
p(x)

where p(x) = [|x - xpll and p(x,y) = |y — x| + [[x = x,[l. O

Lemma 3. Suppose F satisfies (11) and ||x — x|l < o. Then
F'(x)™" exists, and

[F'Ceo) " G < 9" (e = )

| (12)
g' (Jx = x[)°
Proof. Firstly, by the conditions (11), we know that

|F' )" F' (x)] = -

"F'(xo)_lF" (x)" < “F'(xo)_lF" (xO)H

+ |F' (x0) " () = F'(x) " F" (o)

ll2x=2x,

< L(0) +J L' (u)du

0

= LIl = xoll) = g" (Il = xoll)-
(13)
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Secondly, we know g'(t) < 0 for t < o. Hence

|F' (x0) " F' (x) = 1| = |F' (x0) " [F' (%) = F' ()]

{F@@*EFW%+tu—%»

x (x — xo) dt

1
< || o el o) =

=g (Jx-x]) - g (0)

= g'("x—xou) +1<1.

(14)
By Banach Theorem, we know F "(x)7! exists, and
1
F '(x)_lF "(x)| <
I ol < T
(15)
S
g (Jx = xoll)
This completes the proof of Lemma 3. O

Lemma 4. Suppose X and Y are Banach spaces, Q) is an open
convex of the Banach space X, F : Q ¢ X — Y has
the second-order Fréchet derivative, and the sequences {x,},
{y,} are generated by (5). Then, for any natural number n, the
following formula holds:

F (xn+1)

1
+lj F"(x"+y"+t(xn+1—x"+y">>(l—t)dt
4 Jo 2
X(yn_xnz
_lle”(x"”" t(y" x"))(l—t)dt
4 Jo 2 2
X (Y = %)

(16)

Proof. By (5), we have

F(%4,1) = F (%,1) = F (%)

xn+yn xn+yn
_F’< 2 )(x””_ 2 )

+F<xn+yn>+Fl<xn+yn>
2 2
xn+yn>

2

1
:J F”(—x";ry"+t(xn+1—x";y”>>(l—t)dt
0
Xt Yn ) Xp + Y
X<x”+1_ 2 )+F< 2 )

PF (B (s, - 222 00)),
2 2

X (anrl -

F(xn+yn)+F’<xn+yn>(xn+l_xn+yn>
2 2 2
:F<xn+yn> F’<xn+yn>
2
_yn_xn>
X<xn+l Xn 2
:F<xn+yn>_F(xn)_F’<xn+yn>yn_xn
2 2 2
1 ! i Xut Vu VYn = %n
:__J ( —t< ))(l—t)dt
4 Jo 2 2
2
X(yn_xn)'
17)

Hence

1
F(xn+1) = j F” (% +t('xn+1 -
0
X (1= 1) dt (X — )’

(Y y/x,+y
+5LF(J7J+4%H‘

xn+yn)>
2

xn+yn>)
2

x (1- t) dt (xn+1 - yn) (yn - xn)

1 (! + +
L J £ <xn Yn +t<xn+1 X yn))
2 Jo 2 2

X (1 - t) dt (yn - xn) (xn+1 - yn)

1 (! + +
+_J Fl!(xn yn+t<xn+1_xn yn))
4 Jo 2 2

x (1-t)dt(y, - xn)2




_lle”<xn+)/n
4 Jo 2

X (yn - xn)z'

—t(y";x"))(l—t)dt

(18)
This completes the proof of Lemma 4. O
Theorem 5. Suppose X andY are Banach spaces, O C X is an

open convex subset, F : Q) ¢ X — Y satisfies condition (11),
n < B, and

S(xpry) ={x||x=xo|]| < r,xe X} cQ.  (19)

Then the sequence {x,,},~, generated by (5) is well defined, x,, €

S(xy,1,), and converges to the unique solution x™* in S(x,, o)
and

o =" < -t (20)

Proof. Byinduction, we can prove that the following formulae
hold:
e = ol < £
[F'Gen) ' F (o) < =4 (1)
"yn - xn" < Sy~

"yn - xO” S S (21)

X, + Y\ ot +s \ 7!
A a5
2 (xo) g 2

||xn+1 - yn" < tn+1 —Sw

||Xn+1 - xn" < tn+1 - tn'

In fact, by Lemma 2 we know ¢, < r, for any natural
number 7. It is easy to prove that for n = 0 the above formulae
hold. Suppose the above formulae also hold for n > 0. Then

”xn+1 - xO” < ||xn+1 - xn”

(22)
+|x, = x| <ty —taH =t
By Lemma 3, we get
||Fl(xn+1)_1F’ (xo)” S _g/("xnﬂ - xo“)_1
(23)

-1

< _g’(twrl)
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By Lemmas 3 and 4 and the fact that —g'(t)_l, g"(t) are
positive and increasing on [0, «), we have

Pl [ (B3 (o - 2572))

_Fll<xn+yn _t<yn_xn>>”l
2 2

tllpe =2, X, + - X
SJ L’<u+ = y”—t(y” ")—xo
0 2 2

Htnia=ta) t,+s, S,—t
SJ L/<u+u—tu)du
0 2 2

t,+s, t,+s,
:L< 2 +t(t”“_ 2 ))
_L<tn+sn_t(sn—tn>>
2 2
t,+s, t,+s,
:g”< 2 +t<t”+1_n2 ))
(5 (5)
g 2 2 ’
-1
“F’(xo) P(xn+l)“

1 t +s t +s
"
ng <nz n+t<t”+1_ nz n))

x (1-t)dt(t,,, -s,)

1 t t
+lj g”<—”J2rS” +t(tn+1— ";5”>>(1—t)dt

) du

(! ,,(tn+sn < tn+sn)>

+ = +t(t,,, - 1-t)dt

2]0 2 il 2 (-1

X(Sn_tn)(tn+l_sn)

(! ,,(t,,+sn < tn+sn>>

+ = +t(t,,, - 1-t)dt

(= w22 -
2

X(Sn_tn)

(24)
Hence we get
”yn-f-l - 'xn+1" = ||_F,(xn+1)_1F(xn+1)'|
< |-F' () F (o)

X |F'(x0) ' F (200
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-1
< —g'(t,,+1) g (tn+1)

= Spp1 ~ turts

"J’n+1 - x0|| = “)’n+1 - xn+1”

+ “xn+1 - xo“ < Su1-

(25)

By Lemma 3, we get

2

F'( Xne1 T Vo1

) F (=)

2

Moreover, we have

"xn+2 = Vnt1 "

<

<

| (c0) " F ()

+ -1
_F’<xn+1 ; Vnt1 ) F (xn+1)

_ HF’<xn+1 + Vur1 )_1 [FI (xn+1 T Vn1

2 2

-F (%1) ]

X F’(xn+l)71F (xn+1)

-1
_ HF’<xn+1 + Vur1 ) FI (xo) Fl(xo)—l

2
- t
X JO F (xn+1 + 5 (yn+l - xn+1)> dt

x Yn+1 ;xn+1 F’(xn+1)_l

X F' (x0) F'(%0) ' F (%,41)

! tn+1 + Snt1 >_1
g < 2

1
n t
X JO g (tn+1 + z (5n+1 - tn+1)> dt

x (Sn+1 - tn+1) i

9 (t01) "9 (t011)

2
gl<tn+1 + Sn+l )71
2
1t T St ’
x1g (%)—9 (%1)]

-1
X g’(tn+1) g (tn+1)

-1
< _g’<M> . (26)

)

5
! -1
=9 (tn+1) g(t?ﬁ—l)
_ ! tn+1 T Sui1 >_1
g ( 2
xg (tn+1) =t = Surs
||xn+2 - ‘xn+1” < "xn+2 - yn+1||
+ ||yn+1 - xn+1n < tn+2 - tn+1'
(27)

Hence, the sequence {x,},., generated by (5) is well
defined, x, € S(xy,7,), and {x,} converges to the solution
x" € S(xy, 1) of ().

Now we prove the uniqueness. Suppose y* is also a
solution of (1) on S(x,, «). We know that g'(t) < 0 for
t € [0,«). Then

F(x,)" Ll F(x" +t(y" —x"))dt - 1”

<

F(x,)"! jol [F'[x" +¢(y" = x)] = F' (x,)} t

<

11
F’(xo)_lJ’ J F'(xg+s(x* —xo +t(y*" = x"))) dsdt
0Jo

x(x" —xg+t(y" —x")) ”

11
SJ J g" (s]x" = xq +t(y" = x")|) dsdt
0

0

x[a" =0 + £ (y" = %)

)dt - g' (0)

1
- [ g e =)

1
= L g (A=t (x" —xp) +t(y* - x,)|)dt +1 < 1.
(28)

By Banach Theorem, we know the inverse of fol F'lx* +
tH(y* — x™)]dt exists and

0=F(y)-F(x)

1 (29)
L Flx +t(y' —x)]de (" - x7);

hence we get y* = x". This completes the proof of the
uniqueness of the solution of (1).
For m > n, we know that

"xm - xn” < "xm - xm—ln

+ %y = Xpa || 5 Xy — x| S 2 — 2
(30)

When m — 00, we get
% = %" < 1 - 1 (3

This completes the proof of Theorem 5. O



‘Suppose that L(u) = y+ Ku, u € (0,+00), y, K > 0. Then
[0 L w)du = Kllx = yl, g(6) = (/OKE + (1/2)p* —t +

noo = 2/(y + \Jy* + 2K),and B = & — (1/6)Ke’ — (1/2)ya’ =
2(y + 24y? + 2K)/3(y + 1y + 2K)*.

Corollary 6. Suppose X and Y are the Banach spaces, Q2 is an
open convex subset of the Banach space X,F:QcX — Yhas

the second-order Fréchet derivative, F'(x,)™" exists for x, € Q,
and the following conditions hold:

II

"F (xo Xo)“ <P

)“<K||x—y|| x,y€Q,

”F,(xo)_ F(Xo)“ <1

HF'(xO (F (x) -

<y+2 y +2K>
2

3<y+ W)

, S (xg,71) € Q.

"<

(32)

Then the sequence {x,},-, generated by (5) is well defined,
x, € S(xy,1,), and {x,} converges to the unique solution x* on
S(xy, @) of (1), where r; < r, are two positive roots of g(t) =
(1/6)Kt> + (1/2)yt> -t + 1.

Suppose L(u) = 2y(1 - yu)73, u € (0,1/y), g(t) =
n-t+yt?/(1-yt), & = (1-v2/2)(1/y) and B = (3-2V2)/yand
for flx = xoll < & IF (o) " F" (o)l < 6y%/(1 = yllx - xol)*.
Hence, for [|x — x|l + |y — x|l < &, we get

|F'(x0) " [F" () - F" 0]

L PG i - s )

2

1 )/2 (33)

0 [1=y (= x| + £y - x)])*
J~le Xoll+ly—xI yz
|

IN

e il
J,i |y -

= —
| x=x, | (1 - yu)*
[l2e=xq I+ y—xIl
j L' (w) du.
[l |

Corollary 7 (see [10]). Suppose X and Y are Banach spaces,
Q is an open convex subset of the Banach space X, F : Q ¢

Abstract and Applied Analysis

X — Y has the third-order Fréchet derivative, F '(xo)_1 exists

for x, € Q, and the following conditions hold:

[Fa P < [P0 F )] < 2m

! =1m 6)/2
I ) ol < s
" (Jx-x), xeQ, (34)
1\1
"x_x"”S(l_@);’ ny <3-2V2,
S(xgry) € Q.

Then the sequence {
x, € S(xy, 1)), and {x,} converges to the unique solution x* of

(1) on S(x, (1 - 1/\/5)(1/)1)), where

X, 1o generated by (5) is well defined,

2
L+ny—\(L+ny)” - 8ny
r = o ,
(35)
1+ 7y + (1 +ny)" - 8ny
r, = o

are two positive roots of the equation g(t) = n—t+yt*/(1-yt).

3. Numerical Examples

In this section, we apply the convergence theorem and show
three numerical examples.

Example 1. Consider the equation

1 5 1
F(x —x+ -x' - Zx+==0. 36
(x) = £X "Xty (36)
We choose the initial point x, = 0, Q = [-1, 1]; then

I 2 [P 2
=[Fo ' FOl=5  y=|FOF 0=

Kb
5

2<y+2ﬂy2+2K> 3
S==>7
3<y+ \/y2+2K> >

Hence, by Corollary 6, the sequence {x,,},-, generated by
(5) is well defined, and {x,} converges to the solution x* of
(36).

Now, we will analyze errors |x, — x*| by Corollary 6
(see Tablel). In this case, we take x, = O0; then r; =
0.462598422 - - -.

(37)

Example 2. Consider the system of equation [18] F(u,v) = 0,
where

Fuv)=(wv-1Luv+u- 207, (38)
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TABLE 1: Error results for Corollary 6 (||x, — x*|| <7, —t,).

TABLE 2: Error results for Corollary 6 (|lx, — x*|| <7, —¢,).

Step ry —t, Step r —t, Step r—t, Step r —t,

k=1 1.616985 x 107> k=2 2236349 x 10°° k=1 2.736486 x 107" k=2 3.044252 x 1072
k=3 6.225929 x 107'8 k=4 1.343387 x 107 k=3 1.588069 x 107 k=4 2.844419 x 1071
k=5 1.349560 x 1076 k=6 1.368249 x 10748 k=5 1.636509 x 107 k=6 3.116680 x 10~

Then, we have

! v u
F (u,v)—<v+1 u—2>’

. 1 u-2 -u
F'u,v - < >,
() u+2v\-v-1 v

(39)

—_ O
S =

F" (u,v) = 0
1

S ==

We choose x, = (uy,vy) = (1.75,1.75) and Q = {x |
[l = x|l < 1.75}. We take the max-norm in R* and the norm
Al = maxfla,| + |ay,, lay | + lay, |} for A = (g1 32). Define
the norm of a bilinear operator B on R* by

212
1Bl = supmaxy | Y5 u, (40)
lul=1 " =1 k=1
where u = (u;,u,)" and
bl b
bZl bZZ
B= Y . 41
i (41)
b b’
Then we get the following results:
_ 9
_ g E _ 2
n " (x0) (xo)" 14
-1 16
Y= "F,(xo) F' (xo)” o
(42)

2<y + 240y + ZK)

K=0, > 7.

2
3<y Y2+ ZK)

This means that the hypotheses of Corollary 6 are satis-
fied.

Now, we will analyze errors ||x,, — x| by Corollary 6 (see
Table 2). In this case, we take x, = (1, v,) = (1.75, 1.75); then
7, = 1.125.

Example 3. Consider the following integral equations:

x(s)=1+ lex (s) Ll ﬁx (t)dt (43)

TaBLE 3: Error results for Corollary 7 ([lx,, — x*|| < 7, — t,,).

Step r —t, Step r —t,
k=1 2.764303 x 1072 k=2 4.099223 x 107°
k=3 1.344301 x 1072¢ k=4 4741124 x 1077
k=5 2.079868 x 1072 k=6 <1.0 x 107
and the space X = C[0, 1] with the norm
X|| = max |xX(S)|.
el = max | (s)] (44)

This equation arises in the theory of radiative transfer and
neutron transport and in the kinetic theory of gases. Define
the operator F on X by

1

F(x) = ix(s) J ﬁx(t) dt — x(s) + 1. (45)

0

Then, for x, = 1, we obtain
= "Fl(xo)_lF(xo)“ =0.2652,

2y = |F'(x0) " F" (x,)] = 1.5304 x 2

1
L J S at] = 15304 % 22 05303,
4oss<1 | )y s+t 2 (46)
ny = 0.07032 < 3 -2V2,
_ 6y*
|F' (o) F" ()] =0 < %
(1= x = x])

This means that the hypotheses of Corollary 7 are satisfied.
Now, we will analyze errors ||x,, — x*| by Corollary 7 (see
Table 3). In this case, we take x, = 1; then r; = 0.289222---.
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