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Newton-Kantorovich and Smale uniform type of convergence theorem of a deformed Newton method having the third-order
convergence is established in a Banach space for solving nonlinear equations. The error estimate is determined to demonstrate the
efficiency of our approach. The obtained results are illustrated with three examples.

1. Introduction

In this paper, we study the problem of approximating a
unique solution 𝑥∗ of a nonlinear operator equation

𝐹 (𝑥) = 0, (1)

where 𝐹 is a Fréchet-differentiable operator defined on an
open convex Ω of a Banach space 𝑋 with values in a Banach
space 𝑌.

There are many iterative methods (see [1–3]), which have
been used for finding a solution of (1). For example, the well-
known iterative method for solving (1) is Newton’s method
defined by

𝑥
𝑛+1

= 𝑥
𝑛
− 𝐹


(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) , (𝑛 ≥ 0) (𝑥

0
∈ Ω) . (2)

Under the appropriate assumptions, Newton’s method is
the second-order convergence. Kantorovich (see [4]) pre-
sented the famous convergence result regarding a solution
of (1). Many Newton-Kantorovich type of convergence the-
orems were given in papers [5–11]. Frontini and Sormani (see
[12]) presented a new deformed Newton method with

∫

𝑥

𝑥
𝑛

𝑓


(𝑡) 𝑑𝑡 ≃ (𝑥 − 𝑥
𝑛
) 𝑓


(

𝑥
𝑛
+ 𝑥

2

) . (3)

The deformed Newton method can be written as follows:

𝑥
𝑛+1

= 𝑥
𝑛
−

𝑓 (𝑥
𝑛
)

𝑓

(𝑥
𝑛
− 𝑓 (𝑥

𝑛
) /2𝑓

(𝑥
𝑛
))

, (4)

where 𝑓 is a real or a complex function. In papers [13–17],
the local convergence theorem has been established and the
deformedmethod in a real or a complex space was discussed.

In the paper, we generalize the deformedNewtonmethod
[18] in a Banach space. The deformed Newton method [18] is
shown as follows:

𝑦
𝑛
= 𝑥
𝑛
− 𝐹


(𝑥
𝑛
)
−1

𝐹 (𝑥
𝑛
) ,

𝑥
𝑛+1

= 𝑥
𝑛
− 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

−1

𝐹 (𝑥
𝑛
) ,

(5)

where 𝐹 is defined on an open convex subset Ω of a Banach
space 𝑋 with values in a Banach space 𝑌, 𝐹(𝑥) has Fréchet
derivatives inΩ, and 𝐹(𝑥)−1 exists.

We establish Newton-Kantorovich and Smale uniform
type convergence theorem (see [18]) for the deformed New-
ton method with the third-order in a Banach space with
new sufficient conditions for the existence of a well-defined
sequence which converges to a unique solution 𝑥∗ of (1).
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2. Main Results

Denote 𝑔(𝑡) = ∫𝑡
0

(𝑡 − 𝑢)𝐿(𝑢)𝑑𝑢 − 𝑡 + 𝜂, 𝑢 ∈ (0, 𝑅), 𝜂 > 0, and
suppose 𝐿(𝑢), 𝐿(𝑢) are the positive and nondecreasing con-
tinuous functions, lim

𝑡→𝑅
+𝑔(𝑡) = 𝑔(𝑅

+

) > 0, ∫𝑅
0

𝐿(𝑢)𝑑𝑢 > 1,

∫

𝛼

0

𝐿(𝑢)𝑑𝑢 = 1 for 𝛼 ∈ (0, 𝑅), 𝛽 = 𝛼 − ∫𝛼
0

(𝛼 − 𝑢)𝐿(𝑢)𝑑𝑢 =

∫

𝛼

0

𝑢𝐿(𝑢)𝑑𝑢.
Assume that sequences {𝑡

𝑛
}, {𝑠
𝑛
} are generated by the

following formulae [18]:

𝑠
𝑛
= 𝑡
𝑛
− 𝑔


(𝑡
𝑛
)
−1

𝑔 (𝑡
𝑛
) ,

𝑡
𝑛+1

= 𝑡
𝑛
− 𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

)

−1

𝑔 (𝑡
𝑛
) , 𝑡

0
= 0.

(6)

Firstly, we give some lemmas.

Lemma 1. If 𝜂 ≤ 𝛽, then the function 𝑔(𝑡) has two positive real
roots 𝑟

1
, 𝑟
2
(0 < 𝑟

1
≤ 𝛼 ≤ 𝑟

2
< 𝑅).

Proof. Because 𝑔(0) = 𝜂 > 0, 𝑔(𝑅+) > 0, and 𝑔(𝑡) = 𝐿(𝑡) >
0, we know that 𝑔(𝑡) is the convex function for 𝑡 ∈ (0, 𝑅).
Hence, 𝛼 is a unique positive root of 𝑔(𝑡) = ∫𝑡

0

𝐿(𝑢)𝑑𝑢 − 1.
So, the necessary and sufficient condition that 𝑔(𝑡) has two
positive roots for 𝑡 ∈ (0, 𝑅) is that the minimum of 𝑔(𝑡)
satisfies the condition 𝑔(𝛼) ≤ 0, which holds for 𝜂 ≤ 𝛽. This
completes the proof of Lemma 1.

Lemma 2. Suppose the sequences {𝑡
𝑛
}, {𝑠
𝑛
} are generated by

(6). Then, for 𝜂 ≤ 𝛽, the sequences {𝑡
𝑛
}, {𝑠
𝑛
} are increasing and

converge to the minimum positive root of 𝑔(𝑡), and

0 ≤ 𝑡
𝑛
≤ 𝑠
𝑛
≤ 𝑡
𝑛+1

< 𝑟
1
. (7)

Proof. Denote

𝑈 (𝑥) = 𝑥 −

𝑔 (𝑥)

𝑔

(𝑥)

, 𝑉 (𝑥) = 𝑥 −

𝑔 (𝑥)

𝑔

((𝑥 + 𝑈 (𝑥)) /2)

.

(8)

On [0, 𝑟
1
), we know 𝑔(𝑡) > 0, 𝑔(𝑡) < 0, 𝑔(𝑡) > 0,

and 𝑔(𝑡) is increasing. Denoting 𝑦 = (𝑥 + 𝑈(𝑥))/2 = 𝑥 −
𝑔(𝑥)/2𝑔



(𝑥), then

𝑈


(𝑥) =

𝑔 (𝑥) 𝑔


(𝑥)

𝑔

(𝑥)
2

> 0,

[𝑔


(𝑦) − 𝑔


(𝑥)] = 𝑔


(𝜉) (𝑦 − 𝑥) = −𝑔


(𝜉)

𝑔 (𝑥)

2𝑔

(𝑥)

,

𝜉 ∈ (𝑥, 𝑦) ,

𝑉


(𝑥) = 1 − (𝑔


(𝑥) 𝑔


(𝑦) −

1

2

𝑔 (𝑥) 𝑔


(𝑦)

× 1 + (

𝑔 (𝑥) 𝑔


(𝑥)

𝑔

(𝑥)
2

))

× (𝑔


(𝑦)
2

)

−1

=

1

𝑔

(𝑦)

[𝑔


(𝑦) − 𝑔


(𝑥)] +

𝑔 (𝑥) 𝑔


(𝑦)

2𝑔

(𝑦)
2

+

𝑔(𝑥)
2

𝑔


(𝑥) 𝑔


(𝑦)

2𝑔

(𝑥)
2

𝑔

(𝑦)
2

≥ −

𝑔


(𝜉)

𝑔

(𝑦)

⋅

𝑔 (𝑥)

2𝑔

(𝑥)

+

𝑔 (𝑥) 𝑔


(𝑦)

2𝑔

(𝑦)
2

= −

𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑦)
2

𝑔

(𝑥)

[𝑔


(𝑦) − 𝑔


(𝑥)]

+

𝑔 (𝑥) 𝑔


(𝑦) − 𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑦)
2

=

𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑦)
2

𝑔

(𝑥)

⋅

𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑥)

+

𝑔 (𝑥) 𝑔


(𝑦) − 𝑔 (𝑥) 𝑔


(𝜉)

2𝑔

(𝑦)
2

> 0.

(9)

Therefore, 𝑈(𝑥), 𝑉(𝑥) are increasing on [0, 𝑟
1
]. Thus, for

𝑥 ∈ [0, 𝑟
1
), 𝑈(𝑥) < 𝑈(𝑟

1
) = 𝑟
1
, 𝑉(𝑥) < 𝑉(𝑟

1
) = 𝑟
1
. Moreover,

𝑠
𝑛
= 𝑈 (𝑡

𝑛
) , 𝑡

𝑛+1
= 𝑉 (𝑡

𝑛
) , 𝑡

0
= 0 < 𝑟

1
; (10)

hence we can easily prove Lemma 2 by the induction.
Suppose 𝑋 and 𝑌 are the Banach spaces, Ω ⊂ 𝑋 is an

open convex subset, 𝐹 : Ω ⊂ 𝑋 → 𝑌 has the second-
order Fréchet derivative, 𝐹(𝑥

0
)
−1 exists for 𝑥

0
∈ Ω, and the

following conditions hold:





𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






≤ 𝜂,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






≤ 𝐿 (0) ,






𝐹


(𝑥
0
)
−1

(𝐹


(𝑦) − 𝐹


(𝑥))







≤ ∫

𝜌(𝑥,𝑦)

𝜌(𝑥)

𝐿


(𝑢) 𝑑𝑢, 𝑥, 𝑦 ∈ Ω, 𝜌 (𝑥, 𝑦) < 𝛼,

(11)

where 𝜌(𝑥) = ‖𝑥 − 𝑥
0
‖ and 𝜌(𝑥, 𝑦) = ‖𝑦 − 𝑥‖ + ‖𝑥 − 𝑥

0
‖.

Lemma 3. Suppose 𝐹 satisfies (11) and ‖𝑥 − 𝑥
0
‖ < 𝛼. Then

𝐹


(𝑥)
−1 exists, and






𝐹


(𝑥
0
)
−1

𝐹


(𝑥)






≤ 𝑔


(




𝑥 − 𝑥
0





) ,






𝐹


(𝑥)
−1

𝐹


(𝑥
0
)






≤ −

1

𝑔

(




𝑥 − 𝑥
0





)

.

(12)

Proof. Firstly, by the conditions (11), we know that





𝐹


(𝑥
0
)
−1

𝐹


(𝑥)






≤






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)







+






𝐹


(𝑥
0
)
−1

𝐹


(𝑥) − 𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)







≤ 𝐿 (0) + ∫

‖𝑥−𝑥
0
‖

0

𝐿


(𝑢) 𝑑𝑢

= 𝐿 (




𝑥 − 𝑥
0





) = 𝑔


(




𝑥 − 𝑥
0





) .

(13)
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Secondly, we know 𝑔(𝑡) < 0 for 𝑡 < 𝛼. Hence






𝐹


(𝑥
0
)
−1

𝐹


(𝑥) − 𝐼






=






𝐹


(𝑥
0
)
−1

[𝐹


(𝑥) − 𝐹


(𝑥
0
)]







=











𝐹


(𝑥
0
)
−1

∫

1

0

𝐹


(𝑥
0
+ 𝑡 (𝑥 − 𝑥

0
))

× (𝑥 − 𝑥
0
) 𝑑𝑡











≤ ∫

1

0

𝑔


(𝑡




𝑥 − 𝑥
0





)




𝑥 − 𝑥
0





𝑑𝑡

= 𝑔


(




𝑥 − 𝑥
0





) − 𝑔


(0)

= 𝑔


(




𝑥 − 𝑥
0





) + 1 < 1.

(14)

By BanachTheorem, we know 𝐹(𝑥)−1 exists, and






𝐹


(𝑥)
−1

𝐹


(𝑥
0
)






≤

1

1 −






𝐹

(𝑥
0
)
−1

𝐹

(𝑥) − 𝐼







= −

1

𝑔

(




𝑥 − 𝑥
0





)

.

(15)

This completes the proof of Lemma 3.

Lemma 4. Suppose 𝑋 and 𝑌 are Banach spaces, Ω is an open
convex of the Banach space 𝑋, 𝐹 : Ω ⊂ 𝑋 → 𝑌 has
the second-order Fréchet derivative, and the sequences {𝑥

𝑛
},

{𝑦
𝑛
} are generated by (5). Then, for any natural number 𝑛, the

following formula holds:

𝐹 (𝑥
𝑛+1
)

= ∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑥
𝑛+1
− 𝑦
𝑛
)
2

+

1

2

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑥
𝑛+1
− 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+

1

2

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

+

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)
2

−

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)
2

.

(16)

Proof. By (5), we have

𝐹 (𝑥
𝑛+1
) = 𝐹 (𝑥

𝑛+1
) − 𝐹 (

𝑥
𝑛
+ 𝑦
𝑛

2

)

− 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

) (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)

+ 𝐹(

𝑥
𝑛
+ 𝑦
𝑛

2

) + 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

× (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)

= ∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)

2

+ 𝐹(

𝑥
𝑛
+ 𝑦
𝑛

2

)

+ 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

) (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

) ,

𝐹 (

𝑥
𝑛
+ 𝑦
𝑛

2

) + 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

) (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

)

= 𝐹(

𝑥
𝑛
+ 𝑦
𝑛

2

) + 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

× (𝑥
𝑛+1
− 𝑥
𝑛
−

𝑦
𝑛
− 𝑥
𝑛

2

)

= 𝐹(

𝑥
𝑛
+ 𝑦
𝑛

2

) − 𝐹 (𝑥
𝑛
) − 𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

𝑦
𝑛
− 𝑥
𝑛

2

= −

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)
2

.

(17)

Hence

𝐹 (𝑥
𝑛+1
) = ∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡(𝑥
𝑛+1
− 𝑦
𝑛
)
2

+

1

2

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡 (𝑥
𝑛+1
− 𝑦
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

+

1

2

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡 (𝑦
𝑛
− 𝑥
𝑛
) (𝑥
𝑛+1
− 𝑦
𝑛
)

+

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡(𝑦
𝑛
− 𝑥
𝑛
)
2
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−

1

4

∫

1

0

𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑦
𝑛
− 𝑥
𝑛
)
2

.

(18)

This completes the proof of Lemma 4.

Theorem 5. Suppose𝑋 and 𝑌 are Banach spaces,Ω ⊂ 𝑋 is an
open convex subset, 𝐹 : Ω ⊂ 𝑋 → 𝑌 satisfies condition (11),
𝜂 ≤ 𝛽, and

𝑆 (𝑥
0
, 𝑟
1
) = {𝑥 |





𝑥 − 𝑥
0





≤ 𝑟
1
, 𝑥 ∈ 𝑋} ⊂ Ω. (19)

Then the sequence {𝑥
𝑛
}
𝑛≥0

generated by (5) is well defined, 𝑥
𝑛
∈

𝑆(𝑥
0
, 𝑟
1
), and converges to the unique solution 𝑥∗ in 𝑆(𝑥

0
, 𝛼)

and





𝑥
𝑛
− 𝑥
∗



≤ 𝑟
1
− 𝑡
𝑛
. (20)

Proof. By induction,we can prove that the following formulae
hold:





𝑥
𝑛
− 𝑥
0





≤ 𝑡
𝑛
;






𝐹


(𝑥
𝑛
)
−1

𝐹


(𝑥
0
)






≤ −𝑔


(𝑡
𝑛
)
−1

;





𝑦
𝑛
− 𝑥
𝑛





≤ 𝑠
𝑛
− 𝑡
𝑛
;





𝑦
𝑛
− 𝑥
0





≤ 𝑠
𝑛
;










𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

)

−1

𝐹


(𝑥
0
)










≤ −𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

)

−1

;





𝑥
𝑛+1
− 𝑦
𝑛





≤ 𝑡
𝑛+1
− 𝑠
𝑛
;





𝑥
𝑛+1
− 𝑥
𝑛





≤ 𝑡
𝑛+1
− 𝑡
𝑛
.

(21)

In fact, by Lemma 2 we know 𝑡
𝑛
< 𝑟
1
for any natural

number 𝑛. It is easy to prove that for 𝑛 = 0 the above formulae
hold. Suppose the above formulae also hold for 𝑛 > 0. Then





𝑥
𝑛+1
− 𝑥
0





≤




𝑥
𝑛+1
− 𝑥
𝑛






+




𝑥
𝑛
− 𝑥
0





≤ 𝑡
𝑛+1
− 𝑡
𝑛
+ 𝑡
𝑛
= 𝑡
𝑛+1
.

(22)

By Lemma 3, we get






𝐹


(𝑥
𝑛+1
)
−1

𝐹


(𝑥
0
)






≤ −𝑔


(




𝑥
𝑛+1
− 𝑥
0





)
−1

≤ −𝑔


(𝑡
𝑛+1
)
−1

.

(23)

By Lemmas 3 and 4 and the fact that −𝑔(𝑡)−1, 𝑔(𝑡) are
positive and increasing on [0, 𝛼), we have









𝐹


(𝑥
0
)
−1

[𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

+ 𝑡 (𝑥
𝑛+1
−

𝑥
𝑛
+ 𝑦
𝑛

2

))

−𝐹


(

𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

))]









≤ ∫

𝑡‖𝑥
𝑛+1
−𝑥
𝑛
‖

0

𝐿


(𝑢 +









𝑥
𝑛
+ 𝑦
𝑛

2

− 𝑡 (

𝑦
𝑛
− 𝑥
𝑛

2

) − 𝑥
0









) 𝑑𝑢

≤ ∫

𝑡(𝑡
𝑛+1
−𝑡
𝑛
)

0

𝐿


(𝑢 +

𝑡
𝑛
+ 𝑠
𝑛

2

− 𝑡

𝑠
𝑛
− 𝑡
𝑛

2

) 𝑑𝑢

= 𝐿(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

))

− 𝐿(

𝑡
𝑛
+ 𝑠
𝑛

2

− 𝑡 (

𝑠
𝑛
− 𝑡
𝑛

2

))

= 𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

))

− 𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

− 𝑡 (

𝑠
𝑛
− 𝑡
𝑛

2

)) ,






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
𝑛+1
)







≤ ∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

))

× (1 − 𝑡) 𝑑𝑡(𝑡
𝑛+1
− 𝑠
𝑛
)
2

+

1

2

∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑡
𝑛+1
− 𝑠
𝑛
) (𝑠
𝑛
− 𝑡
𝑛
)

+

1

2

∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑠
𝑛
− 𝑡
𝑛
) (𝑡
𝑛+1
− 𝑠
𝑛
)

+

1

4

∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

+ 𝑡 (𝑡
𝑛+1
−

𝑡
𝑛
+ 𝑠
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑠
𝑛
− 𝑡
𝑛
)
2

−

1

4

∫

1

0

𝑔


(

𝑡
𝑛
+ 𝑠
𝑛

2

− 𝑡 (

𝑠
𝑛
− 𝑡
𝑛

2

)) (1 − 𝑡) 𝑑𝑡

× (𝑠
𝑛
− 𝑡
𝑛
)
2

= 𝑔 (𝑡
𝑛+1
) .

(24)

Hence we get





𝑦
𝑛+1
− 𝑥
𝑛+1





=






−𝐹


(𝑥
𝑛+1
)
−1

𝐹 (𝑥
𝑛+1
)







≤






−𝐹


(𝑥
𝑛+1
)
−1

𝐹


(𝑥
0
)







×






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
𝑛+1
)
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≤ −𝑔


(𝑡
𝑛+1
)
−1

𝑔 (𝑡
𝑛+1
)

= 𝑠
𝑛+1
− 𝑡
𝑛+1
,





𝑦
𝑛+1
− 𝑥
0





≤




𝑦
𝑛+1
− 𝑥
𝑛+1






+




𝑥
𝑛+1
− 𝑥
0





≤ 𝑠
𝑛+1
.

(25)

By Lemma 3, we get










𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−1

𝐹


(𝑥
0
)










≤ −𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

)

−1

. (26)

Moreover, we have





𝑥
𝑛+2
− 𝑦
𝑛+1






=










𝐹


(𝑥
𝑛+1
)
−1

𝐹 (𝑥
𝑛+1
)

−𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−1

𝐹 (𝑥
𝑛+1
)










=










𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−1

[𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−𝐹


(𝑥
𝑛+1
) ]

× 𝐹


(𝑥
𝑛+1
)
−1

𝐹 (𝑥
𝑛+1
)









=










𝐹


(

𝑥
𝑛+1
+ 𝑦
𝑛+1

2

)

−1

𝐹


(𝑥
0
) 𝐹


(𝑥
0
)
−1

× ∫

1

0

𝐹


(𝑥
𝑛+1
+

𝑡

2

(𝑦
𝑛+1
− 𝑥
𝑛+1
)) 𝑑𝑡

×

𝑦
𝑛+1
− 𝑥
𝑛+1

2

𝐹


(𝑥
𝑛+1
)
−1

×𝐹


(𝑥
0
) 𝐹


(𝑥
0
)
−1

𝐹 (𝑥
𝑛+1
)










≤ 𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

)

−1

× ∫

1

0

𝑔


(𝑡
𝑛+1
+

𝑡

2

(𝑠
𝑛+1
− 𝑡
𝑛+1
)) 𝑑𝑡

×

(𝑠
𝑛+1
− 𝑡
𝑛+1
)

2

𝑔


(𝑡
𝑛+1
)
−1

𝑔 (𝑡
𝑛+1
)

≤ 𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

)

−1

× [𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

) − 𝑔


(𝑡
𝑛+1
)]

× 𝑔


(𝑡
𝑛+1
)
−1

𝑔 (𝑡
𝑛+1
)

= 𝑔


(𝑡
𝑛+1
)
−1

𝑔 (𝑡
𝑛+1
)

− 𝑔


(

𝑡
𝑛+1
+ 𝑠
𝑛+1

2

)

−1

× 𝑔 (𝑡
𝑛+1
) = 𝑡
𝑛+2
− 𝑠
𝑛+1
,





𝑥
𝑛+2
− 𝑥
𝑛+1





≤




𝑥
𝑛+2
− 𝑦
𝑛+1






+




𝑦
𝑛+1
− 𝑥
𝑛+1





≤ 𝑡
𝑛+2
− 𝑡
𝑛+1
.

(27)

Hence, the sequence {𝑥
𝑛
}
𝑛≥0

generated by (5) is well
defined, 𝑥

𝑛
∈ 𝑆(𝑥

0
, 𝑟
1
), and {𝑥

𝑛
} converges to the solution

𝑥
∗

∈ 𝑆(𝑥
0
, 𝑟
1
) of (1).

Now we prove the uniqueness. Suppose 𝑦∗ is also a
solution of (1) on 𝑆(𝑥

0
, 𝛼). We know that 𝑔(𝑡) < 0 for

𝑡 ∈ [0, 𝛼). Then










𝐹


(𝑥
0
)
−1

∫

1

0

𝐹


(𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

)) 𝑑𝑡 − 𝐼











≤











𝐹


(𝑥
0
)
−1

∫

1

0

{𝐹


[𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

)] − 𝐹


(𝑥
0
)} 𝑑𝑡











≤











𝐹


(𝑥
0
)
−1

∫

1

0

∫

1

0

𝐹


(𝑥
0
+ 𝑠 (𝑥

∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

))) 𝑑𝑠𝑑𝑡

× (𝑥
∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

))











≤ ∫

1

0

∫

1

0

𝑔


(𝑠




𝑥
∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

)




) 𝑑𝑠𝑑𝑡

×




𝑥
∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

)





= ∫

1

0

𝑔


(




𝑥
∗

− 𝑥
0
+ 𝑡 (𝑦

∗

− 𝑥
∗

)




) 𝑑𝑡 − 𝑔



(0)

= ∫

1

0

𝑔


(




(1 − 𝑡) (𝑥

∗

− 𝑥
0
) + 𝑡 (𝑦

∗

− 𝑥
0
)




) 𝑑𝑡 + 1 < 1.

(28)

By Banach Theorem, we know the inverse of ∫1
0

𝐹


[𝑥
∗

+

𝑡(𝑦
∗

− 𝑥
∗

)]𝑑𝑡 exists and

0 = 𝐹 (𝑦
∗

) − 𝐹 (𝑥
∗

)

= ∫

1

0

𝐹


[𝑥
∗

+ 𝑡 (𝑦
∗

− 𝑥
∗

)] 𝑑𝑡 (𝑦
∗

− 𝑥
∗

) ;

(29)

hence we get 𝑦∗ = 𝑥
∗. This completes the proof of the

uniqueness of the solution of (1).
For𝑚 > 𝑛, we know that





𝑥
𝑚
− 𝑥
𝑛





≤




𝑥
𝑚
− 𝑥
𝑚−1






+




𝑥
𝑚−1

− 𝑥
𝑚−2





+ ⋅ ⋅ ⋅ +





𝑥
𝑛+1
− 𝑥
𝑛





≤ 𝑡
𝑚
− 𝑡
𝑛
.

(30)

When𝑚 → ∞, we get




𝑥
𝑛
− 𝑥
∗



≤ 𝑟
1
− 𝑡
𝑛
. (31)

This completes the proof of Theorem 5.
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Suppose that 𝐿(𝑢) = 𝛾+𝐾𝑢, 𝑢 ∈ (0, +∞), 𝛾,𝐾 > 0. Then
∫

𝜌(𝑥,𝑦)

𝜌(𝑥)

𝐿


(𝑢)𝑑𝑢 = 𝐾‖𝑥 − 𝑦‖, 𝑔(𝑡) = (1/6)𝐾𝑡3 + (1/2)𝛾𝑡2 − 𝑡 +

𝜂𝛼 = 2/(𝛾 + √𝛾
2
+ 2𝐾), and 𝛽 = 𝛼 − (1/6)𝐾𝛼3 − (1/2)𝛾𝛼2 =

2(𝛾 + 2√𝛾
2
+ 2𝐾)/3(𝛾 + √𝛾

2
+ 2𝐾)

2.

Corollary 6. Suppose𝑋 and 𝑌 are the Banach spaces,Ω is an
open convex subset of the Banach space𝑋,𝐹 : Ω ⊂ 𝑋 → 𝑌 has
the second-order Fréchet derivative, 𝐹(𝑥

0
)
−1 exists for 𝑥

0
∈ Ω,

and the following conditions hold:






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






≤ 𝜂,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






≤ 𝛾,






𝐹


(𝑥
0
)
−1

(𝐹


(𝑥) − 𝐹


(𝑦))






≤ 𝐾





𝑥 − 𝑦






𝑥, 𝑦 ∈ Ω,

𝜂 ≤

2 (𝛾 + 2√𝛾
2
+ 2𝐾)

3(𝛾 + √𝛾
2
+ 2𝐾)

2
, 𝑆 (𝑥

0
, 𝑟
1
) ⊂ Ω.

(32)

Then the sequence {𝑥
𝑛
}
𝑛≥0

generated by (5) is well defined,
𝑥
𝑛
∈ 𝑆(𝑥
0
, 𝑟
1
), and {𝑥

𝑛
} converges to the unique solution 𝑥∗ on

𝑆(𝑥
0
, 𝛼) of (1), where 𝑟

1
≤ 𝑟
2
are two positive roots of 𝑔(𝑡) =

(1/6)𝐾𝑡
3

+ (1/2)𝛾𝑡
2

− 𝑡 + 𝜂.

Suppose 𝐿(𝑢) = 2𝛾(1 − 𝛾𝑢)
−3, 𝑢 ∈ (0, 1/𝛾), 𝑔(𝑡) =

𝜂−𝑡+𝛾𝑡
2

/(1−𝛾𝑡),𝛼 = (1−√2/2)(1/𝛾) and𝛽 = (3−2√2)/𝛾 and
for ‖𝑥 − 𝑥

0
‖ < 𝛼, ‖𝐹(𝑥

0
)
−1

𝐹


(𝑥)‖ ≤ 6𝛾
2

/(1 − 𝛾‖𝑥 − 𝑥
0
‖)
4.

Hence, for ‖𝑥 − 𝑥
0
‖ + ‖𝑦 − 𝑥‖ < 𝛼, we get






𝐹


(𝑥
0
)
−1

[𝐹


(𝑦) − 𝐹


(𝑥)]







=











∫

1

0

𝐹


(𝑥
0
)
−1

𝐹


(𝑥 + 𝑡 (𝑦 − 𝑥)) 𝑑𝑡 (𝑦 − 𝑥)











≤ ∫

1

0

6𝛾
2

[1 − 𝛾




𝑥 − 𝑥
0
+ 𝑡 (𝑦 − 𝑥)





]
4
𝑑𝑡




𝑦 − 𝑥






≤ ∫

1

0

6𝛾
2

[1 − 𝛾 (




𝑥 − 𝑥
0





+ 𝑡




𝑦 − 𝑥





)]
4
𝑑𝑡




𝑦 − 𝑥






= ∫

‖𝑥−𝑥
0
‖+‖𝑦−𝑥‖

‖𝑥−𝑥0‖

6𝛾
2

(1 − 𝛾𝑢)
4

𝑢
⋅

= ∫

‖𝑥−𝑥
0
‖+‖𝑦−𝑥‖

‖𝑥−𝑥0‖

𝐿


(𝑢) 𝑑𝑢.

(33)

Corollary 7 (see [10]). Suppose 𝑋 and 𝑌 are Banach spaces,
Ω is an open convex subset of the Banach space 𝑋, 𝐹 : Ω ⊂

𝑋 → 𝑌 has the third-order Fréchet derivative, 𝐹(𝑥
0
)
−1 exists

for 𝑥
0
∈ Ω, and the following conditions hold:






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






≤ 𝜂,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






≤ 2𝛾,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥)






≤

6𝛾
2

(1 − 𝛾




𝑥 − 𝑥
0





)
4

= 𝑔


(




𝑥 − 𝑥
0





) , 𝑥 ∈ Ω,





𝑥 − 𝑥
0





≤ (1 −

1

√2

)

1

𝛾

, 𝜂𝛾 ≤ 3 − 2√2,

𝑆 (𝑥
0
, 𝑟
1
) ⊂ Ω.

(34)

Then the sequence {𝑥
𝑛
}
𝑛≥0

generated by (5) is well defined,
𝑥
𝑛
∈ 𝑆(𝑥
0
, 𝑟
1
), and {𝑥

𝑛
} converges to the unique solution 𝑥∗ of

(1) on 𝑆(𝑥
0
, (1 − 1/√2)(1/𝛾)), where

𝑟
1
=

1 + 𝜂𝛾 − √(1 + 𝜂𝛾)
2

− 8𝜂𝛾

4𝛾

,

𝑟
2
=

1 + 𝜂𝛾 + √(1 + 𝜂𝛾)
2

− 8𝜂𝛾

4𝛾

(35)

are two positive roots of the equation 𝑔(𝑡) = 𝜂−𝑡+𝛾𝑡2/(1−𝛾𝑡).

3. Numerical Examples

In this section, we apply the convergence theorem and show
three numerical examples.

Example 1. Consider the equation

𝐹 (𝑥) =

1

6

𝑥
3

+

1

6

𝑥
2

−

5

6

𝑥 +

1

3

= 0. (36)

We choose the initial point 𝑥
0
= 0, Ω = [−1, 1]; then

𝜂 =






𝐹


(0)
−1

𝐹 (0)






=

2

5

, 𝛾 =






𝐹


(0)
−1

𝐹


(0)






=

2

5

,

𝐾 =

6

5

,

2 (𝛾 + 2√𝛾
2
+ 2𝐾)

3(𝛾 + √𝛾
2
+ 2𝐾)

2
=

3

5

> 𝜂.

(37)

Hence, by Corollary 6, the sequence {𝑥
𝑛
}
𝑛≥0

generated by
(5) is well defined, and {𝑥

𝑛
} converges to the solution 𝑥∗ of

(36).
Now, we will analyze errors ‖𝑥

𝑛
− 𝑥
∗

‖ by Corollary 6
(see Table 1). In this case, we take 𝑥

0
= 0; then 𝑟

1
=

0.462598422 ⋅ ⋅ ⋅ .

Example 2. Consider the system of equation [18] 𝐹(𝑢, V) = 0,
where

𝐹 (𝑢, V) = (𝑢V − 1, 𝑢V + 𝑢 − 2V)𝑇. (38)
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Table 1: Error results for Corollary 6 (‖𝑥
𝑛
− 𝑥
∗

‖ ≤ 𝑟
1
− 𝑡
𝑛
).

Step 𝑟
1
− 𝑡
𝑛

Step 𝑟
1
− 𝑡
𝑛

𝑘 = 1 1.616985 × 10
−2

𝑘 = 2 2.236349 × 10
−6

𝑘 = 3 6.225929 × 10
−18

𝑘 = 4 1.343387 × 10
−52

𝑘 = 5 1.349560 × 10
−156

𝑘 = 6 1.368249 × 10
−468

Then, we have

𝐹


(𝑢, V) = (
V 𝑢

V + 1 𝑢 − 2
) ,

𝐹


(𝑢, V)−1 = −
1

𝑢 + 2V
(

𝑢 − 2 −𝑢

−V − 1 V
) ,

𝐹


(𝑢, V) = (

0 1

1 0

0 1

1 0

) .

(39)

We choose 𝑥
0
= (𝑢
0
, V
0
) = (1.75, 1.75) and Ω = {𝑥 |

‖𝑥 − 𝑥
0
‖ ≤ 1.75}. We take the max-norm in 𝑅2 and the norm

‖𝐴‖ = max{|𝑎
11
| + |𝑎
12
|, |𝑎
21
| + |𝑎
22
|} for 𝐴 = ( 𝑎11 𝑎12𝑎

21
𝑎
22

). Define
the norm of a bilinear operator 𝐵 on 𝑅2 by

‖𝐵‖ = sup
‖𝑢‖=1

max
𝑖

2

∑

𝑗=1












2

∑

𝑘=1

𝑏
𝑗𝑘

𝑖
𝑢
𝑘












, (40)

where 𝑢 = (𝑢
1
, 𝑢
2
)
𝑇 and

𝐵 = (

𝑏
11

1
𝑏
12

1

𝑏
21

1
𝑏
22

1

𝑏
11

2
𝑏
12

2

𝑏
21

2
𝑏
22

2

). (41)

Then we get the following results:

𝜂 =






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






=

9

14

,

𝛾 =






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






=

16

21

,

𝐾 = 0,

2 (𝛾 + 2√𝛾
2
+ 2𝐾)

3(𝛾 + √𝛾
2
+ 2𝐾)

2

> 𝜂.

(42)

This means that the hypotheses of Corollary 6 are satis-
fied.

Now, we will analyze errors ‖𝑥
𝑛
− 𝑥
∗

‖ by Corollary 6 (see
Table 2). In this case, we take𝑥

0
= (𝑢
0
, V
0
) = (1.75, 1.75); then

𝑟
1
= 1.125.

Example 3. Consider the following integral equations:

𝑥 (𝑠) = 1 +

1

4

𝑥 (𝑠) ∫

1

0

𝑠

𝑠 + 𝑡

𝑥 (𝑡) 𝑑𝑡 (43)

Table 2: Error results for Corollary 6 (‖𝑥
𝑛
− 𝑥
∗

‖ ≤ 𝑟
1
− 𝑡
𝑛
).

Step 𝑟
1
− 𝑡
𝑛

Step 𝑟
1
− 𝑡
𝑛

𝑘 = 1 2.736486 × 10
−1

𝑘 = 2 3.044252 × 10
−2

𝑘 = 3 1.588069 × 10
−4

𝑘 = 4 2.844419 × 10
−11

𝑘 = 5 1.636509 × 10
−30

𝑘 = 6 3.116680 × 10
−92

Table 3: Error results for Corollary 7 (‖𝑥
𝑛
− 𝑥
∗

‖ ≤ 𝑟
1
− 𝑡
𝑛
).

Step 𝑟
1
− 𝑡
𝑛

Step 𝑟
1
− 𝑡
𝑛

𝑘 = 1 2.764303 × 10
−3

𝑘 = 2 4.099223 × 10
−9

𝑘 = 3 1.344301 × 10
−26

𝑘 = 4 4.741124 × 10
−79

𝑘 = 5 2.079868 × 10
−236

𝑘 = 6 <1.0 × 10−500

and the space𝑋 = 𝐶[0, 1] with the norm

‖𝑥‖ = max
0≤𝑠≤1

|𝑥 (𝑠)| . (44)

This equation arises in the theory of radiative transfer and
neutron transport and in the kinetic theory of gases. Define
the operator 𝐹 on𝑋 by

𝐹 (𝑥) =

1

4

𝑥 (𝑠) ∫

1

0

𝑠

𝑠 + 𝑡

𝑥 (𝑡) 𝑑𝑡 − 𝑥 (𝑠) + 1. (45)

Then, for 𝑥
0
= 1, we obtain

𝜂 =






𝐹


(𝑥
0
)
−1

𝐹 (𝑥
0
)






= 0.2652,

2𝛾 =






𝐹


(𝑥
0
)
−1

𝐹


(𝑥
0
)






= 1.5304 × 2

⋅

1

4

max
0≤𝑠≤1











∫

1

0

𝑠

𝑠 + 𝑡

𝑑𝑡











= 1.5304 ×

ln 2
2

= 0.5303,

𝜂𝛾 = 0.07032 < 3 − 2√2,






𝐹


(𝑥
0
)
−1

𝐹


(𝑥)






= 0 <

6𝛾
2

(1 − 𝛾




𝑥 − 𝑥
0





)
4
.

(46)

This means that the hypotheses of Corollary 7 are satisfied.
Now, we will analyze errors ‖𝑥

𝑛
− 𝑥
∗

‖ by Corollary 7 (see
Table 3). In this case, we take 𝑥

0
= 1; then 𝑟

1
= 0.289222 ⋅ ⋅ ⋅ .
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