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1. Introduction

The main object of our study is the following optimal control
problem for a nonlinear elliptic equation:

subject to constrains

Copyright © 2020 Peter I. Kogut et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We discuss the existence issue to an optimal control problem for one class of nonlinear elliptic equations with an exponential type
of nonlinearity. We deal with the control object when we cannot expect to have a solution of the corresponding boundary value
problem in the standard functional space for all admissible controls. To overcome this difficulty, we make use of a variant of the
classical Tikhonov regularization scheme. In particular, we eliminate the PDE constraints between control and state and allow
such pairs run freely by introducing an additional variable which plays the role of “compensator” that appears in the original
state equation. We show that this fictitious variable can be determined in a unique way. In order to provide an approximation of
the original optimal control problem, we define a special family of regularized optimization problems. We show that each of
these problems is consistent, well-posed, and their solutions allow to attain an optimal solution of the original problem as the
parameter of regularization tends to zero. As a consequence, we prove the existence of optimal solutions to the original problem
and propose a way for their approximation.

where Q is a bounded open domain in RY, N > 1, the bound-
ary 00 is assumed to be Lipschitz, f(y) = F'(y), where F €
C'(R) is a given nonlinear function, y, € L*(2) is a given dis-
tribution, Uj is a nonempty closed convex subset of L?(Q2),
2<p<+00,and a >0 is a given weight coefficient.

Optimal control governed by PDEs has been examined
thoroughly since the pioneering work of J.L. Lions (see [I,
2], for instance). Other important references that also deal
with the numerical approximation and in addition to those
already mentioned above without any attempt to be exhaus-

1
Minimize J(u,y) = EJQ|y—yd|2 dx + %JQMP dx, (1)

-Ay=f(y)+uinQ, (2) tive, are [3-9]. However, as for the optimal control problem
(OCP) (1)-(4) and the corresponding Dirichlet boundary

y=00n0%Q, (3) value problem (BVP) (2)-(3), it is well known that they are

. ill-posed, in general, and it is unknown whether the set of

ue U, SIP(Q),y € Hy(9), (4) optimal pairs to the problem (1)-(4) is nonempty. In
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particular, there is no reason to assert the existence of weak
solutions to (2)-(3) for a given u € LP(Q2) or to suppose that
such solution, even if it exists, is unique (see, for instance,
L.M. Gelfand [10], M.G. Crandall and P.H. Rabinowitz [11],
F. Mignot and J.P. Puel [12], T. Gallouét, F. Mignot and J.P.
Puel [13], H. Fujita [14], R.G. Pinsky [15], R. Ferreira, A. De
Pablo, J.L. Vazquez [16], J. Dolbeault and R. Staficzy [17]).

The novelty of this paper is that we discuss the existence
of optimal pairs to OCP (1)-(4) using an indirect approach
based on the classical Tikhonov regularization technique in
its special implementation. The idea to involve the Tikhonov
regularization is inspired by the following reason: the main
characteristic feature of BVP (2)-(3) is the fact that because
of the specificity of nonlinearity f(y) (in many particular
implementations of the model (2)-(3), F(u)=2Ae*, [18,
19]), we have no a priori estimate for the weak solutions in
the standard Sobolev space Hy(Q2). As a result, the consis-
tency of OCP (1)-(4) and existence of optimal pairs can be
established only if we impose rather strict assumptions on
the original data. In particular, it was shown in [20] that
the set of optimal solutions of (1)-(4) is nonempty provided
N>2, p>2, the domain Q is star-shaped with respect to
some interior point x,, and the set of feasible pairs = contains
at least one pair (u, y) such that f(u) € L*(Q).

Therefore, our main intention is to show that these
assumptions can be essentially weakened or even eliminated.
With that in mind, in the framework of Tikhonov regulariza-
tion technique, we introduce the additional variable z (the so-
called “defect” in the state equation) into the regularized
problem in order to let the pairs “ control-state” (u, ) run
freely in the feasible space L(Q) x H}(Q) so that there is
no dependence of y on u. At the same time, there is a princi-
ple difference between the standard implementation of the
Tikhonov regularization of OCPs (see, for instance, [21-
23]) and the proposed scheme. This difference lies in the
exploitation of the terms s||f(y)\|irl(9)/2 and & f(y)[| )/
2 in the perturbed cost functional J,(u, y, z). We show that
the boundedness of these terms on the set = of feasible solu-
tions to the original problem plays a crucial role in the study
of asymptotic behaviour of global solutions to regularized
OCPs. Having introduced a special family of optimization
problems, we also show that there exists an optimal solution
to the original OCP that can be attained with a prescribed
level of accuracy by the sequence of optimal solutions for
the regularized minimization problems (for benefit of this
approach and its comparison with other ones, we refer to
the recent papers [24-31]).

The paper is organized as follows. In Section 2 we give
some preliminaries and describe in details the characteristic
features of OCP (1)-(4). The Tikhonov regularization of
the original OCP is discussed in Section 3. The key result of
this section is Theorem 8, where we announce the sufficient
conditions of the existence of optimal solutions to the regu-
larized problems. In Section 4, we focus on deriving and sub-
stantiation of optimality conditions for regularized optimal
control problem. The details of the indirect approach to the
study of the original optimal control problem are discussed
in last section. The key points of such approach are summa-
rized in Theorem 13.
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2. Preliminaries

Let Q be a bounded open subset of RY (N >1). Let F: R
— [0, +00) be a mapping such that F € C'(R). We specify
this mapping as follows: there exists a constant C > 0 such
that

0
CpF'(2) > F(z),¥z € Rand J zF'(z)dz| <+00.  (5)

Then, it is easy to deduce that

F(z) > F(a) exp (C}' (z - a)),

(6)
Va,z:-00<a<z<+00.

Following the standard notation, by Hj((2), we denote

the Sobolev space as the closure of C{°(2) with respect to

the norm (fQ|Vy|2 dx)l/z. Let H(Q) be the dual space to
H}(Q).

In order to make a precise meaning of the weak solution
to BVP (2)-(3) in the sense of distributions (or shortly, distri-
butional solution), we begin with the following concept.

Definition 1. Let u € U, be a given control function. We say
that y = y(u) is a weak solution to the boundary value prob-
lem (2)-(3) in the sense of distributions, if it belongs to the
class of functions

Hy = {y € Hy(Q): f(y) € Lipe(Q) }, (7)

and the integral identity

| wvp)ac=| fipdrs | wpas ®)

holds for every test function ¢ € C5°(Q).
Since for each test function ¢ € C;°(Q), there exists a
compact set K ¢ Q such that

supp p CK cQ, (9)

it follows that the second term in (8) is well defined, namely,

Lf(y)MxSJKIf(y)ledxsII¢\IC(K)IIf(y)IIL1<K)~ (10)

At the same time, it is unknown whether the original
BVP admits at least one weak solution in the sense of Defini-
tion 1 for each admissible control u € Uy € LP(Q2). Moreover,
as follows from (8), the continuity of form ¢ — [y, ¢} = [,
f(»)pdx on the set Hy(Q) is not evident. For the details
related with this issue, we refer to the classical paper Casas,
Kavian, and Puel [20].

Before proceeding further, we make use of the following
observation. Assume that for a given u € Uy, we have y € Hy,
and the pair (u, y) is related by integral identity (8). Then,
for each test function ¢ € C5°(Q), the following estimate
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+

f fO)gdx <

[0}

L} (Vy,Vo) dx

J ugp dx
Q

<Yl 19l ) + 14l 20 19120

p2
[y + Cal@T |19y

by Poincar€’s ineq.
<

(11)

holds true. Hence, the mapping ¢ — [y, 9], can be extended

by continuity onto the set of all ¢ € Hy(Q) using (11) and
the standard rule

9], =lim[y, ¢ ], (12)

e—0

where {¢,},_, ¢ C&°(RY) and ¢, — ¢ strongly in Hy(Q) as
€ — 0. In particular, if y € Hy, then we can define the value
[y, ¥]y> and this one is finite for every y € H;. As a conse-
quence, we deduce: if y € H; is a weak solution to boundary
value problem (2)-(3), then y satisfies the energy equality

JQ|Vy|2 dx=[y, ], + Jﬂuy dx. (13)

However, it is unknown whether the value [y, y] 7 preserves
a constant sign for all y e H . Therefore, we cannot make use

of the energy equality (13) in order to derive a priori estimate
in [l g2 ©)-horm for the weak solutions.

In particular, to specify the term [y, y|, we have the fol-

lowing result (we refer to [20], Lemma 2.1) where this result
was proven for a particular nonlinearity f(y) =¢” (see also
[27, 28, 32] for the more general cases).

Lemma 2. Let y = y(u) be a weak solution to BVP (2)-(3) for a
given u € Uy. Then, f(y) e H'(Q),

IF 1) < Wl ) + CQ|Q|(P_2)/2PHuHLP(Q)’ (14)

1:2)y =< 0 sy = | 20 d, Ve € HY(©)
)
(15)
and, therefore, z f(y) € L' (Q) for every z € H}(Q).

Proof. Taking into account the Friedrich’s inequality
¥l < Call Wl Wy € HYQ) (16)

and following the definition of the weak solution, we have

(see (8))

+

j f)pdx<

O

J (Vy,Vo) dx J uQ dx
Q Q

IVl IVOll 20 + 14l 20191l 20

by(13) )
< Wl 19l + Cal 272
’ HuHLP(Q)”(PHHé(Q)’ Vo € Cgo(IRN)_
(17)

Hence, y € H; by Definition 1.

Let z € Hy(Q2) N L®(Q) be an arbitrary element. Since
f(y) eL'(Q), it follows that the term [ zf(y)dx is well
defined. Let {¢,},.,CC®(Q) be a sequence such that ¢,

— z in H}(Q). Moreover, in this case, we can suppose that

sup ¢, ll (o) < +ooand @, = zin L (Q). (18)
e>0

Hence, due to the fact that y € Hy, we get

y(18)

|, 20 dx=tim| g.f0) dx=timpyg), "2 ],

(19)

Thus, we arrive at relation (15) for each z € Hy(Q) N L*®
Q).
Let us take now z € H}(Q) such that z> 0 almost every-
where in Q. For every € > 0, let T, : R — R be the trunca-
tion operator defined by

T,(s) =max {min {s,e"'},~¢"'}. (20)

The following property of T, is well known (see [33]): if
z € H)(Q), then

T,(z) € L®(Q2) N Hy(Q)Ve
>0and T,(z) — zin Hy(Q)ase — 0.

(21)

Hence, T,(z) — z almost everywhere in Q. Since

TE&f0)E @) 20me, (@)

it follows that {T,(2)f(y)},., is a pointwise nondecreasing
sequence, and also, T,(z)f(y) — z f(y) for almost all x €
Q. Therefore, by monotone convergence theorem, z f(y) is
a measurable function on 2, and

lim | 7@ ()= 2f(ax. (23)
Q 0

e—0
Thus, (15) holds true for each z € Hy(Q) such that z > 0.
As for a general case, i.e., z € Hy((2), it is enough to note

that z=z" -z~ with z%,z- € H}(Q) and z",z" >0 in Q,
where z* :== max {z,0}, z~ == max {-z, 0}.



To complete the proof, it remains to observe that

e—0

|, 20) 4" im| g1
(0} Q

by(17)(14) - .
< £§%(||y||§lé(o) +|Q|® 2>/2PCQ||”||LP(Q)) 1Pell 1)

- (by the strong convergence of ¢, — zin Hy(Q))

—1 —
= (||J’||11)45(Q) + |Q|<‘D 2>/ZPCQ||”||LP(Q)) ”Z”Hé(Q)’
(24)

holds true for an arbitrary element z € H}(Q). As a result, we
have f(y) e H'(Q) and

O D ey = J'Qzﬂy) dx¥z € Hy(©2), and £

—1 _
< (Il + 192172 Collul ) )-
(25)

Remark 3. As follows from Lemma 2, whenever (y,u) is
related by integral identity (8) and y € H/, then f(y)e
H™'(Q), but for a general ¢ € H(Q), it is not necessarily
true that the duality action <f(y), >y (q)my ) is given
by an integral [,¢f(y)dx, hence the need for a rigorous
definition of [y, ¢],.

As a direct consequence of Lemma 2 and relation (13), we
can specify the energy equality (13) as follows.

Corollary 4. Let u € U, be a given control and let y = y(u) €
HL(Q) be a weak solution to BVP (2)-(3) in the sense of
Definition 1. Then, the energy equality for y takes the form

JQ|Vy|2 dx = ng fly)dx+ Jguy dx. (26)

Since it is unknown whether there exists a weak solution
to BVP (2)-(3) for a given u € Uy, or to suppose that such
solution, even if it exists, is unique, it motivates us to intro-
duce the following set.

Definition 5. We say that a pair (u, y) is a feasible solution for
optimal control problem (1)-(4) if u € Uy, y e Hy, f(y) € L
(Q), and the pair (4, y) is related by integral identity (8). By
EcIP(Q)xHy(Q), we denote the set of all feasible
solutions.

As for the optimal control problem (1)-(4), it was men-
tioned in [20] that its study is a nontrivial matter because
of the specific of nonlinearity f(y) (in [20], the authors con-
sider the case f(y) =¢’). The main troubles in this case are
strongly related with the following circumstances:

(i) The set of feasible solutions can be empty, in general

(ii) Even if = + &, we have no a priori estimate for the
weak solutions of (2)-(3) with arbitrary u € U

Abstract and Applied Analysis

(iii) Some a priori estimates can be established if only
N>2, the domain Q has a sufficiently smooth
boundary, and it is star-shaped with respect to some
interior point x,, i.e,

(0 =x4,v(0)) 20, fora.a.o €00, (27)

where v(o) denotes the outward unit normal vector
to 0Q2 at the point o, and the considered weak solu-
tions y(u) of (2)-(3) satisfies the extra property f(y)
€L*(Q)

(iv) Since we have no estimates for the states (especially
without the above mentioned extra property f(y) €
L*(Q)), it follows that we cannot deduce the bound-
edness in L?(Q) x Hy(Q2) of a minimizing sequence
to the problem (1)-(4)

(v) Even if a minimizing sequence {(u, y;) € £}, is
weakly compact in LP(Q) x Hy(Q) with p>2, it
does not allow to pass to the limit in integral identity
(8) as k —> o0, and, therefore, we are not able to
prove the existence of an optimal pair to the problem

(1)-(4).

Although this list can be extended by many other
options, we can summarize this issue by the following exis-
tence result (in order to prove this assertion, it is enough
to closely follow the arguments of the proofs of Theorems
3.5 and 3.6 in [20]).

Theorem 6. Let us assume that the following conditions hold
true: N > 2, p> 2, the domain Q has a C*' boundary, this
domain is star-shaped with respect to some interior point
X, and the set of feasible pairs E contains at least one pair
(u,y) such that f(u) € L*(Q). Then, there exists a unique
pair (u°,y°) € £ such that

(%)) €8y & J(u)") = inf J(wy),  (28)

where

(g - 1) JQWy\Z dx< NJQF(y) dx

—jou<x> (x = xpVy(x) dx

(29)

In spite of the fact that not every pair (u,y) of Z,
C E needs to be a feasible pair to (1)-(4) with the extra
property  f(y) €L?(Q), and constrained minimization
problems

<< inf J(u, y)>and<( inf J(u, y)>, (30)

uy)es u,y)€E,
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are distinguished from a formal point of view, we can
deduce the following result (for the proof we refer to [20],
Proposition 3.2).

Proposition 7. Assume that N > 2 and Q is star-shaped with
respect to some interior point x,. Assume also that boundary
value problem (2)-(3) has a weak solution for some control
uelP(Q) with p>2. Then, there exists a solution z of
(2)-(3) corresponding to the same control u and such that

<g - 1) JQ|VZ|2 dx < NJQF(Z) dx — Jﬂu(x) (x = x,Vz(x)) dx.
(31)

In the next section, we will show that the main restric-
tions coming from Theorem 6 and Proposition 7 can be elim-
inated by introducing a new additional variable z into the
problem which lets pairs (1, y) run freely in the feasible space
LP(Q) x Hy(Q) so that there is no dependence of y on u.

3. On the Tikhonov Regularization of the
Original OCP

Let us introduce the Tikhonov regularized optimal control
problem associated to the original OCP (1)-(4). Let £ > 0 be
a given small parameter. Then, the regularized problem reads
as follows (for comparison, we refer to [22, 23]).

1
Minimize J,(u,y,z) = EJQU’—)’AZ dx
1
+ gJ |ulf dx + —J |Vz|2 dx
p 1o} 28 o)

=[O+ I D))
(32)

subject to constraints
ueU, cIP(Q), ye Hy(Q), f(y) e L' (Q)nH'(2), (33)

-Az=Ay+f(y) +uin, (34)
z=00n0Q. (35)

To begin with, let us stress again that the main reason to
introduce the additional variable z into the regularized prob-
lem is to let pairs (u, y) run freely in the feasible space LF(
Q) x Hy(Q) so that there is no dependence of y on u. On
the other hand, there is a principle difference between the
standard scheme of the Tikhonov regularization of OCPs
(see, for instance, [22, 23]) and the proposed regularization
in the form (32)-(35). This difference lies in the exploitation
of the terms s||f(y)||irl<9)/2 and ¢|[f(y)[|;(q)/2 in the per-

turbed cost functional J,(u,y,z). As it will be shown later
on, the boundedness of these terms on the set = of feasible
solutions to the original problem (see Lemma 2) plays a
crucial role in the study of asymptotic behaviour of global

: 0 0 0
solutions { (1Y, y, zs)}0<£S£0 as ¢ tends to zero.

Our main assumptions are:

(a) Qs a bounded open domain in RN, N > 1

(b) U, is a nonempty closed convex subset of L?((2), 2
<p<+0oo

(¢) f: R—> [0, +00) is a given monotonically increas-
ing mapping such that f € C(R).

We say that a tuple (u,y,z) € LP(Q)x [H(l,(())]2 is a
feasible solution to regularized problem (32)-(35) (in sym-

bols, (u,y,z) € A,), if ue Uy, J. (4, y,2) < +00, and the fol-
lowing variational equality

a(z,9) = F(9), (36)

holds true for all ¢ € Hy(Q2), where
F(9) =TI+ () + | SOIpde ()
and a: H)(Q) x H}(Q) — R denotes the bilinear form
a(z, @) = J (Vz,Vo) dx. (38)
o

Let us show that, for each &€>0, the set of feasible
solutions A, to regularized problem (32)-(35) is non-
empty. Indeed, let (u,y) be an arbitrary pair in L?(Q) x
H{}(Q) such that

ueUzandf(y) e L'(Q)NnH'(Q). (39)

Then, the right hand side of (36) is well defined for
each test function ¢ € Hj(Q2) and satisfies the following
estimate (see (12)).

|F(9)| < ‘(V%WP)Lz(mN

+ ‘<f()’)’ §D>H’1(Q);Hé(9)’

+ ‘(% (P)LZ(_Q)‘

(40)
< {H)’HH&)(Q) + ||f(y)||H"(Q)

+Cal 2 ully | 19y

Since, the bilinear form a(-, -) is continuous and uni-
formly coercive on HJ(Q) x H}(Q), it follows from Lax-
Milgram theorem that the variational problem (36) has a
unique solution z=z(u,y) € Hy(Q). Hence, J (4, y,2) <+
oo and, therefore, (u,y,z) € A, for a given &>0. Thus,
A, # @ and this implies that regularized optimal control
problem (32)-(35) is consistent for all €> 0.

Our next intention is to discuss the issue related to the
existence of optimal solutions of the regularized problems
(32)-(35).



Theorem 8. Assume that conditions (a)-(c) indicated before
are valid. Then, for each € > 0, there is a triplet (12, y?,2°) €
A, such that

J(yhel) = nf T (w.2). (41)

Proof. Let € > 0 be a given value. Since the cost functional ],
: A, — R is nonnegative on A, it follows that there exist
a p, >0 and a sequence {(t,j Vo Zeje) Frep € Ae Such that

He= i Jo(9,2) = lim T (e e Zek), (42)

He < ]s (us,k+1’ye,k+l’ Zs,k+1) < ]s (us,k’ ys,k’ Zs,k) < He +1, Vk € N.
(43)

Then, we can immediately deduce from (43) and defini-
tion of the set A, that y,, € Hy(Q) for each k€ N and the
sequences

{ye,k }kelN’ {u&k}ke]N’ {Z&k }kelN’ and{f (y&k) }ke]N’ (44)

are uniformly bounded in L*(Q), LF(Q), H}(Q), and
H'(Q)NL'(Q), respectively. In particular,

P (Me + l)p 2
igﬂg””s,kHLP(o) s T a sgﬂgstkHHé(Q) <2e(p+1),
(45)
2 2015420
S0P Yooy < 4k + 1)+ 2yl sapll 10 2(,45: o)
keN
(46)
2(u +1)
sup||f (v, LS =t 7 (47)
S0p ()<

Hence, without loss of generality, we can suppose that
there exist elements y, € L*(Q), u, € L*(Q), &, e H'(Q),
and z, € H{(Q) such that

Ve = YeinL*(Q), (48)
Uy — u in (), (49)
Zx — 2, in Hy(Q), (50)
f(ex) = & in H (), (51)

as k — 0o.
Let us show that, in fact, y, , — y, in H{(02). Indeed, from
(36), using y, , € Hy(Q2) as a test function, we find that

JQ [{Vyg,kf + (st,k’vyg,k) - us,kys,k:| dx

= <f (ys,k)’ye,k>H’1 (Q):Hy ()

(52)
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for all k € N. Then, utilizing the Poincaré’s inequality, we
obtain

195l = [zeslliyy * 1 Oei) 0

+ CQ|Q|(P_2)/2pHu€>kHLP(Q):| X Hvys,kHLz(Q)‘\"
(53)

From this and estimates (45)-(46), we deduce that

2(u, +1 _ £ "

:‘g“vye,k”mﬂ)“‘ < 7(%8 ) {1 +e+ Cp|Q| P22, /12)_0‘] =C!.
€

(54)

Thus, without loss of generality, we can suppose that (up
to a subsequence)

Vek — Ve inH(l)(Q)’ Yek = Ve ian(‘Q)’ ys,k(x) _)ys(x) a.e.in 0.
(55)

Utilizing the pointwise convergence (55), and assump-
tion (c), we see that

f(Yex) — f () almost everywhere in Qask — 0o.  (56)

Let us show that this fact together with (47) implies the
strong convergence

f(Yes) — () inL'(Q) ask — oo. (57)

To begin with, let us show that the sequence
{f(Ver)Vex} e is bounded in L'(Q). With that in mind,
for each k € N, we make use of the decomposition y, ; = y;,
= Yox With

Ve =max {0,y } € Hy(Q), yoo = max {0y, } € Hy(€),
(58)

and set

n, ify(x)>n,
T X) = 59
,,()/)( ) {y(x), if y(x) <n. (59)

Then, THQ/) eL®(Q)Nn H(l) (Q) for all ye H(l)(Q) such

that y > 0. Using y;, € H{(£2) as a test function in (36), we
find that

J ST, () de= JQ (V2oVT, (%)) dx
+ JQ (Vy&k,VTq (y;k)) dx (60)

- Qus,kT,? (Vix) dx, Vn e N.
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Since T, (yi;) — yix in Hy(Q) as n— oo, the limit
passage in (60) as # — oo leads to the relation

J F(Ver)yixdx= J (Vze o Vyiy) dx + j (VyeoVyi) dx
0 0 (0]

- J U kYo A%
Q
(61)

From this and the fact that ”y;k”H})(Q) < ”y&k”H(l)(_Q)’ we

deduce the estimate

|, FOwide= el * sl

¥(29),(29)(37)
ék”L" Q)]HyskHHl(Q =

. p (p-2p ((He + 1P v
-G | V/2e(u, + 1) + C; + Cg|Q| — = .

+ Co| QP2 ||u

«

(62)
Arguing in a similar manner, it can be shown that

by(29),(29)(37)

L)f (Vek)erdx <
1p
C [m+ C: + Col0| P (Ls . 1)p> ] .

[0

(63)

Since yi + ¥ =1yex |, it follows from (62)-(63) that
there exist positive constants C;,, i = 1,2, independent of k
and y,; such that

2u£||f()’g,k)ys,k”y(g) < Cl,s(["s + 1) + CZ,E(AMS + 1)2/}7. (64)
€

In order to prove the strong convergence (57), we
make use of Vitali’s theorem. To do so, we fix an arbitrary
0 >0 and take m > 0 and 7 > 0 such that m > 2C>*/3, =45/

(2f (m)), where
Co" = Cre(pe +1) + Co (e +1)7. (65)

Then, for every measurable set S with Lebesgue
measure |S | <8, we have

[ s0uax= | F o) e | 1 (res)

{xeS :y&k(x)Sm}
ys,kf(ye,k) dx + J

{xeS:ysyk(x)>m}

1
< _

m) dx
m.[{xeS:y&k(xpm} fm)

{xeS'y k(x)sm}

= %Lz'yﬁ’klf()’g,k) dx+f(m)|S| _4 )Cr:l*

§ 0
+f(m)|S| < 3 + 3

As a result, we see that the sequence {f(y, 1)},
integrable and, hence, the desired convergence (57) is a direct
consequence of the pointwise convergence (56) and Vitali’s
convergence theorem. From this and (51), we obtain

E=f(e) f(e) € H ' (Q)NLYQ). (67)

Since the set of admissible controls Uy is convex and
closed in L?(Q), it follows from Mazur’s theorem that it is
sequentially closed with respect to the weak topology of L?
(Q). Hence, u, € U,. Thus, in order to decide that (u,,y,,
z,) is a feasible solution to the regularized problems
(32)-(35), it remains to show that this tuple is related by
the variational equality (36). To do so, we utilize the follow-
ing integral identity

is equi-

L} [(V)’e,k’v‘l’) +(Vz 1, Vo) - ”e,kﬂ dx

(69
= | F0)0de= (0 Ot oo

which holds true for each ¢ € Hy(Q), k€ N, and & > 0. Tak-
ing into account properties (48)—-(51), (67), the limit passage
in (68) as k — 0o becomes trivial. As a result, we arrive at
the following relation

jgumwm + (V2,99) - g dx

jﬂf(yaso dx¥g € H(0).

(69)

by(46)
=<f(Ve) P>11 (i) =

Thus, (u,, y,,z,) is a feasible solution to the regularized
problems (32)-(35).

To conclude the proof, let us show that, in fact, the triplet
(44> ¥,> 2,) is optimal to the problem (32)-(35). Indeed, in
view of the strong convergence (57) and lower semicontinu-
ity of norms in reflexive Banach spaces H}(Q), H™'(Q), and
LP(Q) with respect to the weak convergence, passing to the
limit in (42), we obtain

Ausz inf ] (u y’ - hm]( Sk’ys,k’ Zs,k)

(u,y,2)€A,
Zhin 1nf]£( sk’ysk’zsk) ]( 8’y8’25> (70)
> f > - .
_(M;IZI)GA](uy 2= #e

Thus, the equality (41) holds true with (u?,y?,2?) =
(4e> ¥, 2.) and, therefore, the tuple (u,,y,,z,) is optimal
for regularized problems (21)-(24).

4. Optimality Conditions for
Regularized Problem

In this section, we focus on deriving of optimality conditions
for regularized optimal control problem (32)-(35) corre-
sponding to the case U, = LP(Q).



We begin with the following observations.

Remark 9. In spite of the natural expectations, the mapping
(u, y) ¥ z, where z = z(u, y) is the solution of (34)-(35) asso-
ciated to u and y, is not of class C' from L?(Q) x H}(Q)
—> H}(Q). Indeed, if we assume this property, then the
mapping y — f(y) should be of class C' from H}(€2) into
H™'(Q) on the subset Y ¢ Hy(2) defined by

Y={ye Hy(Q): f(y) eL'(Q)n H’l(Q)}. (71)

Apart from the fact that, under the assumptions on the
function f, it is not clear whether the set Y has a nonempty
interior int (Y). Even if it is so, then the assumption that
the mapping y+— f(y) is of class C' at some point y, €
int (Y) would imply f'(y,)he H(Q) for all he H)(Q).
However, when N > 3, even for C* function such as f(y) =
exp (y), this result does not hold.

Indeed, let us consider the case N =3, f(y) = exp (y), and
Q is the unit ball B,(0) ¢ R’. Then, the function y(x)=-A
log (x| ), for 0 < A < 5/2, satisfies y € Y. Now, if we set h(x)
=|x|p(x) for 0 < a<1/2 and a function ¢ € C{°(Q2) such
that 0< @ <1 and ¢(x) =1 for |x | <1/2, we have h € Hy(Q)
and f'(y(x))h(x) = |x| ¥ e(x). However, f'(y)heH(Q)

when a + A > 5/2.

Remark 10. In practice, the numerical simulation of ||-|| ;- ©)
-term in the cost functional is quite specific and a delicate
matter. Usually, it is associated with providing a very precise
numerical analysis. In order to avoid these difficulties, it
makes sense to substitute the ||-|| ;-1 ) term in the cost func-
tional by some equivalent norm. For instance, let u* be an
element of H!(Q) such that

(7 w) g oy 0) = L(F’V“)RN dx

0 ou
=J [ a:l+ +FNa dx, Yu € Hy(Q),
(72)
where F=[F,, - Fy] in L*(Q;RY) is a given a vector-
function.

It is clear that

[l i) < \/JQ (F}(x)+-+Fx(x)) dx. (73)

On the other hand, due to the Lax-Milgram theorem, the
Dirichlet boundary value problem

—Ay=u"inQ,y=00n0Q, (74)

has a unique solution y = (-A)"'u* € H}(Q) for each u* €
H™'(Q). Moreover, in view of the energy equality
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JQ(Vy:Vy)RN dx = HV)}H;(Q;IRN) = ||)’||§{3(Q) = <”*’J’>H-1(Q);Hg(0)’
(75)

which holds true for the weak solution of Dirichlet problems
(74), we can deduce the following a priori estimate

||)’||H},(Q) = H(‘A)_lu* HHé(Q) = HV(_A u ”LZ(Q;RN) < H”*HH"(Q)'
(76)

Combining this result with (73), we obtain the following
chain of inequalities for the dual norm ||| +(q) in H™'(0):

IV(=4)"u"

12 (Q;]RN)

<l g1 < \/ jg(F%<x>+~-+F%v<x>) dx

by(50)
. \/j 19 = 9 ey

=V

(77)

12 (Q;IRN) ’

Hence, in this case, the standard norm in H'(Q) is
equivalent to the following one

= ||V(-2)"u* Vu' e H'(Q). (78)

I o -

Taking this fact into account, in this section, we specify
the cost functional (32) as follows

1
Je(u,y,2) = EJQ|y—yd|2 dx + pJ |ulf dx + —J Vz|* dx

5 19D O ey * 1O

(79)

As a result, to derive optimality conditions for regular-
ized optimal control problem (79), (33)-(35), we apply the
following reasoning. Let € >0 be a fixed value. In addition

to (5), we assume that £(0) # 0 and f(y) = F'(y) are a convex
function for which there exists a constant C,, > 0 such that

(%) _
f(0)

|f (%1 +x3) = f (1) < Cpf (1)

1|, Vx;,x, € R.

(80)

Note that this property does not come into conflict with
relation (6), and as a particular case of f(x) satisfying (80)
is f(x) = C exp (kx).

Let # be the following subset of H}(Q)

H ={yeHy(Q): Ay e IP(Q), f(y) e LP(Q)}.  (81)

In view of the properties of function f, it is unknown
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whether this set has a nonempty interior. However, taking
into account that p >2 and 2 > 2N/(N + 2), it follows from
Sobolev embedding theorem that f(y) € H™!(Q) for all y €
K.

We know that boundary value problem (34)-(35) has a
unique solution z € Hy(Q) for every u € L”(Q) and y € #.
Let (22,12, y?) € Hy(Q) x Uy x F be an optimal solution to
the problem (79), (33)-(35) with f(y?) € LP(Q) and Ay° €
IP(Q).

Let w € C5°(2) and g € C;°(Q2) be arbitrary chosen func-
tions. Then, property (80) immediately implies that

f(?+Mw) € 1P(Q) n H' (Q)for|A|small enough. ~ (82)
By convexity of f, we have

FO2+aw) = f(50) + A (W) w, f (2 — Aw)

, (83)
>f () - A ())w

Then,

FOR) = f 02 = Mw) <A (L )w < f (7 + Aw) = £ (7).

(84)

where f(3?) - f(4° = \w) and f(y? + Aw) — f(3?) belong to
LP(Q) N H™(Q) (see (82)). From this, we deduce that

fOwelP(Q)nH ' (Q). (85)

For every A € R, A # 0, we set
uy =1l — Mg — AAw - f (2 + Aw) (86)
+F () 3r =i+ Aw, 23 =20 + Ag.

Then, property (80) implies that y, € # and -Az; = A
vy +fr)) +uy in Q. So, (uy,y,,2,) is a feasible point for
the problem (32)-(35). As follows from (84)-(85), there
exists an element

r(w,A) e P(Q)nH(Q), (87)

such that
fUe+dw) =f(2) +Af () w+r(w,A),  (88)
and [[r(w, )| ;pqop1 () = 0(IA ) as A — 0. Let us show

that, for a given w € C{°(Q), the following extra properties
hold true

r(w, A)
f0?)

|f’]§(2§)w| e L1(Q),

=o(A)asA — 0.
(89)

Indeed, due to property (80), we deduce from (84) and
(88) that

9
A )
euf D) -1 )
I (50)
A
Cuf 0957 =12 I, )
Since f(Aw) € L®(£2), the above inequalities imply that
! 0 ,A
LU ero@, 0 e, o)
Hence,
kal <ﬂw> s
r*(w, A) r(w,A) \ by(59)
708 Nl = I708) Loom)"r(w’ oo = e
(92)
In order to deduce the asymptotic property

[[r(w, M@y () = 0(IA ) as A — 0, we utilize property
of f. Then, for a given we C;°(Q2) and A >0 sufficiently
small, we have

[f (e +dw) = f (32) ] < Cuuf (2)

f(Aw)
oa 1’. (93)

As a result, we see that
f(yg + )L'LU) —»f(yg)in LP(Q)asA — 0. (94)

From this and definition of the directional derivative, we
finally deduce

0 (40
hm r(w’ A) byééo) hm f(ys +AIU) f( e) _f/( S)w
-0l A ) A0 A ()

by the Lebesgue Dominated Theorem

0 (40
- llim (f()’g +/\w) f( s) _fl(yg)w> -o.
A—0 A @)
(95)

Hence, ||r(w, A)[[1p(q) =0(IA]) as A — 0.
In the functional J,, we will distinguish three terms

Je(t 3, 2) =J1 (1) + Toe(¥) +J5.(2)> (96)

where

04
=5 | a

Re)= 5| prf dx+—{uv IS0y + D]
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1
Jse(2) = 5 JQ|Vz|2 dx. (97)

Now, using Lebesgue’s convergence theorem and the fact
that (12, %, 2?) is an optimal triplet, we get

0 < lim J<(0 Y0 22) ~ T (42275 22)

A—0 A
=lim ]l (ul) - ]1 (Ug) + llm ]2,8()},\) - ]2,8 (yg) (98)
A=0 A A—0 A

]3,£(Z/\) - ]3,5 (Z(s))
A

=A +A, + A,
where

junl? = |
Al = hmJ — T
Q

44
p A0

(99)
- aJQ‘ug’P_Zug (—Aw -Ag-f'( g)w) dx,

1
Ay = —lim

Vz,|? - Vz°2
J 7| A | s| dx
210

(100)

= %JQ (Vzg,Vg) dx.

As for the term A,, we notice that

hmj pe+dw=yal = |y -yl
A—0 Ie) 27 (101)

:J ()’2 ‘J’d)wdx’
Q

ol

. ||f( +Aw)||L1(_Q)_
lim
/\HO 21

| FR L
22=0) o MIf (e + Aw)| + £ (7))

J "(W)wdx + flm})R()L)

(102)

where

-2 (5)r(w A) + 24 () wr(w, A) + (£ ( g)w)2+r2(w,/\)

= XA W)+ 7O B

(103)

Here, we have utilized the following obvious equality

. J 20 (Y)f (2w
1=0 ) o MIf (2 + Aw)[ + [F(0) )

[ TV pywa= [ g 2w,

(104)
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and the fact that (f(3?))/|f(»°) | =1 for the nonnegative
function f.
Since

22 g)wr(w,/\)slz(f’( g)w)2+r2(w,A), (105)

it follows from (89) that

Lp 200w )+ 207 (1 (2)w) + 202w, 2)
<5 FOT+ Aw)[+ [7OD) =
_ lJ 2|f( S)Hr(w,)t)|+2A2(f'(yg)w)2+2r2(w,/\) B
A FODI
. 2flr(w, Al ) A (f,( g)w)
A O]
(@)
1|7 (w, A) by(e1) 1
Dl 27V
(106)
Then, (102) implies that
O M) [~ [IF OO ] :
}\12%8 L (2(;5 L@ _ ;JQf () wdx.

(107)

Since for any element { € H™'(2), we have (-A)™'( €
H(Q), it follows that

19270+ Ol ey = 1968l ey

=2(V(=8) V() gy + [V (A)E H;(Q;RN)

= —2<diV [V(—A)flﬂ]’ (_A)71C>H’ o) T H(H?f”(f))
=201 (=8)7'0) iy + 18I0
=20 (~8) " M) e oy + Il (V1 € HTH(Q).
(108)
Hence,
%‘337 {HV ) f (v + dw) Hiz(o;w’)
VA O s
19627768 e oo

=< 00w A0,
=<| [CA7 OO (lwds

As a result, utilizing relations (101), (107), and (109), we
obtain
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A,= L D= ya+ 51 08 +e[(-2) () 1f (02) |wa.
(110)

From the linearity of A, A,, and A; with respect to w and
g> we deduce from (98), (99), (100), and (110) that

J -rat PO+ e[(-A)F O] (7) |wax
Q
v (ot a
L[ (v s i iagde=o,
(111)

for every w e C°(Q2) and g € C°(Q).
Let us set &|ul"*u = pu_. Then, (111) implies that

JQ 2y 3 OF) el AT 021 07)

—uf' (yg)}wdxqt nge(—Aw) dx=0, Yw e C° (Q),

(112)

1
EJ (Vz2.Vg) dx —J uAgdx=0,VgeCP(Q). (113)
0 0

From the last equality, we immediately deduce that
. =—(1/e)z2 + d, where d, € C*(Q) is a weakly harmonic
function (it satisfies Laplace’s equation Ad =0 in the sense
of distributions). As a consequence, we have y_ € H'(Q).

Taking into account that C°(Q) is dense in Hy(Q2), we
see that relations (112)-(113) can be rewritten as follows.

L D=yt SF102) +[(=8) ORI 09) jw

- JQP‘J/ (ve)wdx+ <A, W> g1 o)y (o) 4%

0

1
=0,u, = —gz‘E +da.ein(,

(114)

for every w e C°(Q2) and g € C;°(Q).
Thus, we can summarize the obtained result as follows.

Theorem 11. Let Q be a bounded open domain in RN with
N >1. For a given p>2, let K be the subset defined as in
(81). Assume that f:R—[0,+00) is a monotonically
increasing function such that f € C'(R) and this function is
convex and satisfies property (80). If (u?,y°,20) € Uy x F x
HL(Q) is an optimal solution to the problem (79), (33)-(35),
then

11
“AZ=A g+ yg +ulinQ,
e= Y+ () +ue (115)
Z2l=00n0Q
and setting y, = a|ul|’*u?, one has p, = —(1/¢)z0 +d a.e. in

0O, and

W=y SF 08) + €[4 F OIS ()
—uf () =My, in D' (),
Ad=0 in2'(Q).

(116)

5. Asymptotic Analysis of Regularized Optimal
Control Problem

Our main aim in this section is find out whether the original
optimal control problem (1)-(4) is solvable under assump-
tions (a)-(c) and its optimal solutions can be attained (in
some sense) by optimal solutions to the regularized problem
(32)-(35).

The key point of our consideration is that, in contrast to
the well-known approaches (see, for instance, [20, 27, 28]),
we do not assume here the fulfillment of the “standard” extra
properties such that the domain Q is an open subset of RY
with N > 2, this domain should be star-shaped and exists a
weak solution y € Hy(Q) of Dirichlet problem (2)-(3) satisfy-
ing f(y) € L*(Q2). Because of this, the existence of at least one
optimal pair to the problem (1)-(4) is an open question pro-
vided we restrict our consideration only by assumptions
(a)-(c).

In what follows, in order to guarantee the consistency of
the original problem (1)-(4), we accept the following
hypothesis.

Hypothesis 12. The set of feasible solutions = to the problem
(1)-(4) is nonempty.

It is worth to notice that the verification of Hypothesis 12
is not too restrictive from practical implementation point of
view. Indeed, let y € C;°(Q2) be an arbitrary function. Then,
it is clear that y € Hi(Q) and f(y) € L'(Q), that is, y € H.
Let us define the control & € LP(Q) as follows &t = —Ay — f ()
in Q. Then, (&, y) is a feasible pair to the problem (1)-(4) if
only % € Uj,. So, this hypothesis is obviously true if we do
not impose any additional restrictions on the class of admissi-
ble controls, ie., Uy = L7 (Q).

The following result is crucial in this paper and it shows
that solvability of the original OCP (1)-(4) in some sense is
equivalent to its consistency, i.e., OCP (1)-(4) admits at least
one solution if and only if Hypothesis 12 is fulfilled. However,
in order to establish this fact, we apply an indirect approach
based on the variant of Tikhonov regularization which is
described in Section 4.

Theorem 13. Let Q be a bounded open domain in RN with
N> 1, let Uy be a nonempty closed convex subset of LP(Q),
2<p<+oo, and let f: R— [0,+00) be a monotonically
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increasing  function  such  that feC(R). Let
{(u2,y?,20) € A}, ., be a sequence of optimal solutions to

regularized problems (32)-(35) when the parameter € > 0 var-
ies in a strictly decreasing sequence of positive numbers con-
verging to 0. Assume that Hypothesis 12 holds true and the
sequence {f(y%)},_, is bounded in L'(Q) N H™'(Q). Then,
there is a subsequence of {(ul,y%,20)}, . still denoted by
the suffix €, such that

Ul — uinl?(Q), y° — y’ inH)(Q), 2! — 0inH)(Q), -A)°
=f(°) +u’ inD(Q), ue Uy, (u,)°)
€E,J(u’y") = inf J(u,y).
(u.5") = jinf J(u.5)

(117)

Proof. Since = + &, it follows that, for a given & >0, there
exists (u3, y3) such that (u5, y5) is a feasible solution to opti-
mal control problem (1)-(4), and

inf J(u,y)= inf FJ ly =y, dx + gJ |u|de}
o Pla

(wy)eE (uy)eg |2
= ] (usy5) = 0.
(118)

Hence, in view of Definition 5 and Lemma 2, uj € U,,

¥ € HY(Q), fy3) €LH(Q) N H(Q), and the pair (i, )
is related by integral identity (8). Therefore, for each € >0,
the triplet (uj,ys,0) is a feasible solution for regularized
problem (32)-(35), ie, (u5,y5,0) € A, for all & >0. Taking
this fact into account, we see that

] ( s’ys’ s)__J |ys yd| d‘x+pJ ’ug}pdx
+—J ‘Vzg’ dx+ &
2¢ | 2

IO Iy + 10D ]

= inf J(wy, )<]£(u;;,y;,o>

* 2 4 ®|p
=—| lys—» dx+—J ug|” dx
| i e S

+ = [0 iy + 1£03) o)

=C, +&eC, < +00,

(119)

where

p
C,= uy| dx,

I,

=5 PO

« [0
Vs —yal?dx+ *J
Plo (120)

C,:

N\»—‘ | =

Ol
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and (see (118))
1 0 2 « 0P
3 |y£—yd{ dx+§ |u£’ dx
Q ) Q . (121)
> EJ s —yd|2 dx + —J |ug|P dx - 6.
Q Pla

Since this relation holds true for each & > 0 varying in a
given interval (0,¢°] and each & > 0, it follows that

(C,+6)p )
sup H”OHLP(Q IT’EGS(L;E] HZOHHé(Q) (122)
<2(C, +€°C,),
SES(uP ||)’5HL2 @ = 4(C1+5)+2||)’d||22(9)' (123)

In addition, the sequence {f(y" )} ee(0,00) 18 assumed to be

bounded in L'(Q) N H™!(Q). Taking this fact into account,
we deduce that

sup ”f 0 ||H <2C, +C,.

0
sup <2C2+C1)£€S(1;EO]Hf(yS)HL1(Q)

(124)

Hence, the sequences {u’ Fee(o) {0 }8e (00p and
{re? )}ee(o,0) are weakly compact in LP(Q) [*(Q), and
H'(Q), respectively, whereas estimate (122) implies that
the sequence {2z},  is strongly convergent to 0 in H(£2).
So, we can suppose that there exist elements u° € L(Q), y
€ L*(Q),& e H'(Q), and a sequence {¢; },., monotonically
converging to zero as k — co such that

ugk — u’ weakly in LP (Q), (125)

ygk — » weakly in L*(Q), (126)

f( gk) — Eweaklyin H'(Q), (127)

zgk — O strongly in Hj(Q)ask — co. (128)

Let us show that, in fact, we have the weak convergence
ye. =" in H(Q). Indeed, arguing as in the proof of
Theorem 8, we utilize the integral identity

2
JQ “Vygk + (Vzgk,Vygk) - ugkygk] dx
_ 0Y) 0
B <f(ysk),ys">H"(Q);Hé(Q))

which holds true for each & € (0, €] and reflects the fact that
the triplets {(u.y,.2.,)}, , are feasible to the problem

(129)
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(32)-(35) for each k € R. Then, we deduce from (129) that

H}(Q) i Hf(y‘jk)

+ Cq| QP12

0
z &

VY I g < ’
19 bz 0 { (@)

0 0
e Hvyek

k

Lz(Q)N'
(130)

vo)

Hence, estimates (122)-(124) imply that

s,
keN

sy < [ 260(C, +€9C,) +4/2C,

C, +6

+ Co| Q|22 (€ +op = C* < +00.
04

(131)

Thus, without loss of generality, we can suppose that (up
to a subsequence)

0
&k

yo, = inHy(Q),y
(132)

Utilizing the pointwise convergence (132), and (c)-prop-
erty, we see that f(y{ ) — f(»°) almost everywhere in Q as

k — o0. Let us show that, in fact, we have the strong conver-
gence

f(ygk) —>f(y0)inL1(Q)ask—>oo, (133)

and, as a consequence of (127), £€=f(y°) and f(y°) e H™!(
Q)nLY(Q).

To this end, we make use of some arguments of the proof
of Theorem 8. With that in mind, for each k € N, we make
use of the decomposition y, =y, -y, with

yi, = max {0y, | € (), y, =max {0y, | € H}(©),
(134)

n ify(x) >,
and set T x)= Then, T L*®
() (x) {y(x)’ 50 <11 () € L%(

Q)N H(Q) for all y € Hj(2) such that y >0. Using y!, €
H{(Q) as a test function in (25), we find that

Jof(ye)k)Tn (7,) dx = JQ (Veuo¥ T, (7)) d

+ (Vy&k,VTq (y:k)) dx

(o)

- JQue’kT” (vix) dx, Ve N.

(135)

—%in LZ(Q),ygk (x) — »*(x) a.e.in Q.

13

Since T, (yiy) — yix in Hy(Q) as n — oo, the limit
passage in (135) as # — oo leads to the relation

L)f (ysk>y;’k dx = JQ (Vzek,Vy:k) dx + JQ (Vysk,Vy:k) dx
- J-Qusk ¥, dx.

(136)

From this and the fact that || y:k||Hg) @ = I y£k||H(1] @y Ve

deduce the estimate

Jﬂf(ygk)y‘:k dx < |:HZ5/<HH(1)(Q) +

+ cQ|Q|@*2>’2PHu

Vel |y

* HL”“’)} Yallya)

by(84),(84)(76)

< c* l\/Z(Cl +&0C,)) +C”

1/,
o (62007

o
(137)
Arguing in a similar manner, it can be shown that
J f(ysk)y;k dx<C* [\/Z(Cl +&C,) + C*
Q
(138)

/
+ Cp| Q-2 <(Cl * 5_>P) 1 p] .

(o4

Since y; +y, =y, |, it follows from (137)-(138) that
there exists a positive constant C, independent of & and Ve,
such that

<C.

139
. (139)

sup Hf (ysk)ysk

kelN

In order to prove the strong convergence (133), it
remains to make use of Vitali’s theorem. We fix an arbitrary
{ >0 and take m >0 and 7 > 0 such that m > 2C/{, T = {/(2f
(m)). Then, for every measurable set S c Q) with Lebesgue
measure |S | <{, we have

J sf<y£k) b= J.{xeS: yrk<x>>m}f <ysk) e J‘{XES: )’tk(x)gm}f (y”) -

1
= %J{xes:ysk(xbm}yskf (yek) bt .‘.{xis;yik(xrm}f(m) .
|| Dl () e i <+ pmist <

< +

B[

1
m

14

—~
S
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As a result, we see that the sequence {f(y, )} LN

integrable and, hence, the desired convergence (133) is a
direct consequence of the pointwise convergence f (ygk)

is equi-

—> f(»°) almost everywhere in Q and Vitali’s convergence
theorem.

We are now in a position to show that (u°, y°) is a feasible
solution to the original OCP (1)-(4). Indeed, in view of the
initial assumptions, the set U, is sequentially closed with
respect to the weak topology of L?(Q). Hence, u° € U,. It
remains to show that the pair (u°, y°) is related by the inte-
gral identity (8). To this end, we note that (1, y; .z, ) €
A, for all k € R. Hence, the equality

L [(Vya,k’V(P) +(Vz, Vo) - us,k(P] dx

= <f()’s,k)’ (P>H’1(Q)?Hé(9)’

(141)

holds true for each test function ¢ € C;°(Q). As a result,
the limit passage in (141) as k— 0o becomes trivial,
and it immediately leads us to the expected integral
identity (8). Thus, combining all properties of the pair
(1% y°) established here and before, we finally deduce
that (1%,)°) € £.

To conclude the proof, we have to show that (u°,y°) € £
in an optimal pair to the problem (1)-(4). To do so, we
assume the converse, namely, there is a pair (#,7) € £ such
that J(#@,7) < J(u 3°). Then, the triplet (#,7,0) is feasible
to the regularized problem (i.e.,(%,7,0)) € A, for each k€
IN. Hence,

~ € o~ ~
1@3) + %I O) o + I Ol
=1, @302 inf ], (12)

u,y,z)EAEk

=], (ugk, », zgk), Vk e N.

(142)

Therefore, passing in (142) to the limit as k — oo and
using the properties

2
limian 0 —yd’ dxbyéSS)J {yo—ydyz dx,
k—co [l 7k Q
by(85)(79
limian u de " 2)< >j |u0|p dx,
k—oo Jol * o
1 ,
lim |—||2? }bY(ss)g%(%) const > 0, (143)
koo [ 1l T lH ()
.l 2 by(85)(79)(76)(81)
liminf | ( 0) 2 0,
minf |5 Fe)|l,, o
. Je by(85)(79)(76)(81)(86)
SHTGTM A
dm 3 Fe ) @ 0

Abstract and Applied Analysis

we obtain
J(@5) > liminf ], (1,55, 2} )

>J(u%,)") + lim {1 Hzgk

k—o0 Er

} > ] (u’,)").

(144)

2
Hy(Q)

As a result, it leads us to a contradiction. Thus, (u°, y°)

Z in an optimal pair to the problem (1)-(4).
To the end of proof, we note if the original OCP admits a
unique solution, then the asymptotic analysis given before

remains valid for each subsequence {(1....z)}, , of

the sequence of optimal solutions {(ul,%,22) €A}, .
Therefore, the limits in (125)-(128) do not depend on the
choice of a subsequence, and, hence, (1, y°) € Z is a unique
limit pair for the entire sequence of optimal triplets

{0 7)Y oo
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