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The purpose of the present paper is to obtain some inclusion relation between various subclasses of harmonic univalent functions by
applying certain convolution operators associated with Wright’s generalized hypergeometric functions.

1. Introduction

A continuous complex-valued function f = u + iv defined in
a simply connected domain D is said to be harmonic in D if
both u and v are real harmonic in D. In any simply connected
domain D, we can write f = i + g, where h and g are analytic
in D. In 1984, Clunie and Sheil-Small [1] introduced a class
&% of complex-valued harmonic maps f which are univalent
and sense-preserving in the open unit disk U={z : z€C
and |z| < 1}. The function f € &5 can be represented by
f=h+ g, where

h(z)=z+ ) h,z",
n=2
- (1)
9(2)=) g,z lal<1,
n=1

are analytic in the open unit disk U. They also proved that the
function f=h+ge Sy is locally univalent and sense-
preserving in U, if and only if |k'(z)| > |g'(z)|, V¥ z€U.
For more basic studies, one may refer to Duren [2] and Ahuja
[3]. It is worthy to note that if g(z) =0 in (1), then the class

84 reduces to the familiar class & of analytic functions.
For this class, f(z) may be expressed as of the form

flz)=z+ OZO: h,z". (2)

Further, we suppose &9, subclass of &g consisting of
function f € &y of the form (1) with g, =0. Now, we let
KY, 8%, and CY; denote the subclasses of §9, of harmonic
functions which are, respectively, convex, starlike, and
close-to-convex in U. Also, let 75, be the class of sense-pre-
serving, typically real harmonic functions f=h+ g in &y.
For a detailed study of these classes, one may refer to [1, 2].

A function f = h + g of the form (1) is said to be in the
class N g (p), if it satisfy the condition

m{f’(,z)}z%
z

Similarly, a function f = h + g of the form (1) is said to be
in the class G (y), if it satisfy the condition

0<y<l1, z=re? eU. (3)
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—ei“} >y, 0<y<l1, a€R, z:reiGEU_J,
(4)
where z' = (2/00)(re?) and f' (z) = (2/26) (f (ye°)).

Now, we define the subclass T &y of &g consisting of
functions f = h + g, so that h and g are of the form

0
- S,
n=2

. (5)
= Z lg,l2".
n=1
Define T 5 (y) = ¥ (y) T and TG (y) = Gy (y)

NT, where I consists of the functions f=h+g in §y.
The classes N o (y), TN (), Eo(y), and T E 4 (y), were
studied, respectively, by Ahuja and Jahangiri [4] and Rosy
etal. [5].

Let a;€C, ((a,/A;))#0, =1, =2, -
and ((b/B;)#0, -1, =2, --5i=1, 2,

i=1, 2, -, P)
-+, q), for A;>0 (i

=1,--,p)and B;>0(i=1,-,q) with
q P
+ > B;- ) A;20. (6)
i=1 i=1

Wright’s generalized hypergeometric functions [6] is defined
by

(ai’Ai) 1,
(b;, B;

l’llq

(a;+nA;) z
I'(b;+nB;) n

P\Pq

(7)

;4—ZH”

which is analytic for suitable bounded values of |z | (see also
[7, 8]). The generalized Mittag-Leftler, Bessel-Maitland, and
generalized hypergeometric functions are some of the impor-
tant special cases of Wright’s generalized hypergeometric
functions, and for their details, one may refer to [8].
For A;>0(i=1,--p),B;>0,b,>0(i=1,---,q) with 1+
1,B, -0 A;20 and C;>0(i=1,+r),D;>0,d;>0(i
=1,-s) with 1+ D, - )", C; >0, we define Wright’s
generalized hypergeometric functions:

¥ (aisAi)l,p 2| = Z Hl II“(a +nA)
ra (bi»By),, , [1L, I'(b;+nB) n @
v (¢ Ciy, . i [T, I'(¢; + nC;) 2"
C LDy, =TI, L(d; +nD;) !
with

F(|c|+nC)/F|c|
. I'(d;+nD;)/I'(d))

=1
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We consider a harmonic univalent function
W(z)=H(z) + G(z) €Sy, (10)

where

1 (b, (ap A, e
H(Z):Z 27:1 ( 1) lI/q|: )1P Lzl =z4 Zen Zn,
= p i

n=2

s Ci’Ci 1
G(z)=02z H’fl 11:( 0 b4 (6 ) ; Z‘|
[T I(e), (d5 D;), (11)
=0 Z ¢, 7" lol<1
and 6, and {,, are given by
o _ P T(a;+(n-1)A)/T(a;)
n q >
L (BT
c — H;l F(Ci + (l’l ) )/F(Ct)
" T (T(di+ (n =)D/ (d)) (n = 1)1

From (12), we have forne N={1, 2, ---}

P, F(|a,‘| + (71 - I)Az)/r(|at|)

|9n|S R =V
iz (L(b; + (n=1)By)/I'(b;)) (n ~1)!
0, < [T, Ll + (n = 1)) (c:) -
" T (Ui (n=1)D)/I(dy)) (n = 1)L
(13)
For some fixed value of j € N, = N U {0} and for
q P
18" =] A"
i=1 i=1 (14)
P TT 5,
i=1 i=1
we denote
(la;l+jAy Ay, ‘
¥ , =¥
(1b;1+jB; B)),
(15)
W (|C1|+] 1 l)l,r —r'f/-é’
(Id;|+jDy Dy),
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provided that

q P p-
;bi_ ; |a;| + 5 E+J’
(16)
;di— Zl el + 5= > 5 +J.
Making use of (13) and (15), we have
) 1 (b A
Z (n_j)j v, = Pzzl (bl) lPﬂ]
n=1+j i=1 F(|ai|)p
(17)
N : [T, I(d)
(n=J); My == P
2 P T (),

n=1+j
provided that (16) holds true.

The convolution of two functions f(z) of the form (1)
and F(z) of the form

Z)=z+ Z an"+Z:z;an”, (18)
n=2
is given by

(F* @) =f(&) % F@)=2+ > hH, "+ 3™ 6.G,2"
_ (19)

Now, we introduce a convolution operator Q(p, g, 7, )
as

=h(z) * H(z) + g(2) * G(2),
(20)

Qps g 1> 9)f(2) =f(2) * W(2)

where f=h+g and W(z)=H(z) +
(10), respectively. Hence

G(z) given by (1) and

Qp, g, 1) =z+ Z 0,h,z" +Z (ngn . (21)

The application of the special functions on the geometric
function theory always attracts researchers with various
kinds of special functions, for example, hypergeometric func-
tions [9-11], confluent hypergeometric functions [12], gen-
eralized hypergeometric functions [6, 13], Bessel functions
[14], generalized Bessel functions [15-17], Wright functions
[18-21], Fox-Wright functions [6, 22], and Mittag-Leffler
functions [23] that have rich applications in analytic and har-
monic univalent functions. By using special functions, some
researchers introduce operators, for example, Carlson-
Shaffer operator [24], Hohlov operator [25], and Dziok-
Srivastava operator [26, 27], and obtain interesting results.
Motivated with the work of [20], we obtain some inclusion

relation between the classes E4(y), Kgf, cS’;;O, ‘g(;f, and
N () by applying the convolution operator Q.

2. Main Results

In order to establish our main results, we shall require the
following lemmas.

Lemma 1 [1]. If f = h + g € KY,, where h and g are given by
(5) with g, = 0, then

n+1
2
1

|h,| <
(22)

g, <

Lemma 2 [1]. Let f=h+ g€ S5’ or CY,, where h and g are
given by (1) with g, = 0. Then

(23)

Lemma 3 [5]. Let f =h + g be given by (5). If 0<y < 1 and

Y n=1=p)h,|+ Y @2n+1+y)lg,|<i-y, (24)
n=2 n=1

then f is a sense-preserving Goodman-Renning-type har-
monic univalent function in U and f € Z4,(y).

Remark 4. In [5], it is also shown that f = h + g given by (5) is
in the family 7 €4 (y), if and only if the coefficient condition
(24) holds. Moreover, if f € 7 &4, (y), then

1-
=0z,
2n—-1-y
(25)
g =5ty n2
g”_2n+1+y’ _'

Theorem 5. Let Y&, b,— Y%, |a;|+((p—q)/2) >5/2 and

Yi,di=Y, el +((r—s)/12) > 5/2, and if the inequality
. I'(by)
L 2 W (7—y), W 2 (1 Po-1
“M){pq< v Ea+2(1-y) (,¥5-1)}
I[, I'(d 1
+|o| =5 2¥ +(5+y) ¥, }<2(1-y
e 2 hez o,

(26)

holds, then Q(K%,) ¢ G4(y).

Proof. Let f = h + g € K%, where hand g are given by (1) with
g, =0. We have to prove that Q(f) € €5 (y), where Q(f) is



defined by (21). To prove Q(f) € €5 (y), in view of Lemma
3, it is sufficient to prove that P, <1 —y, where

PH = 25 (271_—1 _'Y)|6n hnl*_ }S (271+—1 +'y)|{n gn|' (27)
n=2 n=2
By using Lemma 1,
Py< Y (n+1)2n-1-y)|6,|+ Y (n=1)2n+1+y)|(,|

n=2

[ZZ {2(n-1)(n-2)+ (7-y)(n-1)+2(1 —V)}an

=
I

N =

N {Z {2(n-2) <s+y>}nn]

i i;j){ 17D ()

+|0|HH F|CD {2 +(5+7), 51} <l-y,

(28)

by the given hypothesis. This completes the proof of
Theorem 5.

The result is sharp for the function

L(z)=z+ i (";1>z’“— i (";1>z”. (29)

n=2 n=2

Theorem 6. Let YL, b~ Y7, |a,|+((p—q)/2)>7/2 and
Yidi—-Y lal+((r —s)/2) > 712, and if the inequality

1,10
#() {4 Wit (28-2y), %2+

1 (la; 1)
0 [, I(d)
76 (-9 (731 ol T
A4+ 2(10+y), ¥ +3(5+y), ¥} <6 (1-y),
(30)

1
(39-99),7}

holds, then Q(S%)) € G4 (y) and Q(EY) € Gz (y).

Proof. Let f =h + g € S5 (or €%), where h and g are given
by (1) with g, =0; we need to prove that Q(f) € Z4(y),
where Q(f) is defined by (21). In view of Lemma 3, it is suf-
ficient to prove that P, <1 -y, where P, is given by (27).
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Now using Lemma 2, we have

n=2

p <t E (n+ 1)(@n+ )20 -1-7)6,)
+ G'i (n-1)2n-1)2n+1 +Y)|Cn|:|
-1 E {4(n=1)(n=2)(n=3) + (28-2p)(n-1)(n=2)
- (39-9y)(n-1)+6(1 —y)}vn}

+ % [i {4(n-1)(n-2)(n-3)

+(20+2y)(n-1)(n-2)+ (15+3y)(n— 1)}11n]

1| ITL (b))

:{PW{%% (28 -2y),% + (39 - 9y), ¥
+6(1—y)(P'P2—1)}
+|0| {11__[[1’111? o {497 +2(10+y),¥; +3(5+y),¥ }}

<l-y,

(31)

by the given hypothesis. Thus, the proof of Theorem 6 is
established.

The result is sharp for the function

f(2)=H(2) + G(2), (32)
where
H(z) - z-(1/2)2% +3(1/6)z3
(1-2)
(33)
G(z) = (1/2)2* + (13/6)z3
(1-2)

In our next theorem, we establish connections between
TGy (y) and T4 (y).

Theorem 7. Let YL, b,—-3%  la;|+((p—q)/2) > 1/2 and
Yidi-Y lal +((r—s)/2) > 1/2, and if the inequality

T L) (o) o Ll ) ooy o)

P T(la; ) [T Ila), =7

holds, then (T 4 (y)) € E o (y).
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Proof. Let f=h+ g€ T Z4(y) be given by (1). We have to
prove that P, <1 -y, where

Py= ) (2n-1-9)10,h,l+lo] Y (2n+1+y)[(,g,l-
n=2 n=1
(35)
Now, using Remark 4, we have
—y) Y vat(1=y)0 ) 1,=(1-7)
n=2 n=1
LI(b) [T, ()
. i=1 i 1}/0 1 i=1 1{/0
< f:lr(|ai|) (p i ) o |H11F(|C|)
<l-v,
(36)

by the given hypothesis. This completes the proof of
Theorem 7.

The result is sharp for the function

o (e § (o

n (37)

where

o0 o0
Y lxal Y vl =1 (38)
n=2 n=1

3. Some Consequences of the Main Results

If welet p=g=r=s=1and a,=A,=¢ =C, =1 in (10),
then W(z) reduces to a harmonic univalent function E(z)
involving the following generalized Mittag-Leftler functions
as

E(z) = 2L (b, )E}'y [2] + 02T (d))ES', 2], (39)
where
11 B (1,1) ] B 58] "
B =171 (b,,B,) Z] - 20 (b, +nB,)’ o
L1 _ (1,1) . _
EdDIH 17 (d,, Dy) ’Z] Z d+nD)

With these specializations, the convolution operator
Q(p, g, r, s) reduces to the operator ®(b,;B,;d,;D,),
which is defined as

@(by 5 By 3dy 3 Dy)f (2) = f(2) * E(2) = h(2) * 2L (b)) Ey'p [2]
+0g(z) * zF(ZJll)E;’I{DI l2].
(41)

For these specific values of p=g=r=s=1 and a, =4,
=¢, =C, =1, Theorems 5-7 yield the following results.

Corollary 8. If the inequality
P(b){ 2B} 5,5, (1) + (7 = V)Ep 5,5, (1) + 20 =) (Ep's, - 1) }

+10| () {2 B}l op o, (1) + (5+7) By p, (D} 2 (1-7),
(42)

holds, then ®(K%,) C €4,(y).

Corollary 9. If the inequality

I(b,){4Ey 35,5, (1) + (28— 2))E} 5 5 (1)
+(39 - 9Y)Ep 5, (1) + 201-7) (Efy, — 1) |
+10] F(d){4EE, 15, o, (1) + 2010+ ¥) E} 2 (1)
+3(5+9) Eflupp, (D} <6 (1-),
(43)
holds, then D(S50) € Gy (y) and D(CL) € Ty (y).

Corollary 10. If the inequality

re){ (Bys — 1)} +lod D) (Efy ) <1 (49)
holds, then ©(T €4 (y)) C 4 (y).

Remark 11. If weputp=q=r=s=1,a,=¢,=1,A, =C, =0,
and o = 1, then

I'(by) n
—o4 z :
I'(b, + B, En—l))(n—l)! (45)

I'(d,) .
' ; [(d, + Dy (n1))(n1)1

and results of Theorems 5-7 reduce to corresponding results
of Maharana and Sahoo [28].

Remark 12. If we put p=r=2,q=s=1, A, =A, =B, =C,

=C, =D, =1,and 0 =1, then
W(Z):Z+ Z ((: ))n 1((612 Z ;1 Z", (46)

and results of Theorems 5-7 reduce to corresponding results
of Porwal and Dixit [11].
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