
Research Article
Inclusion Relation between Various Subclasses of Harmonic
Univalent Functions Associated with Wright’s Generalized
Hypergeometric Functions

Rajavadivelu Themangani ,1 Saurabh Porwal ,2 and Nanjundan Magesh 3

1Post-Graduate and Research Department of Mathematics, Voorhees College, Vellore, 632 001 Tamil Nadu, India
2Department of Mathematics, Ram Sahai Government Degree College, Bairi-Shivrajpur, Kanpur, 209205 (U.P.), India
3Post-Graduate and Research Department of Mathematics, Government Arts College (Men), Krishnagiri, 635 001 Tamil Nadu, India

Correspondence should be addressed to Saurabh Porwal; saurabhjcb@rediffmail.com

Received 11 September 2020; Revised 6 November 2020; Accepted 16 November 2020; Published 28 November 2020

Academic Editor: Jacek Dziok

Copyright © 2020 Rajavadivelu Themangani et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

The purpose of the present paper is to obtain some inclusion relation between various subclasses of harmonic univalent functions by
applying certain convolution operators associated with Wright’s generalized hypergeometric functions.

1. Introduction

A continuous complex-valued function f = u + iv defined in
a simply connected domain D is said to be harmonic in D if
both u and v are real harmonic inD. In any simply connected
domain D, we can write f = h + �g, where h and g are analytic
in D. In 1984, Clunie and Sheil-Small [1] introduced a class
SH of complex-valued harmonic maps f which are univalent
and sense-preserving in the open unit disk U = fz : z ∈ℂ
and jzj < 1g. The function f ∈ SH can be represented by
f = h + �g, where

h zð Þ = z + 〠
∞

n=2
hnz

n,

g zð Þ = 〠
∞

n=1
gnz

n, ∣g1∣ < 1,
ð1Þ

are analytic in the open unit diskU: They also proved that the
function f = h + �g ∈ SH is locally univalent and sense-
preserving in U, if and only if jh′ðzÞj > jg′ðzÞj, ∀ z ∈U:
For more basic studies, one may refer to Duren [2] and Ahuja
[3]. It is worthy to note that if gðzÞ ≡ 0 in (1), then the class

SH reduces to the familiar class S of analytic functions.
For this class, f ðzÞ may be expressed as of the form

f zð Þ = z + 〠
∞

n=2
hnz

n: ð2Þ

Further, we suppose S0
H subclass of SH consisting of

function f ∈ SH of the form (1) with g1 = 0: Now, we let
K0

H , S
∗,0
H , and C0

H denote the subclasses of S0
H of harmonic

functions which are, respectively, convex, starlike, and
close-to-convex in U. Also, let T 0

H be the class of sense-pre-
serving, typically real harmonic functions f = h + �g in SH :
For a detailed study of these classes, one may refer to [1, 2].

A function f = h + �g of the form (1) is said to be in the
class NH ðγÞ, if it satisfy the condition

R
f ′ zð Þ
z′

( )
≥ γ, 0 ≤ γ < 1, z = reiθ ∈U: ð3Þ

Similarly, a function f = h + �g of the form (1) is said to be
in the class GHðγÞ, if it satisfy the condition
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R 1 + eiα
� � zf ′ zð Þ

f zð Þ − eiα
( )

≥ γ, 0 ≤ γ < 1, α ∈ℝ, z = reiθ ∈U,

ð4Þ

where z′ = ð∂/∂θÞðreiθÞ and f ′ðzÞ = ð∂/∂θÞð f ðγeiθÞÞ.
Now, we define the subclass T SH of SH consisting of

functions f = h + �g, so that h and g are of the form

h zð Þ = z − 〠
∞

n=2
hnj jzn,

g zð Þ = 〠
∞

n=1
∣gn∣z

n:

ð5Þ

Define TNH ðγÞ =NH ðγÞ ∩T and TGH ðγÞ =GH ðγÞ
∩T , where T consists of the functions f = h + �g in SH .
The classes NH ðγÞ, TNH ðγÞ, GH ðγÞ, and T GH ðγÞ, were
studied, respectively, by Ahuja and Jahangiri [4] and Rosy
et al. [5].

Let ai ∈ℂ, ððai/AiÞ ≠ 0, − 1, − 2, ⋯; i = 1, 2, ⋯, pÞ
and ððbi/BiÞ ≠ 0, − 1, − 2, ⋯;i = 1, 2, ⋯, qÞ, for Ai > 0 ði
= 1,⋯,pÞ and Bi > 0 ði = 1,⋯,qÞ with

1 + 〠
q

i=1
Bi − 〠

p

i=1
Ai ≥ 0: ð6Þ

Wright’s generalized hypergeometric functions [6] is defined
by

pΨq

ai, Aið Þ1, p
bi, Bið Þ1, q

; z
" #

= 〠
∞

n=0

Qp
i=1 Γ ai + nAið Þ znQq
i=1 Γ bi + nBið Þ n! , ð7Þ

which is analytic for suitable bounded values of ∣z ∣ (see also
[7, 8]). The generalized Mittag-Leffler, Bessel-Maitland, and
generalized hypergeometric functions are some of the impor-
tant special cases of Wright’s generalized hypergeometric
functions, and for their details, one may refer to [8].

For Ai > 0 ði = 1,⋯,pÞ, Bi > 0, bi > 0 ði = 1,⋯,qÞ with 1 +
∑q

i=1 Bi −∑p
i=1 Ai ≥ 0 and Ci > 0 ði = 1,⋯,rÞ,Di > 0, di > 0 ði

= 1,⋯,sÞ with 1 +∑s
i=1 Di −∑r

i=1 Ci ≥ 0, we define Wright’s
generalized hypergeometric functions:

pΨq

ai, Aið Þ1, p
bi, Bið Þ1, q

; z
" #

= 〠
∞

n=0

Qp
i=1 Γ ai + nAið Þ znQq
i=1 Γ bi + nBið Þ n! ,

rΨs

ci, Cið Þ1, r
di,Dið Þ1, s

; z

" #
= 〠

∞

n=0

Qr
i=1 Γ ci + nCið Þ znQs
i=1 Γ di + nDið Þ n! ,

ð8Þ

with

Qr
i=1 Γ ∣ci∣+nCið Þ/Γ ∣ ci ∣Qs
i=1 Γ di + nDið Þ/Γ dið Þ < 1: ð9Þ

We consider a harmonic univalent function

W zð Þ =H zð Þ + �G zð Þ ∈ SH , ð10Þ

where

H zð Þ = z
Qq

i=1 Γ bið ÞQp
i=1 Γ aið Þp

Ψq

ai, Aið Þ1, p
bi, Bið Þ1, q

; z

" #
= z + 〠

∞

n=2
θn zn,

G zð Þ = σ z
Qs

i=1 Γ dið ÞQr
i=1 Γ cið Þ r

Ψs

ci, Cið Þ1, r
di,Dið Þ1, s

; z
" #

= σ 〠
∞

n=1
ζn zn, ∣σ∣ < 1,

ð11Þ

and θn and ζn are given by

θn =
Qp

i=1 Γ ai + n − 1ð ÞAið Þ/Γ aið ÞQq
i=1 Γ bi + n − 1ð ÞBið Þ/Γ bið Þð Þ n − 1ð Þ! ,

ζn =
Qr

i=1 Γ ci + n − 1ð ÞCið Þ/Γ cið ÞQs
i=1 Γ di + n − 1ð ÞDið Þ/Γ dið Þð Þ n − 1ð Þ! :

ð12Þ

From (12), we have for n ∈ℕ = f1, 2, ⋯ g

θnj j ≤
Qp

i=1 Γ aij j + n − 1ð ÞAið Þ/Γ aij jð ÞQq
i=1 Γ bi + n − 1ð ÞBið Þ/Γ bið Þð Þ n − 1ð Þ! = νn,

ζnj j ≤
Qr

i=1 Γ cij j + n − 1ð ÞCið Þ/Γ cið ÞQs
i=1 Γ di + n − 1ð ÞDið Þ/Γ dið Þð Þ n − 1ð Þ! = ηn:

ð13Þ

For some fixed value of j ∈ℕ0 =ℕ ∪ f0g and for

Yq
i=1

BBi
i ≥

Yp
i=1

AAi
i ,

Ys
i=1

DDi
i ≥

Yr
i=1

CCi
i ,

ð14Þ

we denote

pΨq

∣ai∣+jAi, Aið Þ1, p
∣bi∣+jBi, Bið Þ1, q

; 1
" #

= pΨ
j
q,

rΨs

∣ci∣+jCi, Cið Þ1, r
∣di∣+jDi,Dið Þ1, s

; 1
" #

= rΨ
j
s,

ð15Þ
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provided that

〠
q

i=1
bi − 〠

p

i=1
aij j + p − q

2 > 1
2 + j,

〠
s

i=1
di − 〠

r

i=1
∣ci∣ +

r − s
2 > 1

2 + j:

ð16Þ

Making use of (13) and (15), we have

〠
∞

n=1+j
n − jð Þj νn =

Qq
i=1 Γ bið ÞQp
i=1 Γ aij jð Þp

Ψj
q,

〠
∞

n=1+j
n − jð Þj ηn =

Qs
i=1 Γ dið ÞQr
i=1 Γ cij jð Þr

Ψj
s,

ð17Þ

provided that (16) holds true.
The convolution of two functions f ðzÞ of the form (1)

and FðzÞ of the form

F zð Þ = z + 〠
∞

n=2
Hnz

n + �〠∞
n=1 Gnz

n, ð18Þ

is given by

f ∗ Fð Þ zð Þ = f zð Þ ∗ F zð Þ = z + 〠
∞

n=2
hnHnz

n + �〠∞
n=1 gnGnz

n:

ð19Þ

Now, we introduce a convolution operator Ωðp, q, r, sÞ
as

Ω p, q, r, sð Þf zð Þ = f zð Þ ∗W zð Þ = h zð Þ ∗H zð Þ + �g zð Þ ∗G zð Þ,
ð20Þ

where f = h + �g and WðzÞ =HðzÞ + �GðzÞ given by (1) and
(10), respectively. Hence

Ω p, q, r, sð Þf zð Þ = z + 〠
∞

n=2
θnhnz

n + �〠∞
n=1 ζngnz

n: ð21Þ

The application of the special functions on the geometric
function theory always attracts researchers with various
kinds of special functions, for example, hypergeometric func-
tions [9–11], confluent hypergeometric functions [12], gen-
eralized hypergeometric functions [6, 13], Bessel functions
[14], generalized Bessel functions [15–17], Wright functions
[18–21], Fox-Wright functions [6, 22], and Mittag-Leffler
functions [23] that have rich applications in analytic and har-
monic univalent functions. By using special functions, some
researchers introduce operators, for example, Carlson-
Shaffer operator [24], Hohlov operator [25], and Dziok-
Srivastava operator [26, 27], and obtain interesting results.
Motivated with the work of [20], we obtain some inclusion

relation between the classes GH ðγÞ, K0
H , S∗, 0

H , C0
H , and

NH ðβÞ by applying the convolution operator Ω:

2. Main Results

In order to establish our main results, we shall require the
following lemmas.

Lemma 1 [1]. If f = h + �g ∈ K0
H , where h and g are given by

(5) with g1 = 0, then

∣hn∣ ≤
n + 1
2

,

∣gn∣ ≤
n − 1
2

:

ð22Þ

Lemma 2 [1]. Let f = h + �g ∈ S∗,0
H or C0

H , where h and g are
given by (1) with g1 = 0. Then

hnj j ≤ 2n + 1ð Þ n + 1ð Þ
6

,

∣gn∣ ≤
2n − 1ð Þ n − 1ð Þ

6
:

ð23Þ

Lemma 3 [5]. Let f = h + �g be given by (5). If 0 ≤ γ < 1 and

〠
∞

n=2
2n − 1 − γð Þ hnj j + 〠

∞

n=1
2n + 1 + γð Þ gnj j ≤ 1 − γ, ð24Þ

then f is a sense-preserving Goodman-Rønning-type har-
monic univalent function in U and f ∈ GH ðγÞ:

Remark 4. In [5], it is also shown that f = h + �g given by (5) is
in the family T GH ðγÞ, if and only if the coefficient condition
(24) holds. Moreover, if f ∈TGH ðγÞ, then

hnj j = 1 − γ

2n − 1 − γ
,  n ≥ 2,

∣gn∣ =
1 − γ

2n + 1 + γ
,  n ≥ 1:

ð25Þ

Theorem 5. Let ∑q
i=1 bi −∑p

i=1 ∣ ai ∣ +ððp − qÞ/2Þ > 5/2 and
∑s

i=1 di −∑r
i=1 ∣ ci ∣ +ððr − sÞ/2Þ > 5/2, and if the inequality

Qq
i=1 Γ bið ÞQp

i=1 Γ ∣ai ∣ð Þ
2pΨ

2
q + 7 − γð ÞpΨ1

q + 2 1 − γð Þ pΨ
0
q − 1

� �n o

+ σj j
Qs

i=1 Γ dið ÞQr
i=1 Γ cij jð Þ 2rΨ

2
s + 5 + γð ÞrΨ1

s

� �
≤ 2 1 − γð Þ,

ð26Þ

holds, then ΩðK0
H Þ ⊂ GH ðγÞ:

Proof. Let f = h + �g ∈ K0
H , where h and g are given by (1) with

g1 = 0. We have to prove that Ωð f Þ ∈ GH ðγÞ, where Ωð f Þ is

3Abstract and Applied Analysis



defined by (21). To prove Ωð f Þ ∈ GH ðγÞ, in view of Lemma
3, it is sufficient to prove that P1 ≤ 1 − γ, where

P1 = 〠
∞

n=2
2n − 1 − γð Þ ∣θn hn∣ + 〠

∞

n=2
2n + 1 + γð Þ ζn gnj j: ð27Þ

By using Lemma 1,

P1 ≤ 〠
∞

n=2
n + 1ð Þ 2n − 1 − γð Þ θnj j + 〠

∞

n=2
n − 1ð Þ 2n + 1 + γð Þ ζnj j

= 1
2 〠

∞

n=2
2 n − 1ð Þ n − 2ð Þ + 7 − γð Þ n − 1ð Þ + 2 1 − γð Þf gνn

" #

+ σj j
2 〠

∞

n=2
2 n − 2ð Þ + 5 + γð Þf gηn

" #

= 1
2

Qq
i=1 Γ bið ÞQp
i=1 Γ aij jð Þ

2 + 7 − γð Þ pΨ1
q
+ 2 1 − γð Þ pΨ

0
q
− 1

� �n o"

+ σj j
Qs

i=1 Γ dið ÞQr
i=1 Γ cij jð Þ 2rΨ2

s + 5 + γð ÞrΨ1
s

� �#
≤ 1 − γ,

ð28Þ

by the given hypothesis. This completes the proof of
Theorem 5.

The result is sharp for the function

L zð Þ = z + 〠
∞

n=2

n + 1
2

� 	
zn − 〠

∞

n=2

n − 1
2

� 	
�zn: ð29Þ

Theorem 6. Let ∑q
i=1 bi −∑p

i=1 ∣ ai ∣ +ððp − qÞ/2Þ > 7/2 and
∑s

i=1 di −∑r
i=1 ∣ ci ∣ +ððr − sÞ/2Þ > 7/2, and if the inequality

Qq
i=1 Γ bið ÞQp

i=1 Γ ∣ai ∣ð Þ
4pΨ

3
q + 28 − 2γð ÞpΨ2

q + 39 − 9γð ÞpΨ1
q

n

+ 6 1 − γð Þ pΨ
0
q − 1

� �o
+ σj j

Qs
i=1 Γ dið ÞQr
i=1 Γ cij jð Þ

� 4rΨ
3
s + 2 10 + γð ÞrΨ2

s + 3 5 + γð ÞrΨ1
s

� �
≤ 6 1 − γð Þ,

ð30Þ

holds, then ΩðS∗,0
H Þ ⊂GH ðγÞ and ΩðC0

H Þ ⊂GH ðγÞ:

Proof. Let f = h + �g ∈ S∗,0
H ðorC0

H Þ, where h and g are given
by (1) with g1 = 0; we need to prove that Ωð f Þ ∈ GH ðγÞ,
where Ωð f Þ is defined by (21). In view of Lemma 3, it is suf-
ficient to prove that P1 ≤ 1 − γ, where P1 is given by (27).

Now using Lemma 2, we have

P1 ≤
1
6 〠

∞

n=2
n + 1ð Þ 2n + 1ð Þ 2n − 1 − γð Þ θnj j

"

+ σj j〠
∞

n=2
n − 1ð Þ 2n − 1ð Þ 2n + 1 + γð Þ ζnj j

#

= 1
6 〠

∞

n=2
4 n − 1ð Þ n − 2ð Þ n − 3ð Þ + 28 − 2γð Þ n − 1ð Þ n − 2ð Þf

"

+ 39 − 9γð Þ n − 1ð Þ + 6 1 − γð Þg νn
#

+ σj j
6 〠

∞

n=2
4 n − 1ð Þ n − 2ð Þ n − 3ð Þf

"

+ 20 + 2γð Þ n − 1ð Þ n − 2ð Þ + 15 + 3γð Þ n − 1ð Þgηn
#

= 1
6

Qq
i=1 Γ bið ÞQp
i=1 Γ aij jð Þ 4pΨ3

q
+ 28 − 2γð ÞpΨ2

q
+ 39 − 9γð ÞpΨ1

q

n"

+ 6 1 − γð Þ pΨ
0
q − 1

� �o#

+ σj j
6

Qs
i=1 Γ dið ÞQr
i=1 Γ cij jð Þ 4rΨ3

s + 2 10 + γð ÞrΨ2
s + 3 5 + γð ÞrΨ1

s

� �
 �
≤ 1 − γ,

ð31Þ

by the given hypothesis. Thus, the proof of Theorem 6 is
established.

The result is sharp for the function

f zð Þ =H zð Þ + �G zð Þ, ð32Þ

where

H zð Þ = z − 1/2ð Þz2 + 1/6ð Þz3
1 − zð Þ3 ,

G zð Þ = 1/2ð Þz2 + 1/6ð Þz3
1 − zð Þ3 :

ð33Þ

In our next theorem, we establish connections between
T GH ðγÞ and GH ðγÞ.

Theorem 7. Let ∑q
i=1 bi −∑p

i=1 ∣ ai ∣ +ððp − qÞ/2Þ > 1/2 and
∑s

i=1 di −∑r
i=1 ∣ ci ∣ +ððr − sÞ/2Þ > 1/2, and if the inequality

Qq
i=1 Γ bið ÞQp

i=1 Γ ∣ai ∣ð Þ pΨ
0
q − 1

� �
+ ∣σ∣

Qs
i=1 Γ dið ÞQr
i=1 Γ cij jð Þr

Ψ0
s ≤ 1, ð34Þ

holds, then ΩðTGH ðγÞÞ ⊆GH ðγÞ:
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Proof. Let f = h + �g ∈TGH ðγÞ be given by (1). We have to
prove that P2 ≤ 1 − γ, where

P2 = 〠
∞

n=2
2n − 1 − γð Þ ∣θn hn∣ + ∣σ∣ 〠

∞

n=1
2n + 1 + γð Þ ζn gnj j:

ð35Þ

Now, using Remark 4, we have

P2 ≤ 1 − γð Þ〠
∞

n=2
νn + 1 − γð Þσ〠

∞

n=1
ηn = 1 − γð Þ

�
Qq

i=1 Γ bið ÞQp
i=1 Γ aij jð Þ pΨ

0
q − 1

� �
+ σj j

Qs
i=1 Γ dið ÞQr
i=1 Γ cij jð Þr

Ψ0
s

 !

≤ 1 − γ,
ð36Þ

by the given hypothesis. This completes the proof of
Theorem 7.

The result is sharp for the function

f zð Þ = z − 〠
∞

n=2

1 − γ

2n − 1 − γ

� 	
∣xn∣z

n + 〠
∞

n=1

1 − γ

2n + 1 + γ

� 	
∣yn∣�z

n,

ð37Þ

where

〠
∞

n=2
xnj j + 〠

∞

n=1
ynj j = 1: ð38Þ

3. Some Consequences of the Main Results

If we let p = q = r = s = 1 and a1 = A1 = c1 = C1 = 1 in (10),
then WðzÞ reduces to a harmonic univalent function EðzÞ
involving the following generalized Mittag-Leffler functions
as

E zð Þ = zΓ b1ð ÞE1,1
b1,B1

z½ � + σ �zΓ d1ð ÞE1,1
d1,D1

z½ �, ð39Þ

where

E1,1
b1,B1 z½ �= 1Ψ1

1, 1ð Þ
b1, B1ð Þ

; z

" #
= 〠

∞

n=0

zn

Γ b1 + nB1ð Þ ,

E1,1
d1,D1

z½ �= 1Ψ1
1, 1ð Þ

d1,D1ð Þ
; z

" #
= 〠

∞

n=0

zn

Γ d1 + nD1ð Þ :
ð40Þ

With these specializations, the convolution operator
Ωðp, q, r, sÞ reduces to the operator Φðb1 ; B1 ; d1 ;D1Þ,
which is defined as

Φ b1 ; B1 ; d1 ;D1ð Þf zð Þ = f zð Þ ∗ E zð Þ = h zð Þ ∗ zΓ b1ð ÞE1,1
b1,B1

z½ �
+ σ �g zð Þ ∗ zΓ d1ð ÞE1,1

d1,D1
z½ �:

ð41Þ

For these specific values of p = q = r = s = 1 and a1 = A1
= c1 = C1 = 1, Theorems 5–7 yield the following results.

Corollary 8. If the inequality

Γ b1ð Þ 2E3,1
b1+2B1 ,B1

1ð Þ + 7 − γð ÞE2,1
b1+B1 ,B1

1ð Þ + 2 1 − γð Þ E1,1
b1 ,B1 − 1

� �n o
+ σj jΓ d1ð Þ 2 E3,1

d1+2D1 ,D1
1ð Þ + 5 + γð Þ E2,1

d1+D1 ,D1
1ð Þ

n o
≤ 2 1 − γð Þ,

ð42Þ

holds, then ΦðK0
H Þ ⊂GH ðγÞ.

Corollary 9. If the inequality

Γ b1ð Þ 4E4,1
b1+3B1 ,B1

1ð Þ + 28 − 2γð ÞE3,1
b1+2B1 ,B1

1ð Þ
n

+ 39 − 9γð ÞE2,1
b1+B1 ,B1

1ð Þ + 2 1 − γð Þ E1,1
b1 ,B1

− 1
� �o

+ σj jΓ d1ð Þ 4E4,1
d1+3D1 ,D1

1ð Þ + 2 10 + γð ÞE3,1
d1+2D1 ,D1

1ð Þ
n

+3 5 + γð Þ E2,1
d1+D1 ,D1

1ð Þ
o
≤ 6 1 − γð Þ,

ð43Þ

holds, then ΦðS∗,0
H Þ ⊂GH ðγÞ and ΦðC0

H Þ ⊂ GH ðγÞ.

Corollary 10. If the inequality

Γ b1ð Þ E1,1
b1 ,B1

− 1
� �n o

+ ∣σ∣ Γ d1ð Þ E1,1
d1 ,D1

� �
≤ 1, ð44Þ

holds, then ΦðT GH ðγÞÞ ⊂GH ðγÞ.

Remark 11. If we put p = q = r = s = 1, a1 = c1 = 1, A1 = C1 = 0,
and σ = 1, then

W zð Þ = z + 〠
∞

n=2

Γ b1ð Þ
Γ b1 + B1 n − 1ð Þð Þ n − 1ð Þ! z

n

+ 〠
∞

n=1

�Γ d1ð Þ
Γ d1 +D1 n1ð Þð Þ n1ð Þ! z

n,
ð45Þ

and results of Theorems 5–7 reduce to corresponding results
of Maharana and Sahoo [28].

Remark 12. If we put p = r = 2, q = s = 1, A1 = A2 = B1 = C1
= C2 =D1 = 1, and σ = 1, then

W zð Þ = z + 〠
∞

n=2

a1ð Þn−1 a2ð Þn−1
b1ð Þn−1 n − 1ð Þ! z

n + 〠
∞

n=2

�c1ð Þn1 c2ð Þn1
d1ð Þn1 n1ð Þ! z

n, ð46Þ

and results of Theorems 5–7 reduce to corresponding results
of Porwal and Dixit [11].
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