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Let X be a topological space equipped with a complete positive σ-finite measure and T a subset of the reals with 0 as an
accumulation point. Let atðx, yÞ be a nonnegative measurable function on X × X which integrates to 1 in each variable. For a
function f ∈ L2ðXÞ and t ∈ T , define At f ðxÞ ≡

Ð
atðx, yÞf ðyÞ dy. We assume that At f converges to f in L2, as t⟶ 0 in T . For

example, At is a diffusion semigroup (with T = ½0,∞Þ). For W a finite measure space and w ∈W, select real-valued hw ∈ L2ðXÞ,
defined everywhere, with khwkL2ðXÞ ≤ 1. Define the distance D by Dðx, yÞ ≡ khwðxÞ − hwðyÞkL2ðWÞ. Our main result is an

equivalence between the smoothness of an L2ðXÞ function f (as measured by an L2-Lipschitz condition involving atð·, · Þ and
the distance D) and the rate of convergence of At f to f .

1. Introduction

One of the questions that arise in harmonic analysis is the
connection between the smoothness of a given function and
the rate of approximation by members of a specified family
of functions. An important example is the relationship
between the smoothness of a function and the speed of
convergence of its diffused version to itself, in the limit as
time goes to zero. As mentioned in the Introduction of [1],
for the Euclidean setting and the heat kernel, see for example
[2, 3].

In a more general setting, for a diffusion semigroup
fTt f gt≥0 on a topological space X with a positive σ-finite
measure given, for t > 0, by an integral kernel operator: Tt f
ðxÞ ≡ Ð X ρtðx, yÞf ðyÞ dy, Coifman and Leeb in [1, 4] intro-
duce a family of multiscale diffusion distances and establish
quantitative results about the equivalence of a bounded func-
tion f being Lipschitz and the rate of convergence of Tt f to f ,
as t→ 0+. The respective authors of [5–7] consider different
aspects of the connection between the smoothness of a func-
tion and the rate of convergence of its diffused versions to
itself.

As mentioned in, for instance, the Introductions of
[5–7], the interest in diffusion semigroups is natural since
they play an important role in analysis, both theoretical
and applied. Diffusion semigroups include the heat semi-
group and, more generally, as discussed in, e.g., [8], arise
from considering large classes of elliptic second-order
(partial) differential operators on domains in Euclidean
space or on manifolds.

For examples of theoretical results involving diffusion
semigroups, the interested reader may refer to Chavel [9],
Cowling [10], Stein [8], Sturm [11], and Wu [12]. Some
applications of diffusion semigroups to dimensionality
reduction, embedding, clustering, data representation, mani-
fold parametrization, and multiscale analysis of complex
structures can be found in, e.g., [13–22]. Various definitions
and procedures for efficient computation of natural diffusion
distances can be found in, e.g., [1, 4, 23, 24].

In the present work, we consider a more general family
than a diffusion semigroup. For T a subset of the reals having
0 as an accumulation point, for t ∈ T , let atðx, yÞ be a nonneg-
ative measurable function on X × X which integrates to 1 in
each variable. For a function f ∈ L2ðXÞ and t ∈ T , define At f
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ðxÞ = Ð X atðx, yÞf ðyÞ dy. We assume that for every f ∈ L2ðXÞ,
kAt f − f kL2 ⟶ 0, as t⟶ 0, t ∈ T . No assumption is made
that the family At is symmetric or is a semigroup nor is any-
thing assumed about T other than that T has 0 as an accumu-
lation point.

For a finite measure space W, selecting hw ∈ L2ðXÞ for
every w ∈W, we define a distance between points x, y ∈ X
by Dðx, yÞ ≜ khwðxÞ − hwðyÞkL2ðWÞ. We next introduce an L2
version of being Lipschitz (relative to fAtg) using this
distance D. Our main result is that a function f ∈ L2ðXÞ is
L2-Lipschitz if and only if we have an estimate of the rate of
convergence of h f , f − At f i to 0, namely, ð0 ≤ Þh f , f − At f i
≤ cgDðtÞ, where gDðtÞ = 2

Ð
W hhw, hw − Athwi dw⟶ 0, as t

⟶ 0, t ∈ T .
Our paper is organized as follows. Following a notation

and assumptions section (Section 2), we state the main defi-
nitions, provide some examples, and establish our results in
Section 3. The paper ends with the Conclusions and
Acknowledgments sections.

2. Notation and Assumptions

Let X be a topological space equipped with a complete
positive σ-finite measure. The measure on X will be
denoted by dx and dy. W is a finite measure space, with
measure denoted by dw. We assume all spaces involved
are such that Fubini’s theorem holds on any product of
these spaces; e.g., the spaces are σ-finite. All functions
are assumed to be real-valued and measurable on the
respective spaces; in particular, functions of several vari-
ables are assumed to be measurable on the appropriate
product spaces.

T will denote a subset of the reals, with 0 as an accumu-
lation point. From now on, t⟶ 0 will mean t⟶ 0, t ∈ T .
For every t ∈ T , let atðx, yÞ be a nonnegative measurable
function on X × X with the property that

Ð
X atðx, yÞ dy =

Ð
X

atðx, yÞ dx = 1. For t ∈ T and a function f ∈ L2ðXÞ, define
At : L2 ⟶ L2 by At f ðxÞ =

Ð
X atðx, yÞf ðyÞ dy. We assume

that for every f ∈ L2ðXÞ, kAt f − f kL2 ⟶ 0, as t⟶ 0.
No assumption is made that the familyAt is symmetric or

is a semigroup nor is anything assumed about T other than
that T has 0 as an accumulation point.

Note that At is indeed bounded on L2 with norms not
exceeding one, since

g, At fh ij j ≤∬at x, yð Þ f xð Þj j g yð Þj jdxdy
≤ ∬at x, yð Þf 2 xð Þdxdy
� �1/2

∬at x, yð Þg2 yð Þdxdy
� �1/2

=
ð
at x, yð Þdy

� �
f 2 xð Þdx

� �1/2

ð
at x, yð Þ dx

� �
g2 yð Þdy

� �1/2
= fk kL2 gk kL2 :

ð1Þ

In particular, h f , f − At f i ≥ 0.

We will define a family Δ of symmetric distances on
X × X satisfying the triangle inequality with the following
properties for every D ∈ Δ:

(i) gDðtÞ ≡∬ atðx, yÞD2ðx, yÞ dxdy<∞ for every t ∈ T

(ii) gDðtÞ⟶ 0, as t⟶ 0

3. Main Definitions and Results

We start by describing the family Δ of symmetric distances
on X × X.

Definition 1. Select a finite measure spaceW. For eachw ∈W,
select hw ∈ L2ðXÞ, defined everywhere, with khwkL2ðXÞ ≤ 1.
Note that some hw may be chosen to be identically 0. Then,
the distance D ∈ Δ is given by

D x, yð Þ ≡ hw xð Þ − hw yð Þk kL2 Wð Þ =
ð
W

hw xð Þ − hw yð Þð Þ2 dw
� �1/2

:

ð2Þ

Clearly, D is symmetric and satisfies the triangle inequal-
ity (the latter fact follows from the triangle inequality for L2
ðWÞ).

Before looking at some examples of such distances, we
define our L2-Lipschitz condition.

Definition 2. For D ∈ Δ, we say that f ∈ L2ðXÞ is L2-Lipschitz
(relative to fAtg) if

∬at x, yð Þ f xð Þ − f yð Þð Þ2 dxdy ≤ c∬at x, yð ÞD2 x, yð Þdxdy,
ð3Þ

for every t ∈ T .

Now let us consider some examples of distances D ∈ Δ.
For the first one, let X be a bounded subset of ℝn having
(some) finite measure dx. Let W = f1, 2,⋯, ng, with dw
indicating unit masses assigned at each point of W. For
k = 1,⋯, n, let hkðxÞ = cxi, for x = ðx1,⋯, xnÞ ∈ X, where c

is a suitable constant to ensure that ∥hk∥L2 ≤ 1. Then, D1

ðx, yÞ ≡ ðÐW ðhwðxÞ − hwðyÞÞ2 dwÞ
1/2 = ðc2∑n

k=1 ðxk − ykÞ2Þ
1/2
,

a multiple of the Euclidean distance on X.
For our second example, let X be a finite measure

space with measure dx. Let W = ð0, 1Þ × X, with dw = sα−1

dsdx, where α > 0. For w = ðs, uÞ ∈W, let hwðxÞ =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asðx, uÞ

p
. Clearly, khwkL2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ
asðx, uÞ dx

p
= 1. Then,

D2
2 x, yð Þ ≡

ð
X

ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as x, uð Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
as y, uð Þ

p� �2
sα−1dsdu

=
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
as x, ·ð Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
as y, ·ð Þ

p��� ���2
L2
sα−1ds,

ð4Þ

an analog of the distance considered by Coifman and Leeb
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in [1, 4] for a semigroup. Note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asðx, uÞ

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

asðy, uÞ
p

are normalized in L2 with respect to u as well.
To gain some understanding of this distance D2

(although we will use the case of ℝn with Lebesgue measure,

not a finite measure space), let us calculate the distance D2

= ðÐ 10 k ffiffiffiffiffiffiffiffiffiffiffiffiffi
asðx, ·Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
asðy, ·Þ

p k2L2 s
α−1dsÞ1/2 for the basic case

when X =ℝn with dx Lebesgue measure and fAtg is the heat
flow semigroup. (While the derivation right after the state-
ment of Proposition 2.6 in [5] by Coifman and Goldberg
has a calculation of this distance, we present a more detailed
computation here.)

We easily see that
Ð
X ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asðx, uÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asðy, uÞ

p Þ2du = 2 −
2e−jx−yj2/ð16sÞ, where ∣x − y ∣ is the Euclidean distance between

the points x and y. Thus, D2
2ðx, yÞ = 2Ð 10 ð1 − e−jx−yj

2/ð16sÞÞ
sα−1 ds.

If ∣x − y ∣ ≥1, e−jx−yj2/ð16sÞ is bounded away from 1 for 0
< s < 1, so D2

2ðx, yÞ ~
Ð 1
0 s

α−1ds = c.
If ∣x − y ∣ <1, write

ð1
0
1 − e− x−yj j2/ 16sð Þ
� �

sα−1 ds =
ð x−yj j2

0
1 − e− x−yj j2/ 16sð Þ
� �

sα−1 ds

� +
ð1

x−yj j2
1 − e− x−yj j2/ 16sð Þ
� �

sα−1ds:

ð5Þ

For the first summand, observe that
Ð jx−yj2
0 ð1 −

e−jx−yj
2/ð16sÞÞsα−1 ds ~ Ð jx−yj20 sα−1ds = cjx − yj2α. For the second

summand, an easy calculation shows that, for α ≠ 1,

Combining with the estimate for the first summand, and
with the case ∣x − y ∣ ≥1, we obtain that for 0 < α < 1,

D2 x, yð Þ ~
x − yj jα, ∣x − y∣ < 1,
1, ∣x − y∣ ≥ 1,

(
ð7Þ

while for α > 1,

D2 x, yð Þ ~
x − yj j, x − yj j < 1:
1, x − yj j ≥ 1:

(
ð8Þ

Our third example is a variation of our second exam-
ple above. As in the second example, let X be a finite
measure space with measure dx and let W = ð0, 1Þ × X,
with dw = sα−1dsdx, where α > 0. For w = ðs, uÞ ∈W, let
hwðxÞ = asðx, uÞ/kasð·, uÞkL2 . Clearly, khwkL2 = 1.

Then, our new distance is given by

D2
3 x, yð Þ =

ð
X

ð1
0

as x, uð Þ
as ·, uð Þk kL2

−
as y, uð Þ
as ·, uð Þk kL2

 !2

sα−1dsdu:

ð9Þ

(For a related example, see Section 4 of [23] and the very
last example in Section 2 of [5].)

Let us specialize to the case of a symmetric diffusion
semigroup with the following additional requirement: asðz,
zÞ is constant over z ∈ X (but varies with s). Let asð·, · Þ
denote the value of asðz, zÞ for every z ∈ X. Under these

assumptions, using the semigroup property, we easily obtain

D2
3 x, yð Þ =

ð1
0

2 − 2 a2s x, yð Þ
a2s ·, ·ð Þ

� �
sα−1ds: ð10Þ

In the very special subcase of X =ℝn equipped with
Lebesgue measure and fAtg the heat flow semigroup,

2 − 2 a2s x, yð Þ
a2s ·, ·ð Þ = 2 − 2e− x−yj j2/ 8sð Þ, ð11Þ

and we thus obtain the same estimates for D3ðx, yÞ as for
D2ðx, yÞ above.

We now return to the general development. The follow-
ing simple result is the key tautology to prove our Theorem 6.

Proposition 3. For f ∈ L2ðXÞ, ∬ atðx, yÞð f ðxÞ − f ðyÞÞ2dxdy
= 2h f , f − At f i.

Proof. Using Fubini’s theorem and the assumption that at
ðx, yÞ integrates to 1 in each variable, we see that

∬at x, yð Þ f xð Þ − f yð Þð Þ2 dxdy =∬at x, yð Þ f 2 xð Þ + f 2 yð Þ − 2f xð Þf yð Þ� 	2
dxdy

=∬at x, yð Þf 2 xð Þ dxdy+∬at x, yð Þf 2 yð Þ dxdy

� − 2
ð
f xð Þ

ð
at x, yð Þf yð Þ dy

� �
dx

= 2 fk k2L2 Xð Þ − 2 f , At fh i = 2 f , fh i − 2 f , At fh i
= 2 f , f − At fh i:

ð12Þ

For D ∈ Δ, letting gDðtÞ ≡∬ atðx, yÞD2ðx, yÞdxdy, we
obtain the following result.

ð1
x−yj j2

1 − e− x−yj j2/ 16sð Þ
� �

sα−1 ds ~
ð1

x−yj j2
x − yj j2
s

sα−1 ds = c
1

α − 1 x − yj j2 − x − yj j2α� 	
~

x − yj j2α, 0 < α < 1:
x − yj j2, α > 1:

(
ð6Þ
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Proposition 4. gDðtÞ = 2
Ð
W hhw, hw − Athwidw.

Proof. Using the definition of Dðx, yÞ, Fubini’s theorem, and
Proposition 3, we observe that

∬at x, yð ÞD2 x, yð Þdxdy =
ð
W

∬at x, yð Þ hw xð Þ − hw yð Þð Þ2dxdy
� �

dw

= 2
ð
W

hw, hw − Athwh idw:

ð13Þ

Corollary 5. gDðtÞ <∞ for every t ∈ T and gDðtÞ⟶ 0 as
t⟶ 0.

Proof. Since jhhw, hw − Athwij ≤ 2 and
Ð
W dw <∞, the result

that gDðtÞ <∞, for every t ∈ T , follows from Proposition 4.
From one of our initial assumptions that for every f ∈ L2
ðXÞ, kAt f − f kL2 ⟶ 0, as t⟶ 0, we obtain that hhw, hw
− Athwi⟶ 0, as t⟶ 0, for every w. Hence, gDðtÞ⟶
0, as t⟶ 0, by the dominated convergence theorem.

Recalling Definition 2, we can now prove the following
theorem, which is of interest only due to Corollary 5.

Theorem 6. For D ∈ Δ and f ∈ L2ðXÞ, f is L2-Lipschitz if and
only if h f , f − At f i ≤ cgDðtÞ, for every t ∈ T .

Proof. First, suppose that f ∈ L2ðXÞ is L2-Lipschitz. Then, by
Proposition 3, we have

f , f − At fh i = 1
2∬at x, yð Þ f xð Þ − f yð Þð Þ2dxdy
� ≤ c∬at x, yð ÞD2 x, yð Þdxdy = cgD tð Þ,

ð14Þ

for t ∈ T .
Conversely, suppose h f , f − At f i ≤ cgDðtÞ, for every t ∈ T

. Then, by Proposition 3 again,

∬at x, yð Þ f xð Þ − f yð Þð Þ2dxdy = 2 f , f − At fh i ≤ cgD tð Þ
= c∬at x, yð ÞD2 x, yð Þdxdy:

ð15Þ

Thus, f is L2-Lipschitz.

It is easy to see that ð1/2Þk f − At f k2L2 ≤ h f , f − At f i ≤
k f kL2k f − At f kL2 , so Theorem 6 establishes an equivalence
between f being L2-Lipschitz and having an estimate of the
speed of convergence of k f − At f kL2 to 0, as t→ 0.

Note that if fAtg is a symmetric semigroup (and T = ½0,
∞Þ), then

f , f − At fh i = f , fh i − f , At fh i
= f , fh i − At/2 f , At/2 fh i
= fk k2L2 − At/2 fk k2L2
= fk kL2 − At/2 fk kL2
� �

fk kL2 + At/2 fk kL2
� �

,

ð16Þ

so k f kL2ðk f kL2 − kAt/2 f kL2Þ ≤ h f , f − At f i ≤ 2k f kL2ðk f kL2
− kAt/2 f kL2Þ. Hence, if fAtg is a symmetric semigroup, h f ,
f − At f i ~ k f kL2 − kAt/2 f kL2 .

4. Conclusions

For X a topological space equipped with a complete positive
σ-finite measure, W a finite measure space, and selecting
everywhere-defined real-valued hw ∈ L2ðXÞ for every w ∈W
with khwkL2ðXÞ ≤ 1, we have defined a distance D by Dðx, yÞ
≜ khwðxÞ − hwðyÞkL2ðWÞ.

For T a subset of the reals having 0 as an accumulation
point and for t ∈ T , letting atðx, yÞ be a nonnegative measur-
able function on X × X which integrates to 1 in each variable,
we have considered bounded operators At on L2ðXÞ given by
At f ðxÞ =

Ð
X atðx, yÞf ðyÞ dy. Assuming that for every f ∈ L2ðX

Þ, kAt f − f kL2 ⟶ 0, as t⟶ 0, t ∈ T, we have shown that ∬
atðx, yÞð f ðxÞ − f ðyÞÞ2 dxdy ≤ c∬ atðx, yÞD2ðx, yÞ dxdy, for
every t ∈ T if and only if ð0 ≤ Þh f , f − At f i ≤ cgDðtÞ, where
gDðtÞ = 2ÐW hhw, hw − Athwi dw⟶ 0, as t⟶ 0, t ∈ T.
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