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For the superreplication problem with discrete time, a guaranteed deterministic formulation is considered: the problem is to
guarantee coverage of the contingent liability on sold option under all admissible scenarios. These scenarios are defined by
means of a priori defined compacts dependent on price prehistory: the price increments at each point in time must lie in the
corresponding compacts. In a general case, we consider a market with trading constraints and assume the absence of transaction
costs. The formulation of the problem is game theoretic and leads to the Bellman–Isaacs equations. This paper analyses the
solution to these equations for a specific pricing problem, i.e., for a binary option of the European type, within a multiplicative
market model, with no trading constraints. A number of solution properties and an algorithm for the numerical solution of the
Bellman equations are derived. The interest in this problem, from a mathematical prospective, is related to the discontinuity of
the option payoff function.

1. Introduction

1.1. Literature Review. One of the first publications to
develop a guaranteed deterministic approach is an article by
Kolokoltsov [1], published in 1998. To the best of our knowl-
edge, this was the first work to explicitly articulate this
approach to pricing and hedging contingent clams. Implic-
itly, however, some mathematical tools for a guaranteed
deterministic approach were already present in 1994 in the
first edition of the book by Dana and Jeanblanc-Picqué [2]
(Sections 1.1.6 and 1.2.4). The result of the first part of [1]
(the case of a single risky asset and a convex payout function
on European option) follows from [2]. The guaranteed deter-
ministic approach is closely related to a class of market models
called interval models in [3], especially to the ideas and results
of Kolokoltsov published in [3] (Chapters 11–14), including
the independent discovery of the game-theoretic interpreta-
tion of risk-neutral probabilities under the assumption of no
trading constraints; we find this interpretation to be quite
important from an economic point of view. One can also con-
sider guaranteed deterministic approach to be a Merton-type

approach, which goes back to 1973; see [4] (no reference prob-
ability measure is used in this seminal work). Note that we
share an idea, suggested in an unpublished work of Carassus
and Vargiolu about 15 years ago and finally published in [5]:
in order to get a meaningful theory, it is reasonable to assume
the boundedness of price increments.

Formally, from the contemporary point of view (the
guaranteed deterministic approach was developed by us in
the late 90s (although at that period we were not aware of
Kolokoltsov’s paper), but published (primarily in Russian)
only in the last three years, together with some recent new
results), the guaranteed deterministic approach to the super-
hedging problem can be classified as a specific pathwise (or
pointwise) approach addressing uncertainty in market
modelling by defining a set of deterministic market scenarios
(described in detail in the next section), a result of an agent’s
beliefs. Or it can be formally described in terms “quasisure”
approach (we refer to [6, 7] for these two robust modelling
approaches and for detailed review of large literature focus-
ing on robust approach to mathematical finance), by the
choice of a collection of probabilistic models (possible priors)
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for the market. In our case, all these probabilities initially (but
can be enlarged to a family of probabilities which is a mixed
extension of pure “market” strategies) are Dirac measures
(but certainly not all of them). However, it is to stress that
we adopt an alternative interpretation to the common robust
approach to pricing of contingent liabilities. Our interpreta-
tion, as already mentioned above, is game theoretic: we deal
with a deterministic dynamic two-player zero-sum game of
“hedger” against “market.” A family of probabilities appears
as a secondary notion, thanks to the introduction of mixed
strategies of the “market.”

We deem to be related to our approach a formulation of
the upper hedging price based on the game-theoretic proba-
bility, presented in [8].

1.2. Problem Statement. The present paper joins a series of
publications (in particular, [9] describes the market model
in detail and provides a literature review) [9–15] that develop
a financial market model consistent with an uncertain deter-
ministic price evolution with discrete time: asset prices evolve
deterministically under uncertainty described using a priori
information about possible price increments. Namely, they
are assumed to lie in the given compacts that depend on
the prehistory of the prices (such a model is an alternative
to the traditional probabilistic market model (in our pro-
posed deterministic approach, the reference probability mea-
sure is not initially set, as it is supposed in the probabilistic
approach, see, e.g., [16])).

The proposed approach allows us to simplify the mathe-
matical technique to a certain extent and make the formula-
tion of statements more understandable for economists. The
advantages of the approach include game-theoretic interpre-
tation (in the absence of trading constraints, this interpreta-
tion provides an economically important explanation for the
emergence of risk-neutral probabilities as one of the proper-
ties of the most unfavourable mixed market strategies).

The market model described above explores the problem
of option pricing, by which we mean nondeliverable (for the
risk management purposes, mainly nondeliverable contracts
are used) over-the-counter contracts whose payoffs depend
on the evolution of underlying asset prices up to the time of
expiration. The writer of an option assumes a contingent
liability that, unlike contingent liabilities on insurance poli-
cies, can be protected frommarket risk by hedging in markets
(by means of transactions in underlying assets and risk-free
assets). One of the most important ways to hedge the contin-
gent liability of a sold option is through superreplication (this
term originated because conditional liabilities cannot be
replicated in incomplete markets (this is only possible in
complete markets)) or in other words superhedging (we pre-
fer to use the second of the two equivalent terms). The prob-
lem of option pricing in superhedging is to determine the
minimum level of funds at the initial moment required by
the seller (in other words, it is the premium charged to the
buyer of the option if the seller uses superhedged pricing),
which guarantee, if an appropriate hedging strategy is cho-
sen, the coverage of the contingent liability under the option
sold (remind that the corresponding payments under depend
on the prehistory of prices). In general, we consider

American-style options (American-style options) in which
the seller’s counterparty (the option holder) can exercise
the option (i.e., demand payment in accordance with the
rules set out in that contract) at any time, up to the expiration
of the option. Note that European- and Bermuda-type
options can be seen as a case of American options, subject
to certain regularity conditions, including “no arbitrage”
condition, in a certain sense.

Let us now formalize the above construction for the
superhedging problem. The main premise of the proposed
approach is to specify “uncertain” price dynamics by assum-
ing a priori information about price movements at time t,
namely, that the increments (the increments are taken “back-
ward,” i.e., ΔXt = Xt − Xt−1, where Xt is the vector of
discounted prices at time t; the i-th component of this vector
represents the unit price of the i-th asset) ΔXt of discounted
prices (we assume that the risk-free asset has a constant price
equal to 1) lie in a priori defined compacts (the dot denotes
the variables describing the evolution of prices. More pre-
cisely, this is the prehistory �xt−1 = ðx0,⋯, xt−1Þ ∈ ðℝnÞt for
Kt , while for the functions v

∗
t and gt introduced below, this

is the history �xt = ðx0,⋯, xtÞ ∈ ðℝnÞt+1) Ktð·Þ ⊆ℝn, where
the point denotes the prehistory of prices up to and including
time t − 1, t = 1,⋯,N . We denote by v∗t ð·Þ the infimum of the
portfolio value at time t, at a known prehistory that guaran-
tees, given some choice of an acceptable hedging strategy,
the coverage of the current and future liabilities arising with
respect to possible payoffs on the American option.

The corresponding Bellman–Isaacs equations in
discounted prices arise directly from an economic sense by
choosing, at step t, the “best” admissible hedging strategy
(vector h describes the size of positions taken in assets, i.e.,
the i-th component of this vector represents the number of
units of the i-th asset being bought or sold) h ∈Dtð·Þ ⊆ℝn

for the “worst-case” scenario y ∈ Ktð·Þ of (discounted) prices
increments for given functions gtð·Þ, describing the potential
option payoff. Thus, we obtain the following recurrence rela-
tions (the sign denotes the maximum, and hy = hh, yi is the
scalar product of vector h on vector y):

v∗N �xNð Þ = gN �xNð Þ,
v∗t−1 �xt−1ð Þ = gt−1 �xt−1ð Þ∨ inf

h∈Dt �xt−1ð Þ
sup

y∈Kt �xt−1ð Þ
v∗t �xt−1, xt−1 + yð Þ − hy½ �,

t =N ,⋯, 1,
ð1Þ

where �xt−1 = ðx0,⋯, xt−1Þ describes the prehistory with
respect to the present moment t. The conditions for the
validity of (1) are formulated in Theorem 3.1 of [17].

Multivalued mappings x↦ KtðxÞ and x↦DtðxÞ, as well
as functions x↦ gtðxÞ, are assumed to be given for all x ∈
ðℝnÞt , t = 1,⋯,N . Therefore, the functions x↦ v∗t ðxÞ are
given by equation (1) for all x ∈ ðℝnÞt . In equation (1), the
functions v∗t , as well as the corresponding suprema and
infima, take values in the extended set of real numbers ℝ ∪
f−∞, +∞g = ½−∞, +∞�, a two-point compactification
(the neighbourhoods of points −∞ and +∞ are ½−∞, aÞ, a
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∈ℝ and ðb, +∞�, b ∈ℝ, respectively) of ℝ.The derivation of
equation (1) is easily obtained by a kind of “engineering
reasoning.” In informal economic language, this can be
explained as follows. Assuming for simplicity that suprema
and infima in equation (1) are attained, let t ≤N ; by the
current (present) time t − 1, we know the (discounted) price
history x1,⋯, xt−1. The portfolio value Vt−1 when hedging
the contingent liability of a sold American option should first
be no less than the current liability, equal to the potential
payout gtðx1,⋯, xt−1Þ, to guarantee its coverage. Second,
the portfolio value at the next moment Vt = Vt−1 +HtΔXt
(here, the strategyHt is formed at moment t − 1 and can only
depend on the prehistory of prices x1,⋯, xt−1) should pro-
vide a guaranteed coverage of the contingent claim under
any scenario ΔXt = y ∈ Ktðx1,⋯, xt−1Þ of price movements
at step t; hence, it should be not less than v∗t ðx1,⋯, xt−1,
xt−1 + yÞ. Thus, to cover future liabilities, the portfolio value
Vt−1 when an admissible hedging strategy Ht = h ∈Dtðx1,
⋯, xt−1Þ is used should be no less than v∗t ðx1,⋯, xt−1, xt−1
+ yÞ − hy under the worst-case scenario y ∈ Ktðx1,⋯, xt−1Þ
of price movements at step t, i.e., for y ∈ Ktðx1,⋯, xt−1Þ that
maximizes the expression v∗t ðx1,⋯, xt−1, xt−1 + yÞ − hy. The
resulting value is minimized by choosing a strategy h ∈
Dtðx1,⋯, xt−1Þ) to evaluate the required reserves to cover
future potential payoffs. It remains to put v∗t ðx1,⋯, xt−1Þ
equal to the maximum amount of current liabilities and
the amount of reserves for future potential payments.

We deem a trajectory on the time interval ½0, t� = f0,⋯, tg
of asset prices ðx0,⋯, xtÞ = �xt to be possible if x0 ∈ K0, Δ
x1 ∈ K1ðx0Þ,⋯, Δxt ∈ Ktðx0,⋯, xt−1Þ ; t = 0, 1,⋯,N . Let us
denote by Bt the set of possible trajectories of asset prices
on the time interval ½0, t�; thus,

Bt = x0,⋯, xtð Þ: x0 ∈ K0, Δx1 ∈ K1 x0ð Þ,⋯, Δxt ∈ Kt x0,⋯, xt−1ð Þf g:
ð2Þ

One of the conditions for the validity of (1) is the
assumption of boundedness of payoff functions gt formu-
lated in Theorem 3.1 from [9], due to which the functions
v∗t are bounded from above. The assumption is as follows.

There exist constantsCt ≥ 0 such that for each t = 1,⋯,N

and all possible trajectories �xt = x0,⋯, xtð Þ ∈ Bt

 gt x0,⋯, xtð Þ ≤ Ct:

ð3Þ

Throughout the following, we will assume that the
assumptions listed in Theorem 3.1 of [9] as well as those
listed in (2) of Remark 3.1 of [9] are met.

This paper considers the problem of superhedging pric-
ing of a binary option (European type) for a multiplicative
one-dimensional market model, under the assumption of
no trading constraints. A number of solution (1) properties
are obtained, in particular, continuity except a single point.
In addition, an algorithm for obtaining a “semi-implicit”
solution (1), represented in the form of a piecewise rational

function, is proposed. The interest to this problem is caused
by the fact that the payout function is discontinuous, and
therefore, the results concerning the case of continuous
payout functions given in [12, 13] are not applicable here.

2. Auxiliary Results

Throughout the discussion below, we refer only to
discounted prices. The price of the risk-free asset (after
discounting, see [9]) is identically equal to 1. According to
the terminology proposed in [9], for risky assets, the price
dynamics (trading constraints) belongs to the Markov type
if Ktð·Þ (respectively Dtð·Þ) depend only on the price value
at the previous moment, i.e., Ktð·Þ (respectively Dtð·Þ) can
be represented in the following form:

Kt x0,⋯, xt−1ð Þ = K⋆
t xt−1ð Þ, ð4Þ

respectively,

Dt x0,⋯, xt−1ð Þ =D⋆
t xt−1ð Þ, ð5Þ

for t = 1,⋯,N .Let us formulate some simple but useful
statements.

Proposition 1. If price dynamics and trade constraints are of
the Markov type and the payoff functions depend only on the
current price, i.e., for t = 1,⋯,N are represented in the form

gt x0,⋯, xtð Þ = g⋆
t xtð Þ, ð6Þ

then the solutions of the Bellman–Isaacs equation (1) also
depend only on the current price, i.e., for t = 1,⋯,N, they
can be represented in the following form:

v∗t x0,⋯, xtð Þ = v⋆t xtð Þ: ð7Þ

Proof. It follows directly from the form of the Bellman–Isaacs
equation (1). ☐

Proposition 2. Let assumptions (2) and (4) be satisfied,
trading constraints be absent (in this case, condition (5) is
obviously fulfilled), i.e., Dtð·Þ ≡ℝn, and the condition NDAO
of no arbitrage opportunities be satisfied (in this case, the
NDAO condition is equivalent to a geometric one: 0 lies in the
relative interior of convex hull of Ktð·ÞÞ, t = 1,⋯,N ; see [10]).
Then, for European options, the solutions of the Bellman–
Isaacs equation (1) are monotonically decreasing in time, i.e.,

v⋆0 xð Þ ≥ v⋆1 xð Þ ≥⋯≥ v⋆N xð Þ: ð8Þ

Proof. When there are no trading constraints and the condi-
tion NDAO of no arbitrage opportunities is fulfilled, we can
assume that this is a special case of American options with
payout functions (in principle, a weaker condition NDSA of
no guaranteed arbitrage is sufficient for this; see [10])
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gt xð Þ ≡ 0, t = 0,⋯,N − 1, gN = g: ð9Þ

☐

Using Proposition 1 and the theorem proved in [11], we
obtain for t = 1,⋯,N that the representation (7) holds and
the following equality is valid

v⋆t−1 xð Þ = sup
ð
v⋆t x + yð ÞQ dyð Þ,Q ∈Mt xð Þ

� �
, ð10Þ

whereMtðxÞ is the set of probability measures on K⋆
t ðxÞwith

a finite support (in fact, it is sufficient to consider the set of
measures with the number of support points not exceeding
n + 1) satisfying the martingality condition (more precisely,
the price increments form a martingale difference sequence):Ð
y QðdyÞ = 0. In particular, δ0 ∈MtðxÞ, where δ0 is a proba-

bility measure centred at point 0, and thus,

v⋆t−1 xð Þ ≥ v⋆t xð Þ: ð11Þ

Proposition 3. Let for the one-dimensional model (that is, for a
model with one risky asset (and one riskless asset)) the assump-
tions of Proposition 1 be satisfied and the payoff functions g⋆t ,
t = 1,⋯,N be monotonically nondecreasing (respectively,
monotonically nonincreasing). Then, the solutions of the Bell-
man–Isaacs equations v⋆t , t = 1,⋯,N are also monotonically
nondecreasing (respectively, monotonically nonincreasing).

Proof. This follows directly from the form of the Bellman–
Isaacs equation (1). ☐

Further, we consider a one-dimensional market model,
where, in a multiplicative representation, the dynamics of
the discounted price of a risky asset are described by the
following relations (according to the terminology proposed
in [9], in this case, the price dynamics refer to a
multiplicative-independent type):

Xt =Mt Xt−1, t = 1,⋯,N , ð12Þ

where (here, the prices and multipliers are considered as
“uncertain” values (a deterministic analogue of random
variables)) the multiplier

Mt ∈ α, β½ �, 0 < α < β: ð13Þ

The trading constraints are absent and the condition NDAO
of no arbitrage opportunities is fulfilled, which in our case is
equivalent to the following inequalities:

α < 1 < β: ð14Þ

Amodel of this kind was first proposed by Kolokoltsov [1].

(1) If the function v⋆t satisfies the Lipschitz condition on
some interval ½a, b�, then the function also satisfies
the Lipschitz condition on the (narrower) interval

½a/α, b/β�, and on this interval, the Lipschitz
constant for v⋆t−1 does not exceed the Lipschitz
constant for v⋆t on the interval ½a, b�

(2) If there is an upper estimate of the Bellman function
v⋆t ðxÞ ≤ cx + d for x ∈ ½a, b�, then v⋆t−1ðxÞ ≤ cx + d for
x ∈ ½a/α, b/β�

(3) If the payoff functions g⋆s , s = 1,⋯,N are upper semi-
continuous, then the strict inequality v⋆t ðxÞ < cx + d
for x ∈ ½a, b� entails a strict inequality v⋆t−1ðxÞ < cx +
d for x ∈ ½a/α, b/β�

(4) If x1 > 0, x1 < x2, and x2/x1 ≤ β/α, then for x ∈ ½x2/
β, x1/α� the inequality v⋆t−1ðxÞ ≥ cx + d holds, where

c =
v⋆t x2ð Þ − v⋆t x1ð Þ

x2 − x1
,

d = v⋆t x1ð Þ:
ð15Þ

Proposition 4. Let the model of price dynamics be described
by relations (12), (13), and (14); we fix t ∈ f1,⋯,Ng. Then,
the following statements hold for the European option.

Proof.

(1) Let us use the multiplicative analogue of formula (10)
for the European option:

v⋆t−1 xð Þ = sup
ð
v⋆t mxð ÞQ dmð Þ,Q ∈N

� �
, ð16Þ

where N is the set of probability measures on ½α, β� with a
finite support (it is sufficient to consider the set of measures
with the number of support points not exceeding n + 1)
satisfying the multiplicative martingality condition:

Ð
mQðd

mÞ = 1. Denote the Lipschitz constant for v⋆t on the inter-
val ½a, b� by L. Since for x ∈ ½a/α, b/β� the inclusion ½αx, β
x� ⊆ ½a, b� holds, for any points x1 and x2 such that a/α
≤ x1 ≤ x2 ≤ b/β we have the following inequalities:

v⋆t−1 x2ð Þ − v⋆t−1 x1ð Þj j ≤ sup
ð
v⋆t mx2ð Þ − v⋆t mx1ð Þj jQ dmð Þ,Q ∈N

� �

≤ L x2 − x1j j
ð
mQ dmð Þ = L x2 − x1j j:

ð17Þ

(2) Given the inclusion ½αx, βx� ⊆ ½a, b� for x ∈ ½a/α, b/β�,
for any Q ∈N we have

ð
v⋆t mxð ÞQ dmð Þ ≤ cx

ð
mQ dmð Þ + d = cx + d, ð18Þ

whence, according to (16), we obtain v⋆t−1ðxÞ ≤ cx + d.
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(3) Under the assumptions made, because the supre-
mum in (16) is attained (see [13]) for some measure
Qt,x ∈N , then

ð
v⋆t mxð ÞQt,x dmð Þ < cx

ð
mQt,x dmð Þ + d = cx + d: ð19Þ

(4) For x ∈ ½x2/β, x1/α�, choose m1 = x1/x and m2 = x2/x;
we have then α ≤m1 <m2 ≤ β. Consider a measure
Q ∈N concentrated at points (the probabilities of
these points are uniquely determined from the
normalization and martingality conditions; there-
fore, Q depends on t, x, x1, and x2) m1 and m2.
Thanks to the choice of constants c and d in (15),
the functions m↦ v⋆t ðmxÞ and m↦ cmx + d coin-
cide at the points of the support of measure Q ∈N ,
and we obtain the following equality:

ð
v⋆t mxð ÞQ dmð Þ = cx

ð
mQ dmð Þ + d = cx + d, ð20Þ

whence, using (16), we obtain the required inequality. ☐

3. Binary Option of European Type

3.1. General Case of the Support of Distribution of Uncertain
Multiplier. Within the framework of the price dynamics
model described by relations (12), (13), and (14), we are
interested in the superhedging problem within the guaran-
teed deterministic approach for a European-type binary
option. Without limiting the generality, we can assume that
the strike price is equal to 1. Let us consider a binary call
option (the case of a binary put option can be investigated
using similar methods) whose payoff function g at the expi-
ration moment is equal to

g xð Þ = I 1,+∞Þ½ xð Þ, ð21Þ

where IA is an indicator function of set A. Note that Proposi-
tion 2 is applicable in the case of our model, and thus, the
solutions of the Bellman–Isaacs equation (1) are monotoni-
cally nonincreasing over time. By virtue of the condition of
the absence of NDAO arbitrage opportunities, as noted
above, the European option superhedging problem is
reduced to the American option superhedging problem, with
the payoff functions described by (9), i.e., with zero payoff
functions except for the expiration moment (21). Thus,
Proposition 1 is applicable, and a representation of the form
(7) holds for the solution of the corresponding Bellman–
Isaacs equations. Hereinafter, we will consider our problem
as a superhedging of an American option with zero payoff
functions except for the expiration moment. Since the
terminal payoff function is monotonically nondecreasing,
Proposition 3 is applicable. Thus, the solutions to the corre-
sponding Bellman–Isaacs equations are also monotonically

nondecreasing, or equivalently, by notation (26), the func-
tions v⋆s , s = 0,⋯,N are monotonically nondecreasing.
Therefore, these functions can have discontinuities of the
first kind (jumps) only. In addition, as the payoff function
g is upper semicontinuous and the multivalued mappings
Ktð·Þ and Dtð·Þ are continuous, the solutions to the Bell-
man–Isaacs equations v⋆s , s = 0,⋯,N are also upper semi-
continuous; see [12]. For monotonically nondecreasing
functions, upper semicontinuity is equivalent to their right
continuity. Since the solutions of the Bellman–Isaacs equa-
tions v⋆s , s = 0,⋯,N are upper semicontinuous, a game equi-
librium takes place (at each time step); see [14]. In this case,
according to the results of [14], for the saddle point, the most
unfavourable mixed strategies are achieved in the class of dis-
tributions concentrated in no more than two points. To find
the solution to the Bellman equations (after separating the
pricing problem from the hedging problem), it is sufficient
(see [15]) to construct at each step t = 1,⋯,N on the interval
½αx, βx� (upper semicontinuous) concave envelope ~v⋆t of
Bellman function v⋆t and set v⋆t−1ðxÞ = ~v⋆t ðxÞ.
3.2. Cox–Ross–Rubinstein Assumption about the Endpoints of
the Uncertain Multiplier Support. The general case of param-
eters α and β is quite difficult to analyse owing to the chaotic
behaviour (including the mutual position) of the products of
the form αiβj, where i and j are nonnegative integers, unless
ln α and ln β are rationally commensurable. We choose the
simplest case of rational commensurability of ln α and ln β,
proposed in the Cox–Ross–Rubinstein model [18], namely,
we apply

β = α−1: ð22Þ

In this case, the condition of no arbitrage opportunities
(14) is automatically satisfied for α < 1. Note that assumption
(22) simplifies significantly the analysis: if, at step s = 1,⋯,N ,
point x, the price value at the previous time, lies in an interval
of the form ½αk, αk−1Þ, k = 0,⋯, s + 1, then the endpoints of
the interval ½αx, α−1xÞ of the possible values of the uncertain
value Xs given Xs−1 = x, i.e., points αx and α−1x, lie in the
adjacent intervals ½αk+1, αkÞ and ½αk−1, αk−2Þ, respectively.
We will say that the points αk, k = 0,⋯, s form a skeleton at
step s = 1,⋯,N . The most unfavourable mixed market strat-
egies in step t for a given price x in the previous step may be
nonunique. For example, if x ∈ ½1,∞Þ, any distribution with
the support contained in ½1,∞Þ and the barycentre x would
be such, and if x ∈ ð0, αt−1Þ, any distribution with the support
contained in ð0, αt−1Þ and the barycentre x would be such. At
points x where there is a nonuniqueness of the most unfa-
vourable mixed market strategy, we adopt a convention to
choose a distribution with barycentre x that has the mini-
mum number of support points to fix the unique “optimal”
mixed market strategy. There will never be more than two
such points, and hence, given the martingality condition,
the corresponding distribution is defined in the only way
possible. Due to this convention, the conditional distribution
Qs

x of price Xs given Xs−1 = x, concentrated in no more than
two points, will be chosen as the most unfavourable mixed
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market strategy at step s = 1,⋯,N (when the maximum in
(16) is attained). We call the support of the distribution Qs

x
a scenario. When the scenario is a one-point set, Qs

x = δx,
where δa denotes the probability measure concentrated at a
point a. When the scenario is a set of two points, Qs

x has
the following form:

Qs
x = ps xð Þδas xð Þ + qs xð Þδbs xð Þ, ð23Þ

where asðxÞ < bsðxÞ. Given a scenario, the probabilities ps
ðxÞ and qsðxÞ are uniquely defined from the normalization
condition

ps xð Þ + qs xð Þ = 1 ð24Þ

and price martingality condition, whence

ps xð Þ = bs xð Þ − x
bs xð Þ − as xð Þ ,

qs xð Þ = x − as xð Þ
bs xð Þ − as xð Þ ,

ð25Þ

For convenience, we shall use the following notations:

us xð Þ = v⋆N−s xð Þ, s = 0,⋯,N: ð26Þ

In particular, u0 = g, where g is given by (21). The
recurrence relations for us, s = 1,⋯,N are

us xð Þ = ps xð Þus−1 as xð Þð Þ + qs xð Þus−1 bs xð Þð Þ: ð27Þ

In what follows, using notation (26), we will investigate
the properties of the solution us, s = 1,⋯,N of the European
binary call option superhedging problem, with the payoff
function at the expiration moment given by (21), for the
market described using relations (12), (13), (14), and (22).

3.3. Solutions of the Bellman Equations for the First Two
Steps. For x < α, the function u1 is identically equal to zero
because the interval ½αx, α−1x� is contained in ð0, 1Þ, where
the function u0 = g is zero. For x ≥ 1, the function u1 is iden-
tically equal to 1 because the (upper semicontinuous) concave
envelope ~u0 of the function u0 on ½αx, α−1x� at x is equal to 1.

Note that in the first step, for x ∈ ½α, 1Þ, the most unfa-
vourable mixed market strategy can be a conditional distri-
bution Q1

x concentrated at two points αx and 1, with
probabilities p1ðxÞ and q1ðxÞ, respectively. Formula (25) in
this case takes the form

p1 xð Þ = 1 − x
1 − αx

,

q1 xð Þ = 1 − αð Þx
1 − αx

,
ð28Þ

and by (27), the values of function u1 on the interval ½α, 1Þ are
given by the expression

u1 xð Þ = p1 xð Þg αxð Þ + q1 xð Þg 1ð Þ = q1 xð Þ: ð29Þ

Thus, in the interval ½α, 1Þ, the scenario fαx, 1g is
realized, and function u1 has a hyperbolic form

u1 xð Þ = 1 − αð Þx
1 − αx

, ð30Þ

which is strictly monotonically increasing and (strictly)
convex. At point α, the function u1 has a single disconti-
nuity (jump), is right-continuous, and

u1 αð Þ = α

1 + α
: ð31Þ

On the right endpoint of interval ½α, 1Þ by (31), we have

u1 1 − 0ð Þ = 1, ð32Þ

so that function u1 is continuous at point 1.
Note that the line passing through the points in the plane

of the hyperbola (31) corresponding to the arguments α and
1, i.e., passing through the points with coordinates ðα, u1ðαÞÞ
and ðα−1x, u1ðα−1xÞÞ, is defined by

ω1 zð Þ = u1 αð Þ + u1 α−1x
� �

− u1 αð Þ
α−1x − α

z − αð Þ

=
α

1 + α
+

z − α

1 + αð Þ 1 − xð Þ
=

z − αx
1 + αð Þ 1 + xð Þ ,

ð33Þ

which has a root αx, i.e.,

ω1 αxð Þ = 0: ð34Þ

In particular, for x = α, we obtain that the line passing
through the points of the hyperbola (31) corresponding to
the arguments α and 1 have the root α2. To complete the geo-
metric image, we also note that the tangent at point α to the
restriction of the function u1 to the interval ½α, 1Þ, given by
the function

φ1 zð Þ = u1 αð Þ + z − αð Þu′1 α + 0ð Þ = α

1 + α
+

z − α

1 − αð Þ 1 + αð Þ2 ,

ð35Þ

has a root α3.
The graph of the function u1 for α = 0:5 is shown in

Figure 1.
It follows from (33) and (34) that for x ∈ ½α2, αÞ, the line

segment defined by function (23), connecting points with
coordinates ðαx, 0Þ and ðα−1x, u1ðα−1xÞÞ, is a (upper semi-
continuous) concave envelope ~u1 of function u1 on the inter-
val ½αx, α−1x�, and thus,

u2 xð Þ = ~u1 xð Þ = x − αx
1 + αð Þ 1 − xð Þ , ð36Þ
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for x ∈ ½α2, αÞ. At the right endpoint of the hyperbola (36),
the equality

u2 α − 0ð Þ = α

1 + α
ð37Þ

holds.
Note that in the second step, for x ∈ ½α, 1Þ, the most unfa-

vourable mixed market strategy (note that when x = α the
most unfavourable mixed market strategy is not unique:
any distribution with barycentre x = α concentrated at no
more than three points: α2, α, and 1, i.e., a distribution repre-
sented as a mixture pδα + ð1 − pÞðð1/ð1 + αÞÞδα2 + ðα/ð1 + αÞÞ
δ1Þ, p ∈ ½0, 1�, is “optimal”) can be represented as a conditional
distribution of the form Q2

x = p1ðxÞδα + p2ðxÞδ1. Formula (25)
in this case takes the form

p2 xð Þ = 1 − x
1 − α

,

q2 xð Þ = x − α

1 − α
,

ð38Þ

and by (27), the function u2 on the interval ½α, 1�, taking into
account (31), is an affine function, namely,

u2 xð Þ = p2 xð Þu1 αð Þ + q2 xð Þu1 1ð Þ = x − α2

1 − α2
: ð39Þ

Specifically,

u2 αð Þ = α

1 + α
: ð40Þ

Given (37), the function u2 is therefore continuous at point α.
The function u2 is not only continuous at ½α2, +∞Þ: it turns
out that at this point there exists a derivative equal to
ð1 − α2Þ−1 so that the function u2 is differentiable at ðα2, 1Þ.
It is easily seen that for x < α2 the function u2 is identically
equal to zero, and for x ≥ 1, the function u2 is identically equal
to one. Because (39) implies u2ð1 − 0Þ = 1, the function u2 is
continuous at point 1, and hence, the function u2 is continuous
at ½α2, +∞Þ.

The graph of the function u2 for α = 0:5 is shown in
Figure 2.

3.4. Solutions of the Bellman Equations: Recurrence
Properties. We now fix s ∈ f1,⋯,Ng.

Proposition 5. Outside the interval ½αs, 1Þ, the function us
takes the following values:

us xð Þ = 0 npu x < αs, ð41Þ

us xð Þ = 1 npu x < 1: ð42Þ
Proof. The relations in (41) are obtained through induction,
given the property noted in the previous section, and the
endpoints of the interval ½αx, α−1x� for x ∈ ½αk, αk−1Þ, k = 0,
⋯, s + 1 lie in adjacent intervals, that is, αx ∈ ½αk+1, αkÞ and

α−1x ∈ ½αk−1, αk−2Þ. For s = 1, this property is established as
described in the previous section. Suppose (28) is valid for
s = t, let us show its validity for s = t + 1. The function ut is
identically equal to zero for x < αt+1, as the interval ½αx,
α−1x� is contained in ð0, αtÞ, where the function ut is equal
to zero. For x ≥ 1, the function ut+1 is identically equal to
1 because the (upper semicontinuous) concave envelope
ut+1 of the function ut on ½αx, α−1x� at x is equal to 1. ☐

Proposition 6. The function us, s = 1,⋯,N has a discontinu-
ity (jump) at point αs, in which us is right continuous, and on
the interval ½αs, αs−1Þ, the function us satisfies the property of
self-similarity (owing to the properties of function u1, on the
interval ½αs, αs−1Þ, the function us is strictly monotonically
increasing and strictly convex):

us xð Þ = α

1 + α

� �s−1
· u1 α− s−1ð Þx

� �
: ð43Þ

Proof.When s = 1, (43) is an identity. Let us make the induc-
tive assumption that (43) holds for s = t ≥ 1 and check that it
holds for s = t + 1. Substituting s = t in (29) and expression
(31) for u1, we have for x ∈ ½αt , αt−1Þ

=

1 

𝛼2𝛼3 𝛼1 = 0.5 𝛼0 = 1

𝛼 1
1+𝛼 3

0
0

u1 (x)

x

(1–𝛼)x
1–𝛼x

Figure 1: Function u1ðxÞ for α = 0:5.

0 𝛼4𝛼3 𝛼2 𝛼1 = 0.5 𝛼0 = 1 x

u2 (x)

=

1 

𝛼 1
1+𝛼 3

0

𝛼2

(1+𝛼)2 (1–𝛼)(1–x)
(1–𝛼)x

1–𝛼2
x–𝛼2

Figure 2: Function u2ðxÞ for α = 0:5.
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ut xð Þ = α

1 + α

� �t−1
· u1 αt−1x

� �
=

αt−1 αt−1 − αt
� �

x

1 + αð Þt−1 1 − αtxð Þ : ð44Þ

☐

From geometric similarity considerations, it is clear that
for x ∈ ½αt+1, αtÞ, the concave envelope ~ut of the function ut
on the interval ½αx, α−1x� is the line segment connecting the
points with coordinates ðαx, 0Þ и¸ ðα−1x, utðα−1xÞÞ given by

ωt zð Þ = ut α−1x
� �

− ut αxð Þ
α−1x − αx

z − αxð Þ, ð45Þ

where utðαxÞ = 0, and hence, for x ∈ ½αt+1, αtÞ

ut+1 xð Þ = ~ut xð Þ = ωt xð Þ = α

1 + α
· ut α−1x

� �
, ð46Þ

which follows from formula (43) for s = t + 1. Using Propo-
sition 5, we have usðαs − 0Þ = 0, and putting x = αs in (46),
we get

us α
sð Þ = α

1 + α

� �s
> 0: ð47Þ

Thus, us+1 has a jump at point αs+1 (where us+1 is right
continuous).

Theorem 7.

(1) For s = 1,⋯,N , the function us is convex on each of
the intervals ½αk, αk−1Þ, k = 1,⋯, s

(2) For x ∈ ½αk, αk−1Þ, k = 1,⋯, s, it is sufficient to consider
only four scenarios, i.e., the variants of the point loca-
tions as asðxÞ and bsðxÞ introduced in Section 3.2:

(I) Scenario asðxÞ = αk and bsðxÞ = αk−1

(II) Scenario asðxÞ = αk and bsðxÞ = α−1x

(III) Scenario asðxÞ = αx and bsðxÞ = αk−1

(IV) Scenario asðxÞ = αx and bsðxÞ = α−1x

Moreover, the number of possible switching scenarios on the
intervals ½αk, αk−1Þ, k = 1,⋯, s does not exceed 2.

(3) For s = 1,⋯,N , the function us is piecewise rational
on the interval ð0, +∞Þ or, more precisely, rational
on at most ms ≤ 3s + 1 adjacent intervals, which we
shall call rationality intervals (in particular, for s = 1,
⋯,N, the function us is infinitely differentiable within
intervals of rationality interior), with endpoints ds,i, i
= 0,⋯,ms + 1; all points of type αt , t = 0,⋯, s are end-
points of rationality intervals for the function us. The
partitioning into rationality intervals for the function
us+1 is a refinement of the partitioning into rationality
intervals for the function us. For the given intervals of
rationality of the rational functions represented in the

form of an irreducible fraction of polynomials, the
degree of polynomials does not exceed s, and this degree
on intervals ð0, αsÞ and ½1, +∞Þ equals zero; if scenario
I is realized, the degree equals 1, whereas is scenario IV
is realized, the degree does not exceed s − 1

(4) For s = 1,⋯,N , the derivative of the function us is
positive (at points that are endpoints of rationality
intervals, a jump in the derivative of the function us
may occur, but not necessarily so, as seen in the exam-
ple of the function u2). In particular, the function us is
strictly monotone on the interval ½αs, 1Þ

Proof. For convenience, we write out for scenarios I, II, III,
and IV the specific formulas given in the general case by
(23), (25), and (27). Note that for those points x for which
one of the scenarios I, II, III, and IV holds, the points asðxÞ
and bsðxÞ belonging to the support of distribution given by
(16), and hence, the probabilities psðxÞ and qsðxÞ are inde-
pendent of s, and thus, for these scenarios the carrier points
and probabilities will have s omitted. ☐

For scenario I, when x ∈ ½αk, αk−1Þ, k = 1,⋯, s, aðxÞ = αk,
and bðxÞ = αk−1, the probabilities pðxÞ and qðxÞ take the form
of affine functions

p xð Þ = αk−1 − x

ak−1 − αk
,

q xð Þ = x − αk

αk−1 − αk
,

ð48Þ

and the values of the function us are expressed through the
values of the function us−1 by the formula

us xð Þ = p xð Þus−1 αk
� �

+ q xð Þus−1 αk−1
� �

: ð49Þ

Thus, in the case of scenario I on the interval ½αk, αk−1Þ, the
function us is affine, and in the case of this scenario x ∈ ðαk,
αk + εÞ, for some ε > 0, the function values match:

us αk
� �

= us−1 αk
� �

: ð50Þ

In addition, in the case of this scenario, for x ∈ ðαk−1 − ε,
αk−1Þ, for some ε > 0, the following “matching” relations
take place:

us αk−1 − 0
� �

= us−1 αk−1 − 0
� �

: ð51Þ

For scenario II, when x ∈ ½αk, αk−1Þ, k = 1,⋯, s, aðxÞ =
αk, and bðxÞ = α−1x, the probabilities pðxÞ and qðxÞ take
the form
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p xð Þ = α−1x − x
α−1x − αk

,

q xð Þ = x − αk

α−1x − αk
,

ð52Þ

and the values of the function us are expressed through
the values of the function us−1 by the formula

us xð Þ = p xð Þus−1 αk
� �

+ q xð Þus−1 α−1x
� �

: ð53Þ

In this scenario for x ∈ ðαk, αk + εÞ, for some ε > 0, the
“matching” relations take place:

us αk
� �

= us−1 αk
� �

, ð54Þ

and in the case of this scenario for x ∈ ðαk−1 − ε, αk−1Þ, for
some ε > 0, the “matching” relations take place:

us αk−1 − 0
� �

=
1

1 + α
us−1 αk − 0

� �
+

α

1 + α
us−1 αk−2 − 0

� �
:

ð55Þ

For scenario III, when x ∈ ½αk, αk−1Þ, k = 1,⋯, s, Ð° a
ðxÞ = αx, and bðxÞ = αk−1, the probabilities pðxÞ and qðxÞ
are as follows:

p xð Þ = αk−1 − x

αk−1 − αx
,

q xð Þ = x − αx

αk−1 − αx
,

ð56Þ

and the values of the function us are expressed through the
values of the function us−1 by the formula

us xð Þ = p xð Þus−1 αxð Þ + q xð Þus−1 αk−1
� �

: ð57Þ

In this scenario, for x ∈ ðαk−1 − ε, αk−1Þ, for some ε > 0, the
“matching” relations take place:

us αk
� �

= 1
1 + α

us−1 αk+1
� �

+ α

1 + α
us−1 αk−1

� �
, ð58Þ

and in this scenario, for x ∈ ðαk−1 − ε, αk−1Þ, for some ε > 0,
the “matching” relations take place:

us αk−1 − 0
� �

= us−1 αk−1 − 0
� �

: ð59Þ

For scenario IV, when x ∈ ½αk, αk−1Þ, k = 1,⋯, s, akðxÞ =
αx, and bkðxÞ = α−1x, the probabilities pðxÞ and qðxÞ are
as follows:

p xð Þ = 1
1 + α

,

q xð Þ = α

1 + α
,

ð60Þ

and the values of the function us are expressed through
the values of the function us−1 by the formula

us xð Þ = p xð Þus−1 αxð Þ + q xð Þus−1 α−1x
� �

, ð61Þ

and in this scenario, for x ∈ ðαk, αk + εÞ, for some ε > 0, the
“matching” relations take place:

us αk
� �

=
1

1 + α
us−1 αk+1

� �
+

α

1 + α
us−1 αk−1

� �
, ð62Þ

and in this scenario, for x ∈ ðαk−1 − ε, αk−1Þ, for some ε > 0,
the “matching” relations take place:

us αk−1 − 0
� �

=
1

1 + α
us−1 αk − 0

� �
+

α

1 + α
us−1 αk−2 − 0

� �
:

ð63Þ

Let us show by induction that for s ≥ 2 the function us
satisfies the four properties from the formulation of the
theorem. For s = 2, these properties are satisfied (note that
for the function u2, scenario II takes place on the interval
½α2, αÞ, whereas on the interval ½α, 1Þ, scenario I takes
place). Suppose that this property is satisfied for s = t ≥ 2.
Let us check its fulfilment for s = t + 1. For x from the
interval ½αk, αk−1Þ, when k = s + 1, this follows from for-
mula (43). If k ≤ s and point x lies in an interval of the
form ½αk, αk−1Þ, as mentioned above, the endpoints of the
interval ½αx, α−1x�, that is, points αx and α−1x, lie in adja-
cent intervals ½αk+1, αkÞ and ½αk−1, αk−2Þ, respectively. At
the points αk, k = 1,⋯, s, a positive jump is in principle
possible (below, we prove that continuity takes place at
these points), and continuity to the right takes place. In
case when there is a jump at the point αk−1, the function
preserves the convexity on the closed interval ½αk, αk−1� if
it is convex on the interval ½αk, αk−1Þ. Owing to the con-
vexity of the function ut on the interval ½αk, αk−1�, for x
∈ ½αk, αk−1Þ, one may not consider any point of the open
interval ðαk, αk−1Þ as a “candidate” to be a point of the
support of the most unfavourable mixed market strategy;
it is sufficient to consider only the extreme points αk Ð¸
αk−1 from the interval ½αk, αk−1�.Next, we fix the numbers
a ≤ αk,x ∈ ½αk, αk−1Þ and consider a distribution Q concen-
trated at points a and y ∈ ½αk−1, αk−2Þ with probabilities p
and q, respectively, satisfying the condition pa + qy = x;
subject to normalization, whence

p =
y − x
y − a

,

q =
x − a
y − a

:

ð64Þ
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Let us show that the integral
Ð
ut dQ considered as a

function of y, i.e., the function y↦ putðaÞ + qutðyÞ =VðyÞ,
is monotonically nondecreasing on ½αk−1, αk−2Þ, where p
and q are given by (64) and are considered as functions of
the variable y ∈ ½αk−1, αk−2Þ. We shall need the following
result from a mathematical analysis. If functions f and g
are absolutely continuous on the interval ½a, b� and f ′ and
g′ are their derivatives (defined almost everywhere with
respect to the Lebesgue measure), then functions f ′g and f
g′ are summable (in this case, the product f g is absolutely
continuous on the interval ½a, b�, which can be verified
directly by definition, given the boundedness of functions f
and g) and

f xð Þg xð Þ − f að Þg að Þ =
ðx
a
f ′ zð Þg zð Þ dz +

ðx
a
f zð Þg′ zð Þdz,

ð65Þ

for x ∈ ½a, b�; see Theorem 5 of Section 7 of Chapter IX in
[19]. Let us add to this that the convex function is absolutely
continuous and one can choose for its derivative an equiva-
lent (it is a function coinciding with the original at almost
all points (with respect to the Lebesgue measure)) monoton-
ically nondecreasing at all points; see, e.g., [20], Theorem
24.2, as well as Corollary 24.2.1 and Theorem 24.1.

V yð Þ −V ak−1
� �

=
ðy
ak−1

V ′ zð Þ dz

=
ðy
ak−1

p′ut að Þ + q′ut zð Þ + qu′t zð Þ
h i

dz

=
ðy
ak−1

q′ ut zð Þ − ut að Þ½ � + qu′t zð Þ
n o

dz:

ð66Þ

Using the equality

q′ = −
x − a

y − að Þ2 = −
1

y − a
q, ð67Þ

we obtain that for y ∈ ½αk−1, αk−2Þ:

V yð Þ − V ak−1
� �

=
ðy
ak−1

q u′t zð Þ − ut zð Þ − u að Þ
z − a

� 	
dz: ð68Þ

Owing to the convexity (by an inductive assumption) of
the function ut , the expression in square brackets under the
integral in (68) is nonnegative almost everywhere, and thus,
we obtain that function V as monotonically nondecreasing.
Thus, as a “candidate” for the point of the support of distri-
bution ½αk−1, α−1x� from the interval ½αk−1, α−1x�, we can con-
sider only one point, α−1x. Similarly, consider a “candidate”
point for the support of the distribution Qs,k

x on the left side,
i.e., on the interval ½αx, αk�. Let us now fix the numbers b ≥
αk−1,x ∈ ½αk, αk−1Þ, and consider a distribution Q concen-
trated at points z ∈ ½αk+1, αkÞ and b, with probabilities p and

q, respectively, satisfying the condition pz + qb = x, subject
to the normalization, whence

p =
b − x
b − z

,

q =
x − z
b − z

:

ð69Þ

Let us show that the integral
Ð
ut dQ considered as a

function of z, i.e., the function z↦ putðzÞ + qutðbÞ =WðzÞ,
is monotonically nonincreasing on ½αk+1, αkÞ, where p and q
are given by (69) and are considered as functions of the
variable z. Using equality

p′ = b − x

b − zð Þ2 =
p

b − z
, ð70Þ

it is easy to see that for z ∈ ½αk+1, αkÞ

W zð Þ −W ak+1
� �

=
ðz
ak+1

p ut ′ yð Þ − ut bð Þ − ut yð Þ
b − y

� 	
dy:

ð71Þ

Thanks to the convexity of the function ut , the expression
in square brackets under the integral in (71) is almost every-
where nonpositive, and thus, we obtain that function V is
monotonically nonincreasing. Therefore, as a “candidate”
for the point of the support of distribution Qs,k

x from the
interval ½αx, αk�, we can consider only the point αx.

Thus, it is sufficient to consider only scenarios I, II, III,
and IV to study the variants of the location of points
belonging to the support of distribution Qs,k

x . Let us now
consider different variants leading to the occurrence of
one or another scenario depending on the mutual arrange-
ment of four points of the plane, which we will call key
points, namely, ðαk+1, utðαk+1ÞÞ, ðαk−2, utðαk−2 − 0ÞÞ, and
the line connecting points ðαk, utðαkÞÞ and ðαk−1, utðαk−1ÞÞ,
i.e., fðξ, φt,kðξÞÞ: ξ ∈ℝg, where

φt,k ξð Þ = ut αk
� �

+
ut αk−1
� �

− ut αk
� �

αk−1 − αk
ξ − αk

� �
: ð72Þ

(1) If the points of the plane ðαk+1, utðαk+1ÞÞ and ðαk−2,
utðαk−2 − 0ÞÞ do not lie above the line joining ðαk, ut
ðαkÞÞ and ðαk−1, utðαk−1ÞÞ, i.e., using notations (72)

φt,k αk+1
� �

≥ ut αk+1
� �

,

φt,k αk−2 − 0
� �

≥ ut αk−2 − 0
� �

,
ð73Þ

then scenario I is realized, for any x ∈ ½αk, αk−1Þ.
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(2) If the point of the plane ðαk+1, utðαk+1ÞÞ is not above
and the point ðαk−2, utðαk−2 − 0ÞÞ is above the line
joining ðαk, utðαkÞÞ and ðαk−1, utðαk−1ÞÞ, i.e.,

φt,k αk+1
� �

≥ ut αk+1
� �

,

φt,k αk−2 − 0
� �

< ut αk−2 − 0
� �

,
ð74Þ

then denoting

yk = inf x ∈ αk, αk−1
h �

: φt,k αxð Þ < ut αxð Þ
n o

, ð75Þ

we obtain that scenario I is realized for x ∈ ½αk, yk� and
scenario II is realized for x ∈ ðyk, αk−1Þ.

(3) If the point of the plane ðαk+1, utðαk+1ÞÞ lies above
and the point ðαk−2, utðαk−2 − 0ÞÞ lies not above the
line joining ðαk, utðαkÞÞ and ðαk−1, utðαk−1ÞÞ, i.e.,

φt,k αk+1
� �

< ut αk+1
� �

,

φt,k αk−2 − 0
� �

≥ ut αk−2 − 0
� �

,
ð76Þ

then denoting

zk = sup x ∈ αk, αk−1
h �

: φt,k α−1x
� �

< ut α−1x
� �n o

, ð77Þ

we obtain that scenario III is realized for x ∈ ½αk, zkÞ and
scenario I is realized for x ∈ ½zk, αk−1Þ.

(4) If the points of the plane ðαk+1, utðαk+1ÞÞ and ðαk−2,
utðαk−2 − 0ÞÞ both lie above the line joining the points
ðαk, utðαkÞÞ и¸ ðαk−1, utðαk−1ÞÞ, i.e.,

φt,k αk+1
� �

< ut αk+1
� �

,

φt,k αk−2 − 0
� �

< ut αk−2 − 0
� �

,
ð78Þ

then three possible cases could arise.

(4a) If yk < zk, where yk and zk are given by (75) and (77),
respectively, scenario IV is realized for x ∈ ðyk, zkÞ,
scenario III is realized for x ∈ ½αk, ykÞ, and scenario
II is realized for x x ∈ ½zk, αk−1Þ

(4b) If yk = zk, then scenario III is realized for x ∈ ½αk, ykÞ,
and for x ∈ ½zk, αk−1Þ, scenario II is realized

(4c) If yk > zk, then scenario III is realized for x ∈ ½αk, zkÞ,
scenario II is realized for x ∈ ðyk, αk−1Þ, and scenario
I is realized for x ∈ ½zk, yk�

We call the points yk and zk given by (75) and (77), respec-
tively, the switching points of scenarios (at step t). Note that
the switching points of scenarios, as well as some of the
points αk, k ∈ f0,⋯, tg, can be assigned to two scenarios
simultaneously. The above analysis of the variants of the
location of the four key points of the plane allows us to con-
clude that the interval ½0, +∞Þ can be divided into noninter-
secting adjacent intervals in which one of the four scenarios is
realized; these intervals will be called scenario intervals at
step t; such an interval can be subdivided into several ratio-
nality intervals.

The endpoints of rationality intervals at step t are points
αk, k ∈ f0,⋯, tg and possibly switching points of scenarios
at all steps up to and including t, if any. Adding point
αt+1 and possibly scenario switching points at step t (if
any, no more than 2t) to the set fdt,i, i = 0,⋯,mt + 1g of
endpoints of rationality intervals for function ut , we obtain
the set fdt+1,i, i = 0,⋯,mt+1 + 1g of endpoints of rationality
intervals for function ut+1. It can be easily verified by induc-
tion that the function ut+1 is piecewise rational; more pre-
cisely, it is rational on the rationality intervals that form
the subdivision of a scenario interval, given that this claim
holds for u0, using the recurrence relations (49), (53),
(57), and (61) for four scenarios and the corresponding
probability expressions given by formulae (48), (52), (56),
and (60). In particular, the function ut+1 is infinitely differ-
entiable on the interior of rationality intervals.

Since the expressions for probabilities are rational func-
tions, representable in the form of irreducible fractions of poly-
nomials of degree unity, the corresponding rational functions
represented in the form of irreducible fractions of polynomials
have a degree not greater than s on the intervals of rationality (it
is easy to see that this degree is equal to 0 on the intervals ð0, αsÞ
and ½1, +∞Þ, is equal to 1 where scenario I is realized, and does
not exceed s − 1 where scenario IV is realized).

In the case of scenario I, formulas (48) and (49) imply
that the function ut+1 is affine on ½αk, αk−1Þ, hence convex,
and by the inductive assumption of ut strict monotonicity,
they entail the strict monotonicity (recall that, according to
Proposition 3, the solutions of the Bellman equations are non-
decreasing (for a nondecreasing payment function)) of ut+1
.On the rationality interval contained in ½αk, αk−1Þ, on which
scenario IV is realized, formulas (60) and (61) directly entail
strict monotonicity and convexity of ut+1, owing to the strict
monotonicity and convexity ut (by inductive assumption).

Inside the rationality interval contained in ½αk, αk−1Þ,
where scenario II is realized and the function ut is therefore
infinitely differentiable, we have, using (53)

ut+1 ′ xð Þ = p′ xð Þut αk
� �

+ q′ xð Þut α−1x
� �

+ q xð Þα−1ut ′ α−1x
� �

= q′ xð Þ ut α−1x
� �

− ut αk
� �h i

+ q xð Þα−1ut ′ α−1x
� �

> 0,

ð79Þ

thanks to the positivity of the derivative function ut (by
inductive assumption) and since
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qk ′ xð Þ = αk−1 − αk

α−1x − αk
� �2 > 0: ð80Þ

Next,

qk ′′ xð Þ = −
2α−1 αk−1 − αk

� �
α−1x − αk
� �3 = −

2α−1qk ′ xð Þ
α−1x − αk

,

ut+1′′ xð Þ = qk′′ xð Þ ut α−1x
� �

− ut αk
� �h i

+ 2α−1qk ′ xð Þut ′ α−1x
� �

+ qk xð Þα2ut′′ α−1x
� �

= 2α−1qk ′ xð Þ ut ′ α−1x
� �

−
ut α−1x
� �

− ut αk
� �

α−1x − αk

" #

+ qk xð Þα2ut′′ α−1x
� �

≥ 0,
ð81Þ

because, owing to the convexity assumption of the function
ut , its second derivative and the expression in square brackets
are nonnegative.

Inside the rationality interval contained in ½αk, αk−1Þ,
where scenario III is realized and therefore the function ut
is infinitely differentiable, using (57), we have

ut+1 ′ xð Þ = pk ′ xð Þut αxð Þ + pk xð Þαut ′ αxð Þ + qk ′ xð Þut αk−1
� �

= −p′ xð Þ ut αk−1
� �

− ut αxð Þ
h i

+ p xð Þαut ′ αxð Þ > 0,

ð82Þ

using the positivity of the derivative function ut (by inductive
assumption) and inequality

p′ xð Þ = −
αk−1 − αk

αk−1 − αx
� �2 < 0: ð83Þ

Next,

p′′ xð Þ = −
2α αk−1 − αk

� �
αk−1 − αx
� �3 =

2αpk ′ xð Þ
αk−1 − αx

,

ut+1 ′′ xð Þ = −p′′ xð Þ ut αk−1
� �

− ut αxð Þ
h i

+ 2αp′ xð Þut ′ αxð Þ
+ p xð Þα2ut′′ αxð Þ

= 2αp′ xð Þ ut′ αxð Þ −
ut αk−1
� �

− ut αxð Þ
αk−1x − αx

" #

+ q xð Þα2ut ′′ α−1x
� �

≥ 0,

ð84Þ

because, owing to the convexity of the function ut , its second
derivative is nonnegative and the expression in square
brackets is nonpositive.

It is still necessary to investigate the behaviour of the
function ut+1 at the switching points of scenarios yk and zk
for options (2), (3), and (4), leading to the occurrence of

one or the other scenario and possibly to their switching. If
variant (2) of the arrangement of the key points takes place
and the right derivative (at the left endpoint of the interval,
where the function ut is right continuous, the right derivative
coincides with the limit on the right side of the derivative,
owing to the continuity of the derivatives (from the induc-
tive assumption)) of the function ut at point αk−1 is not
less than the slope of the line joining the points
(ðαk, utðαkÞÞ and ðαk−1, utðαk−1ÞÞ, i.e.,

ut ′ ak−1 + 0
� �

≥
ut αk−1
� �

− ut αk
� �

αk−1 − αk
, ð85Þ

then scenario II is realized for any x ∈ ½αk, αk−1Þ.
If, on the other hand,

ut ′ ak−1 + 0
� �

<
ut αk−1
� �

− ut αk
� �

αk−1 − αk
, ð86Þ

then at the point yk ∈ ðαk, αk−1Þ given by (75), there is a trans-
versal intersection between the graph of the convex function
ut with the line, which is the graph of the function φt,k, given
by (77), satisfying utðα−1ykÞ = φt,kðα−1ykÞ and such that for
its derivative we have

ut ′ α−1yk + 0
� �

> φt,k ′ α−1yk
� �

=
ut αk−1
� �

− ut αk
� �

αk−1 − αk
, ð87Þ

and thus,

ut+1 ′ yk + 0ð Þ = qt ′ ykð Þ ut α−1yk
� �

− ut αk
� �h i

+ qt ykð Þα−1uk ′ α−1yk + 0
� �

> >
αk−1 − αk

α−1yk − αk
� �2 φt,k α−1yk

� �
− φt,k αk

� �h i

+
yk − αk

α−1yk − αk
α−1φt,k ′ α−1yk

� �

==
ut αk−1
� �

− ut αk
� �

αk−1 − αk

= ut+1 ′ yk − 0ð Þ:
ð88Þ

Therefore, at point yk ∈ ðαk, αk−1Þ, the convexity of the
function ut+1 is not violated, but the function ut+1 is not dif-
ferentiable at this point, i.e., there is a “jump” in its derivative.

Similarly, option (3) of key point location can be investi-
gated; in this case, if

ut ′ ak − 0
� �

≤
ut αk−1
� �

− ut αk
� �

αk−1 − αk
, ð89Þ

then scenario III is realized for any x ∈ ½αk, αk−1Þ, and if (89) is
not satisfied, then there is a transversal intersection at the
point zk ∈ ðαk, αk−1Þ of the graph of the convex function ut
and a line, which is the graph of the function φt,k given by
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(77); in addition, the convexity of the function ut+1 is not
violated at point yk ∈ ðαk, αk−1Þ, but the function ut+1 is not
differentiable at this point (there is a derivative jump).

For variant (4) of the four key point location, both condi-
tions (85) and (89) have to be checked. When both of these
inequalities are satisfied, scenario IV is realized for any x
∈ ½αk, αk−1Þ, whereas otherwise one or two switching points
of the scenarios arise, and for the behaviour of function ut+1,
which is similar to the cases considered above, their mutual
locations (cases (4a), (4b), and (4c)) must be considered.

Theorem 8. The function us is continuous (thus, subject to
Propositions 5 and 6, the function us is continuous over the
interval ð0, +∞Þ, except for a single point αs, where it experi-
ences a jump and is right continuous) on the interval ½αs, +∞Þ
for s = 0,⋯,N.

Proof. Let us check this property by induction. For s ∈ f0, 1,
2g, this property is satisfied. Let it be satisfied for s = t ≥ 2,
and let us show that it is satisfied for s = t + 1. On open inter-
vals ðαk, αk−1Þ, k = 0,⋯, t + 1, the function ut+1 is continuous
owing to the convexity. It suffices to check its continuity at
points αk, k = 0,⋯, t. We fix k ∈ f0,⋯, t − 1g and consider
an interval of the form ½αk, αk−1Þ, which we call left (with
respect to point αk−1); the corresponding four key points
for this interval (with abscissa αk+1, αk, αk−1, αk−2 and the
ordinates being the values of function ut at these points);
the adjacent interval ½αk−1, αk−2Þ, which are called the right
one; and the corresponding four key points (with abscissa
αk, αk−1, αk−2, αk−3 and ordinates are the values of function
ut at these points). ☐

If for the left interval there is variant (1) of the arrange-
ment of key points, then for the right interval the possible
variants are (1) or (2); the “matching” relations at the right
end of the left interval are given by (51), for scenario I, i.e.,

ut+1 αk−1 − 0
� �

= ut αk−1 − 0
� �

, ð90Þ

and at the left end of the right interval by relations (50) and
(54) for scenarios I and II, i.e.,

ut+1 αk−1
� �

= ut αk−1
� �

, ð91Þ

and hence, using the inductive assumption of continuity of ut
, we obtain the continuity of ut+1 at the point α

k−1.If for the
left interval, variant (2) of the arrangement of key points
takes place, then for the right interval the possible variants
are (3) or (4); the matching conditions at the right endpoint
of left interval are given by relation (55) for scenario II, i.e.,

ut+1 αk−1 − 0
� �

=
1

1 + α
ut αk − 0
� �

+
α

1 + α
ut αk−2 − 0
� �

,

ð92Þ

and at the left endpoint of right interval we have matching
condition (58) for scenario III, i.e.,

ut+1 αk
� �

=
1

1 + α
ut αk+1
� �

+
α

1 + α
ut αk−1
� �

, ð93Þ

whence ut+1 is continuous at the point α
k−1.

If for the left interval there is variant (3) of the
arrangement of key points, then for the right interval the
possible variants are (1) or (2); the conjugation conditions
at the right end of the left interval are set by relation (51)
for scenario I, i.e.,

ut+1 αk−1 − 0
� �

= ut αk−1 − 0
� �

, ð94Þ

and at the left end of the right interval by relations (50)
and (54) for scenarios I and II, i.e.,

ut+1 αk−1
� �

= ut αk−1
� �

, ð95Þ

whence it follows that ut+1 is continuous at the point αk−1.
If for the left interval there is variant (4) of the arrange-

ment of key points, then for the right interval the possible
variants are (3) or (4); in addition, the matching relations at
the right end of the left interval are set by (55), for scenario
II, i.e.,

ut+1 αk−1 − 0
� �

=
1

1 + α
ut αk − 0
� �

+
α

1 + α
ut αk−2 − 0
� �

,

ð96Þ

and at the left endpoint of the right interval by relation (58)
for scenario III, i.e.,

ut+1 αk
� �

=
1

1 + α
ut αk+1
� �

+
α

1 + α
ut αk−1
� �

, ð97Þ

whence it follows that ut+1 is continuous at the point α
k−1.

Thus, the continuity of ut+1 at the points (note that for
the interval ½α, 1Þ, the possible locations of the key points
can only be (1) or (2)) αt−1, αt−2,⋯, 1 is established. Consider
now the interval ½αt , αt−1Þ and notice that owing to the prop-
erties of the function u1 and the self-similarity property,
established in Proposition 5, the points

αt+1, ut αt+1
� �� �

, αt , ut αt
� �� �

, αt−1, ut αt−1
� �� � ð98Þ

lie on the same line. Therefore, depending on the position of
the point ðαt−2, utðαt−2ÞÞ, the possible options for the interval
½αt , αt−1Þ are (1) or (2); at the left endpoint of the interval
½αt , αt−1Þ, the matching relations are given by (50) and
(54), for scenarios I and II, i.e.,

ut+1 αt
� �

= ut αt
� �

: ð99Þ
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From (43) and (31), we have

ut αt
� �

=
α

1 + α

� �t
, ð100Þ

and from (43) and (32), we have

ut+1 αt − 0
� �

=
α

1 + α

� �t
, ð101Þ

whence it follows that ut+1 is continuous at the point αt .
The statement of Theorem 8 can be strengthened: the

function us is even Lipschitz on the interval ½αs, +∞Þ, for s
= 0,⋯,N (see Theorem 9 below). However, in our opinion,
the proof of Theorem 8 is of independent interest because it
clarifies well the essence of the problem. For the function f
on ½a, b�, we denote

L f , a, b½ �ð Þ = sup
f x2ð Þ − f x1ð Þj j

x2 − x1
: x1, x2 ∈ a, b½ �, x1 < x2

� �
:

ð102Þ

If Lð f , ½a, b�Þ in (102) is finite, then it is the Lipschitz constant
of the function f on ½a, b�.

Theorem 9. The function us satisfies the Lipschitz condition
on the interval ½αs, +∞Þ, for s = 1,⋯,N, with the Lipschitz
constants being nonincreasing with respect to s, and Lðu1, ½α,
+∞ÞÞ = ð1 − αÞ−1.

Proof. Note first that if a = c0 < c1 <⋯ < cr−1 < cr = b,
where for r ≥ 2, then, using notation (102), the following
equality holds:

L f , a, b½ �ð Þ = ∨r
j=1L f , cj−1, cj


 �� �
: ð103Þ

Let us check the validity of point 2 of the theorem by
induction. For s = 1, this statement holds, and in this
case, the Lipschitz constant is

L u1, α,+∞½ Þð Þ = u1 ′ 1 − 0ð Þ = 1 − αð Þ−1: ð104Þ

Suppose that for s = t the Lipschitz constant Lðut , ½αt ,+
∞ÞÞ <∞. Applying Proposition 4 with parameters a = a
= αt , b = α−1, and β = α−1, we obtain, given (103), that

L ut+1, αt−1,+∞

 �� �

= L ut+1, αt−1, 1

 �� �

≤ L ut , αt , α−1

 �� �

= L ut , αt ,+∞

 �� �

<∞:

ð105Þ

By virtue of the self-similarity (43), established in Propo-
sition 6, as well as the continuity x ∈ ½αt+1, αt� proved in
Theorem 8, we have the relation

ut+1 xð Þ = α

1 + α
ut α−1x
� �

, ð106Þ

whence

L ut+1, αt+1, αt

 �� �

≤
1

1 + α
L ut , αt , αt−1


 �� �
: ð107Þ

As it has been noted above at the proof of continuity,
the points

αt+1, ut αt+1
� �� �

, αt , ut αt
� �� �

, αt−1, ut αt−1
� �� � ð108Þ

are on the same straight line, and thus depending on the posi-
tion of the point ðαt−2, utðαt−2ÞÞ, the possible locations of the
key points for the interval ½αt , αt−1Þ are (1) or (2).

In the case of variant (1), scenario I is realized on the
interval ½αt , αt−1Þ, and thus, given continuity, the function
ut+1 is affine on ½αt , αt−1�; therefore,

L ut+1, αt , αt−1

 �� �

=
ut αt−1
� �

− ut α
tð Þ

αt−1 − αt
, ð109Þ

owing to convexity of the function ut on the interval ½αt , αt−1Þ
and its continuity

ut αt−1
� �

− ut α
tð Þ

αt−1 − αt
≤ ut′ α

t−1−0ð Þ = L ut , αt , αt−1

 �� �

: ð110Þ

Thus,

L ut+1, αt , αt−1

 �� �

≤ L ut , αt , αt−1

 �� �

: ð111Þ

In the case of variant (2), scenario I is realized on the
interval ½αt , αt−1Þ; therefore, the derivative of the function
ut+1 is given by (79) for k = t. Note that

qt ′ xð Þ = αt−1 − αt

x − αtð Þ α−1x − αtð Þ qt xð Þ, ð112Þ

whence

ut+1 ′ xð Þ = qt xð Þ αt−1 − αt

x − αt
·
ut α−1x
� �

− ut α
tð Þ

α−1x − αt
+ α−1ut′ α

−1xð Þ
� 	

:

ð113Þ

Taking into account (110) and the convexity of the function
ut+1 on the interval ½αt , αt−1Þ and its continuity, we have

L ut+1, αt , αt−1

 �� �

= ut+1 ′ αt−1 − 0
� �

≤
α

1 + α
L ut , αt , αt−1


 �� �
+ α−1u′t αt−2 − 0

� �h i
=

α

1 + α
L ut , αt , αt−1


 �� �
+

1
1 + α

L ut , αt−1, αt−2

 �� �

≤ L ut , αt , αt−1

 �� �

∨L ut , αt−1, αt−2

 �� �

= L ut , αt , αt−2

 �� �

:

ð114Þ

Thus, the required statement follows from (107), (111),
and (114). ☐
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4. Numerical Solution Algorithm

To obtain a “semi-implicit” solution of the Bellman equation,
summarizing the results obtained above, the following recur-
rence algorithm can be proposed. Suppose that at step s ≥ 1
we obtain a partition of the segment ½αs, 1Þ into intervals of
rationality ½ds,i, ds,i+1Þ, i = 0,⋯,ms, and that the set of end-
points of these intervals ds+1,i, i = 0,⋯,ms+1 + 1 contains the
points αk, k = 0,⋯, s. In addition, suppose that on the inter-
vals ½ds,i, ds,i+1Þ, i = 0,⋯,ms are found explicit (analytic)
expressions of the functions us and their derivatives (this, in
particular, can be found using a symbolic computation) in
the form of rational functions. The following steps are
performed to find the us+1 function.

(1) The values of the function us at the points α
k, k = 0,

⋯, s are calculated, the variants of the key point loca-
tions for intervals of the form ½αk, αk−1Þ, k = 1,⋯, s,
and possible scenarios for this variant are determined

(2) The presence of scenario switching points for inter-
vals of the form ½αk, αk−1Þ, k = 1,⋯, s is determined,
and in case of their presence scenario, switching
points are found numerically (this, in fact, is equiva-
lent to finding the root of a polynomial of degree not
greater than s + 1)

For variant (1) of the key point arrangement, scenario I is
realized, for any x ∈ ½αk, αk−1Þ.

For variant (2) of the arrangement of key points, the
derivative us ′ðak−1 + 0Þ is calculated and

(i) if inequality (85) holds, then scenario I is realized for
any x ∈ ½αk, αk−1Þ

(ii) if inequality (85) is not fulfilled, then the point yk is
found numerically as the only root of the equation
on the interval ðαk, αk−1Þ, i.e.,

φs,k αxð Þ = us αxð Þ, ð115Þ

where the function φt,k is defined by (72); for x ∈ ðyk, αk−1Þ,
scenario II is realized, and for x ∈ ðαk, yk�, scenario I
is realized.

For variant (3) of the location of key points, the derivative
us ′ðak − 0Þ is calculated and

(i) if inequality (89) holds, then scenario III is realized
for any x ∈ ½αk, αk−1Þ

(ii) if inequality (89) is not fulfilled, then the point zk is
found numerically as the only root of the equation
on the interval ðαk, αk−1Þ, i.e.,

φs,k α−1x
� �

= us α−1x
� �

, ð116Þ

for x ∈ ½αk, zkÞ, scenario III is realized, and for x ∈ ½zk, αk−1Þ,
scenario I is realized.

For variant (4) of the location of key points, both deriva-
tives us ′ðak−1 + 0Þ and us ′ðak − 0Þ are calculated; the two
inequalities (85) and (89) are checked:

(i) if both inequalities (85) and (89) are satisfied, then
scenario IV is realized for any x ∈ ½αk, αk−1Þ

(ii) if inequality (85) holds and inequality (89) does not
hold, then the switching point of scenarios is found
numerically, being the only root zk of equation
(116) on the interval ðαk, αk−1Þ; in this case, scenario
III is realized for x ∈ ½αk, zkÞ and scenario IV is real-
ized for x ∈ ½zk, αk−1Þ

(iii) if inequality (89) holds and inequality (85) does not
hold, then the switching point of scenarios is found
numerically, being the only root yk of equation
(115) on the interval ðαk, αk−1Þ; in this case, scenario
II is realized for x ∈ ½yk, αk−1Þ and scenario I is real-
ized for x ∈ ½αk, ykÞ

(iv) if both inequalities (85) and (89) are not satisfied,
then two switching points of scenarios are found
numerically, being the only root zk of equation
(116) on the interval ðαk, αk−1Þ and the only root yk
of equation (115) on the interval ðαk, αk−1Þ; three
possible cases can arise depending on the mutual
location of yk and zk
(4a) If yk < zk, where yk and zk are given by (75) and

(77), respectively, scenario IV is realized for x
∈ ðyk, zkÞ, scenario III is realized for x ∈ ½αk, ykÞ,
and scenario II for x ∈ ½zk, αk−1Þ

(4b) If yk = zk, then scenario III is realized for x
∈ ½αk, ykÞ and scenario II is realized for x ∈ ½
zk, αk−1Þ

(4c) If yk > zk, then scenario III is realized for x
∈ ½αk, zkÞ, scenario II is realized for x ∈ ðyk,
αk−1Þ, and scenario I is realized for x ∈ ½zk, yk�

Thus, at step t, we obtain a partition of ½0, +∞Þ into
adjacent intervals on which one of the four scenarios is
realized; the endpoints of these intervals are points αk, k
∈ f0,⋯, sg and possibly switching points of the scenarios
at step t (if any).

(3) The partitioning into rationality intervals is con-
structed: in order to obtain the set fds+1,i, i = 0,
⋯,ms+1 + 1g of endpoints for rationality intervals
of the function us+1, the point αs+1 is added to
the set fds,i, i = 0,⋯,ms + 1g and, possibly, points
of switching scenarios at step s (if any, note that
their number cannot exceed 2t). Let the sequence
ds,i, i = 0,⋯,ms + 1 be increasing (with respect to i).
On each interval of the resulting partition ½ds+1,i,
ds+1,i+1Þ, i = 0,⋯,ms+1, one scenario at step s is real-
ized and explicit expressions for the us function are
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Figure 4: First five iterations, α = 0:9.
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Figure 3: First five iterations, α = 0:7.
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given, and there are explicit recurrence formulas for
four possible scenarios: (49), (53), (57), and (61), that
express the us+1 function via the us function and pre-
serve rationality. Using the explicit expression for the
us+1 function as a rational function, we compute the
derivative of us+1 ′ on each partition interval ½ds+1,i,
ds+1,i+1Þ, i = 0,⋯,ms+1

5. Numerical Results

Based on the described algorithm, we have performed the
calculations for different values of the parameter α. The
results are shown in Figures 3 and 4.

We observed no scenario switching and a smooth conju-
gation of piecewise convex rational functions on pairs of
intervals ½αk+1, αk�.

6. Conclusion

This paper considered the problem of pricing a binary call
option of the European type in the framework of guaranteed
deterministic superhedging approach, for a multiplicative
model of price dynamics, with one risky asset and no trading
constraints. The main results are obtained for the case when
intervals defining possible values of the uncertain price
multiplier have endpoints satisfying relation, similar to the
assumption of the classical paper of Cox, Ross, and
Rubinstein [18]. A number of properties of solutions of Bell-
man–Isaacs equations (or Bellman equations, arising due to
game equilibrium at each time step) are obtained. It is shown
that the solutions are numerical functions and are monotoni-
cally nondecreasing, continuously to right and piecewise con-
vex, continuous and even Lipschitz, except for one point (in
which there is a jump); on the interval from this point to
the strike price, the solutions are strictly monotonically
increasing, with the Lipschitz constants of the solution not
increasing with increasing time to expiration. In addition,
the solutions are piecewise rational; this gave us the opportu-
nity to propose an algorithm for constructing a “semi-
explicit” solution, i.e., a recurrence construction of solutions
in the form of formulas on some intervals; in particular, sym-
bolic calculations can be used. The results of the numerical
analysis suggest certain hypotheses about the behaviour of
the solutions of Bellman equations.
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