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In this paper, the generalized concept of conformable fractional derivatives of order q ∈ (n, n + 1] for fuzzy functions is in-
troduced. We presented the definition and proved properties and theorems of these derivatives. $e fuzzy conformable fractional
differential equations and the properties of the fuzzy solution are investigated, developed, and proved. Some examples are
provided for both the new solutions.

1. Introduction

A closed-form solution for nonlinear fractional differential
equations (FDEs) plays a significant role in understanding
the qualitative as well as quantitative features of complex
physical phenomena. $e nonlinear FDEs appear in dif-
ferent sciences and engineering problems such as control
theory, signal processing, finance, electricity, mechanics,
plasma physics, stochastic dynamical system, economics,
and electrochemistry [1–7]. A fuzzy fractional differentiation
and fuzzy integration operators have different kinds of
definitions that we can mention, the fuzzy Rie-
mann–Liouville definition [8, 9], the fuzzy Caputo definition
[9, 10], and so on. Lately, Khalid et al. [11] introduced a new
simple definition of the fractional derivative named the
conformable fractional derivative, which can redress
shortcomings of the other definitions, and this new defi-
nition satisfies formulas of derivative of product and quo-
tient of two functions [12, 13]. Harir et al. [14] introduced
the fuzzy generalized conformable fractional derivative,
which generalized and extended the concept of Hukuhara
differentiability for set-valued mappings to the class of fuzzy
mapping [15, 16].

Our objective of this article is to present a generalized
concept of conformable fractional derivative of order
q ∈ (n, n + 1], n ∈ N for fuzzy functions. $en, we have

investigated in more detail some new properties of these
derivatives and we have proved some useful related theo-
rems. We interpret fuzzy conformable fractional differential
equations using this concept. We introduce new definitions
of solutions. Two examples are provided.

2. Preliminaries

Let us denote by RF � u: R⟶ [0, 1]{ } the class of fuzzy
subsets of the real axis satisfying the following properties
[13, 17]:

(i) u is normal, i.e., there exists an x0 ∈ R such that
u(x0) � 1.

(ii) u is fuzzy convex, i.e., for x, y ∈ R and 0< λ≤ 1,

u(λx +(1 − λ)y)≥min[u(x), u(y)]. (1)

(iii) u is upper semicontinuous.
(iv) [u]0 � c x ∈ R|u(x)> 0{ } is compact.

$en, RF is called the space of fuzzy numbers. Obvi-
ously, R ⊂ RF. For 0< α≤ 1 denoting
[u]α � x ∈ R|u(x) ≥ α{ }, then from (i) to (iv), it follows that
the α-level set [u]α ∈ PK(R) for all 0≤ α≤ 1 is a closed
bounded interval which is denoted by [u]α � [uα

1 , uα
2]. By

PK(R), we denote the family of all nonempty compact
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convex subsets of R and define the addition and scalar
multiplication in PK(R) as usual.

Theorem 1 (see [10]). If u ∈ RF, then

(i) [u]α ∈ PK(R) for all 0≤ α≤ 1.
(ii) [u]α2 ⊂ [u]α1 for all 0≤ α1 ≤ α2 ≤ 1.
(iii) αk􏼈 􏼉 ⊂ [0, 1] is a nondecreasing sequence which

converges to α; then,

[u]
α

� ∩
k≥ 1

[u]
αk . (2)

Conversely, if Aα � [uα
1 , uα

2]; α ∈ (0, 1]􏼈 􏼉 is a family of
closed real intervals verifying (i) and (ii), then Aα􏼈 􏼉 is defined
as a fuzzy number u ∈ RF such that [u]α � Aα for 0< α≤ 1
and [u]0 � ∪ 0<α≤1Aα ⊂ A0.

Lemma 1 (see [18]). Let u, v: R⟶ [0, 1] be the fuzzy sets.
0en, u � v if and only if [u]α � [v]α for all α ∈ [0, 1].

$e following arithmetic operations on fuzzy numbers
are well known and frequently used below [17]. If u, v ∈ RF,
then

[u + v]
α

� u
α
1 + v

α
1 , u

α
2 + v

α
2􏼂 􏼃,

[λu]
α

� λ[u]
α

�
λu

α
1 , λu

α
2􏼂 􏼃, if λ≥ 0,

λu
α
2 , λu

α
1􏼂 􏼃, if λ< 0.

⎧⎨

⎩

(3)

Definition 1. Let u, v ∈ RF. If there exists w ∈ RF such as
u � v + w, then w is called the H-difference of u, v and it is
denoted as u⊖v.

Theorem 2 (see [19])

(i) Let we denote

0 �
1, t � 0,

0, t≠ 0,
􏼨 (4)

then 0 ∈ RF is a neutral element with respect to +,
i.e., u + 0 � 0 + u u ∈ RF.

(ii) With respect to 0, none of u ∈ RF\R has opposite in
RF.

(iii) For any a, b ∈ R with a, b≥ 0 or a, b≤ 0 and any
u ∈ RF, we have (a + b) · u � a · u + b · u; for gen-
eral a, b ∈ R, the above property does not hold.

(iv) For any λ ∈ R and any u, v ∈ RF, we have
λ · (u + v) � λ · u + λ · v.

(v) For any λ, ] ∈ R and any u ∈ RF, we have
λ · (] · u) � (λ · ]) · u.

Define d: RF × RF⟶ R+ ∪ 0{ } by the following
equation:

d(u, v) � sup
α∈[0,1]

dH [u]
α
, [v]

α
( 􏼁, for all u, v ∈ RF, (5)

where dH is the Hausdorff metric:

dH [u]
α
, [v]

α
( 􏼁 � max u

α
1 − v

α
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, u

α
2 − v

α
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽮 􏽯. (6)

It is well known that (RF, d) is a complete metric space.
We list the following properties of d(u, v) [17]:

d(u + w, v + w) � d(u, v),

d(u, v) � d(v, u),

d(ku, kv) � |k|d(u, v),

d(u, v)≤d(u, w) + d(w, v),

(7)

for all u, v, w ∈ RF and λ ∈ R.
Let (Ak) be a sequence in PK(R) converging to A. $en,

$eorem in [17] gives us an expression for the limit.

Theorem 3 (see [15]). If d(Ak, A)⟶ 0 as k⟶∞, then

A � ∩
k≥ 1
m≥ k

∪m .

(8)

Let I � (0, a) ⊂ R be an interval. We denote by C(I,RF)

the space of all continuous fuzzy functions on I which is a
complete metric space with respect to the metric

h(u, v) � sup d(u(t), v(t)). (9)

3. Generalized Fuzzy Conformable
Fractional Derivatives

Definition 2 (see [14]). Let F: I⟶ RF be a fuzzy function.
qth order “fuzzy conformable fractional derivative” of F is
defined by

Tq(F)(t) � lim
ε⟶0+

F t + εt1− q
􏼐 􏼑⊖F(t)

ε
� lim

ε⟶0+

F(t)⊖F t − εt1− q
􏼐 􏼑

ε
,

(10)

for all t> 0, q ∈ (0, 1). If F is q-differentiable in some I, and
limt⟶0+ Tq(F)(t) exists, then

Tq(F)(0) � lim
t⟶0+

Tq(F)(t), (11)

and the limits exist (in the metric d).

Remark 1 (see [14]). From the definition, it directly follows
that if F is q-differentiable, then the multivalued mapping Fα
is q-differentiable for all α ∈ [0, 1] and

TqFα � Tq(F)(t)􏽨 􏽩
α
. (12)

Here, TqFα is denoted as the conformable fractional
derivative of Fα of order q.$e converse result does not hold,
since the existence of Hukuhara differences
[x]α⊖[y]α, α ∈ [0, 1], does not imply the existence of
H-difference x⊖y.

We consider the following definition [14].
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Definition 3. Let F: I⟶ RF be a fuzzy function and
q ∈ (0, 1]. One says, F is q(1)-differentiable at point t> 0 if
there exists an element Tq(F)(t) ∈ RF such that for all ε> 0
sufficiently near to 0, there exist
F(t + εt1− q)⊖F(t), F(t)⊖F(t − εt1− q) and the limits (in the
metric d)

lim
ε⟶0+

F t + εt1− q
􏼐 􏼑⊖F(t)

ε
� lim

ε⟶0+

F(t)⊖F t − εt1− q
􏼐 􏼑

ε
� Tq(F)(t).

(13)

F is q(2)-differentiable at t> 0 if for all ε< 0 sufficiently
near to 0, there exist F(t + εt1− q)⊖F(t), F(t)⊖F(t − εt1− q)

lim
ε⟶0−

F t + εt1− q
􏼐 􏼑⊖F(t)

ε
� lim

ε⟶0−

F(t)⊖F t − εt1− q
􏼐 􏼑

ε
� Tq(F)(t).

(14)

If F is q(n)-differentiable at t> 0, we denote its q-de-
rivatives, for n � 1, 2.

Definition 4. Let F: I⟶ RF be a fuzzy function and now
we introduce definitions and theorems for q ∈ (n, n + 1] for
some natural number n. For the sake of convenience, we
concentrate on q ∈ (1, 2] case be n-differentiable at t, where
t> 0. $en the fuzzy conformable fractional derivative of f

of order q is defined by

Tq(F)(t) � lim
ε⟶0+

F
([q]− 1)

t + εt([q]− q)
􏼐 􏼑⊖F

([q]− 1)
(t)

ε

� lim
ε⟶0+

F
([q]− 1)

(t)⊖F
([q]− 1)

t − εt([q]− q)
􏼐 􏼑

ε
,

(15)

where q ∈ (n, n + 1] and [q] is the smallest integer greater
than or equal to q and the limits exist (in the metric d).

Theorem 4. Let F: I⟶ RF and q ∈ (1, 2] and n, m � 1, 2.
If F is (n, m)-differentiable and F is q(n,m)-differentiable, then

Tq(n,m)
F(t) � t

2− q
D

(2)
n,mF(t). (16)

Remark 2 (see [20]). F is (n, m)-differentiable on I, if D1
n

exists on I and it is (m)-differentiable on I. $e second
derivatives of F are denoted by D(2)

n, mF(t) for n, m � 1, 2.

Proof. We present the details only for n � m � 1, since the
other case is analogous. Let h � εt2− q in Definition 4, then
ε � tq− 2h. $erefore, if ε> 0 and α ∈ [0, 1], we have

D
1
1F t + εt2− q

􏼐 􏼑⊖D
1
1F(t)􏽨 􏽩

α
� f

α
1( 􏼁′ t + εt2− q

􏼐 􏼑 − f
α
1( 􏼁′(t), f

α
2( 􏼁′ t + εt2− q

􏼐 􏼑 − f
α
2( 􏼁′(t)􏽨 􏽩. (17)

Dividing by ε, we have

D
1
1F t + εt2− q

􏼐 􏼑⊖D
1
1F(t)􏽨 􏽩

α

ε
�

f
α
1( 􏼁′ t + εt2− q

􏼐 􏼑 − f
α
1( 􏼁′(t)

ε
,

f
α
2( 􏼁′ t + εt2− q

􏼐 􏼑 − f
α
2( 􏼁′(t)

ε
⎡⎣ ⎤⎦, (18)

and passing to the limit

lim
ε⟶0+

D
1
1F t + εt2− q

􏼐 􏼑⊖D
1
1F(t)􏽨 􏽩

α

ε
� lim

ε⟶0+

f
α
1( 􏼁′ t + εt2− q

􏼐 􏼑 − f
α
1( 􏼁′(t)

ε
,

f
α
2( 􏼁′ t + εt2− q

􏼐 􏼑 − f
α
2( 􏼁′(t)

ε
⎡⎣ ⎤⎦

� lim
h⟶0+

f
α
1( 􏼁′(t + h) − f

α
1( 􏼁′(t)

t
q− 2

h
,

f
α
2( 􏼁′(t + h) − f

α
2( 􏼁′(t)

t
q− 2

h
􏼢 􏼣

� t
2− q lim

h⟶0+

f
α
1( 􏼁′(t + h) − f

α
1( 􏼁′(t)

h
,

f
α
2( 􏼁′(t + h) − f

α
2( 􏼁′(t)

h
􏼢 􏼣

� t
2− q

f
α
1( 􏼁″(t), f

α
2( 􏼁″(t)􏼂 􏼃.

(19)

Similarly, we obtain
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D
1
1F(t)⊖D

1
1F t − εt2− q

􏼐 􏼑􏽨 􏽩
α

ε
�

f
α
1( 􏼁′(t) − f

α
1( 􏼁′ t − εt2− q

􏼐 􏼑

ε
,

f
α
2( 􏼁′(t) − f

α
2( 􏼁′ t − εt2− q

􏼐 􏼑

ε
⎡⎣ ⎤⎦, (20)

and passing to the limit and ε � tq− 2h gives
Tq(1,1)

F(t) � t2− q[(fα
1)″(t), (fα

2)″(t)]. □

Theorem 5. Let 0< q, p< 1, and F be a fuzzy function 2
times differentiable on an open real interval I, then the fuzzy
conformable derivative obeys to the following

Tp(n)
Tq(m)

F(t)􏼒 􏼓≠Tq(m)
Tp(n)

F(t)􏼒 􏼓, (21)

where n, m � 1, 2.

Proof. Let n, m � 1, 2. By using$eorem 7 and$eorem 8 in
[14], we have the following relation;

Tp(n) Tq(m)
F(t)􏼒 􏼓 � Tp(n)

t
1− q

D
1
mF(t)􏼐 􏼑

� Tp(n)
t
1− q

􏼐 􏼑D
1
mF(t) + t

1− q
Tp(n)

D
1
mF(t)􏼐 􏼑

� t
1− p

(1 − q)t
− q

D
1
mF(t)

+ t
1− q

t
1− p

D
1
n D

1
mF(t)􏼐 􏼑

� t
1− p− q

(1 − q)D
1
mF(t)

+ t
2− q− p

D
2
m,nF(t)􏼐 􏼑

� t
1− p− q

(1 − q)D
1
mF(t) + tD

2
m,nF(t)􏽨 􏽩.

(22)

On the other hand,

Tq(m)
Tp(n)

F(t)􏼒 􏼓 � Tq(m)
t
1− p

D
1
nF(t)􏼐 􏼑

� Tq(m)
t
1− p

􏼐 􏼑D
1
nF(t) + t

1− p
Tq(m)

D
1
nF(t)􏼐 􏼑

� t
1− q

(1 − p)t
− p

D
1
nF(t)

+ t
1− p

t
1− q

D
1
m D

1
nF(t)􏼐 􏼑

� t
1− p− q

(1 − p)D
1
nF(t)

+ t
2− q− p

D
2
n,mF(t)􏼐 􏼑

� t
1− p− q

(1 − p)D
1
nF(t) + tD

2
n,mF(t)􏽨 􏽩.

(23)

It follows that

t
1− p− q

(1 − q)D
1
mF(t) + tD

2
m,nF(t)􏽨 􏽩

≠ t
1− p− q

(1 − p)D
1
nF(t) + tD

2
n,mF(t)􏽨 􏽩,

(24)

for all n, m � 1, 2. $e proof is complete. □

Lemma 2. Let 0< q< 1 and F be a fuzzy function 2 times
differentiable on an open real interval I, then the fuzzy
conformable derivative obeys the following

Tp(n)
D

1
mF(t)􏼐 􏼑≠D

1
m Tp(n)

F(t)􏼒 􏼓, (25)

where n, m � 1, 2.

Proof. Let n, m � 1, 2. By using$eorems 7 and 8 in [14], we
have the following relation:

Tp(n)
D

1
mF(t)􏼐 􏼑 � Tp(n)

D
1
mF(t)􏼐 􏼑

� t
1− p

D
1
n D

1
mF(t)􏼐 􏼑

� t
1− p

D
2
m,nF(t)􏼐 􏼑.

(26)

On the other hand,

D
1
m Tp(n)

F(t)􏼒 􏼓 � D
1
m t

1− p
D

1
nF(t)􏼐 􏼑

� D
1
m t

1− p
􏼐 􏼑D

1
nF(t) + t

1− p
D

1
m D

1
nF(t)􏼐 􏼑

� (1 − p)t
− p

D
1
nF(t) + t

1− p
D

1
m D

1
nF(t)􏼐 􏼑

� t
− p

(1 − p)D
1
nF(t) + t

1− p
D

2
n,mF(t)􏼐 􏼑.

(27)

It follows that

t
− p

(1 − p)D
1
nF(t) + t

1− p
D

2
n,mF(t)􏼐 􏼑≠ t

1− p
D

2
m,nF(t)􏼐 􏼑,

(28)

for all n, m � 1, 2. $e proof is complete. □

Theorem 6. Let F: I⟶ RF, 1< q≤ 2 and p � q − 1. 0en
the fuzzy conformable fractional derivative of order q, where
D1

nF(t) exists, is defined by

Tq(n,m)
F􏼒 􏼓(t) � Tp(m)

D
1
nF􏼒 􏼓(t), (29)

where n, m � 1, 2.

Proof. We present the details only for the case n � m � 1,
since the other case is analogous. By using$eorem 8 in [14]
and $eorem 2.2 in [20], we have

Tp(1)
D

1
1F􏼒 􏼓(t) � t

1− p
D

1
1 D

1
1F􏼐 􏼑􏼐 􏼑(t)

� t
1− p

D
2
(1,1)F􏼐 􏼑(t)

� t
1− (q− 1)

D
2
(1,1)F􏼐 􏼑(t)

� t
2− q

D
2
(1,1)F􏼐 􏼑(t),

(30)

and of $eorem 4, it is that

Tq(1,1)
F(t) � t

2− q
D

(2)
1,1F(t). (31)

□

Remark 3. F is q(n,m)-differentiable on I, if D1
n exists on I

and it is p(m)-differentiable on I and p(m) � q(n,m) − 1. $e
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q-differentiable (conformable fractional derivatives of order
q ∈ (0, 1]) of F is denoted by Tq(n,m)

F(t) for n, m � 1, 2.

Theorem 7. Let 1< q≤ 2 and p � q − 1. 0en the fuzzy
conformable fractional derivative of F order q, where
D1

1F: I⟶ RF or D1
2F: I⟶ RF exists, where

[F(t)]α � [fα
1(t), fα

2(t)], is defined by

(i) If D1
1F is p(1)-differentiable, then (fα

1)′(t) and
(fα

2)′(t) are p-differentiable and

Tq(1,1)
F(t)􏼔 􏼕

α
� Tp(1)

D
1
1F(t)􏼔 􏼕

α

� Tp f
α
1( 􏼁′(t), Tp f

α
2( 􏼁′(t)􏽨 􏽩.

(32)

(ii) If D1
1F is p(2)-differentiable, then (fα

1)′(t) and
(fα

2)′(t) are p-differentiable and

Tq(1,2)
F(t)􏼔 􏼕

α
� Tp(2)

D
1
1F(t)􏼔 􏼕

α

� Tp f
α
2( 􏼁′(t), Tp f

α
1( 􏼁′(t)􏽨 􏽩.

(33)

(iii) If D1
2F is p(1)-differentiable, then (fα

1)′(t) and
(fα

2)′(t) are p-differentiable and

Tq(2,1)
F(t)􏼔 􏼕

α
� Tp(1)

D
1
2F(t)􏼔 􏼕

α

� Tp f
α
2( 􏼁′(t), Tp f

α
1( 􏼁′(t)􏽨 􏽩.

(34)

(iv) If D1
2F is p(2)-differentiable, then (fα

1)′(t) and
(fα

2)′(t) are p-differentiable and

Tq(2,2)
F(t)􏼔 􏼕

α
� Tp(2)

D
1
2F(t)􏼔 􏼕

α

� Tp f
α
1( 􏼁′(t), Tp f

α
2( 􏼁′(t)􏽨 􏽩.

(35)

Proof. We present the details only for n � m � 1, since the
other cases are analogous. If ε> 0 and α ∈ [0, 1], we have

D
1
1F t + εt1− p

􏼐 􏼑⊖D
1
1F(t)􏽨 􏽩

α

� f
α
1( 􏼁′(t) t + εt1− p

􏼐 􏼑 − f
α
1( 􏼁′(t)(t), f

α
2( 􏼁′(t) t + εt1− p

􏼐 􏼑􏽨

− f
α
2( 􏼁′(t)(t)􏼃.

(36)

Dividing by ε, we have

D
1
1F t + εt1− p

􏼐 􏼑⊖D
1
1F(t)􏽨 􏽩

α

� f
α
1( 􏼁′(t) t + εt1− p

􏼐 􏼑 − f
α
1( 􏼁′(t)(t), f

α
2( 􏼁′(t) t + εt1− p

􏼐 􏼑􏽨

− f
α
2( 􏼁′(t)(t)􏼃.

(37)

Dividing by ε, we have

D
1
1F t + εt1− p

􏼐 􏼑⊖D
1
1F(t)􏽨 􏽩

α

ε
�

f
α
1( 􏼁′ t + εt1− p

􏼐 􏼑 − f
α
1( 􏼁′(t)

ε
,

f
α
2( 􏼁′ t + εt1− p

􏼐 􏼑 − f
α
2( 􏼁′(t)

ε
⎡⎣ ⎤⎦. (38)

Similarly, we obtain

D
1
1F(t)⊖D

1
1F t − εt1− p

􏼐 􏼑􏽨 􏽩
α

ε
�

f
α
1( 􏼁′(t) − f

α
1( 􏼁′ t − εt1− p

􏼐 􏼑

ε
,

f
α
2( 􏼁′(t) − f

α
2( 􏼁′ t − εt1− p

􏼐 􏼑

ε
⎡⎣ ⎤⎦, (39)

and passing to the limit, we have

Tp(1)
D

1
1F(t)􏼔 􏼕

α
� Tp f

α
1( 􏼁′(t), Tp f

α
2( 􏼁′(t)􏽨 􏽩, (40)

and using $eorem 6 gives the theorem. □

4. Fuzzy Conformable Fractional Differential
Equations of Order q

In this section, we study the fuzzy conformable fractional
differential equations of order q ∈ (1, 2], p ∈ (0, 1]:

dq

dt
q y(t) + a

dp

dt
p y(t) + by(t) � g(t), t≥ 0,

y(0) � σ0,

y′(0) � σ1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(41)

where a, b> 0, σ0, σ1 ∈ RF, and g(t) is a continuous fuzzy
function on some interval I. We give the following definition
for the solutions of (41).
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Definition 5. Let y: I⟶ RF, 1< q≤ 2, 0<p≤ 1 and
n, m ∈ 1, 2{ }. y is a solution (n, m), for problem (41) on I, if
D1

ny, Tp(n)
y, Tq(n,m)

y (or D1
ny, Tp(m)

y and
Tp(m)

D1
nyp(m) � q(n,m) − 1) exist on I and

Tq(n,m)
y(t) + aTp(n)

y(t) + by(t) � g(t), t≥ 0,

y(0) � σ0,

D
1
ny(0) � σ1.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(42)

Remark 4. From $eorem 4 and $eorem 8 in [14], it di-
rectly follows that y is a solution (n,m), for problem (41) on
I, if D1

ny and D2
(n,m)y exist on I, and

t
2− q

D
2
(n,m)y(t) + at

1− p
D(n)y(t) + by(t) � g(t), t≥ 0,

y(0) � σ0,

D
1
ny(0) � σ1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(43)

where q ∈ (1, 2], p ∈ (0, 1] and n, m ∈ 1, 2{ }.

$erefore, since the fuzzy conformable derivatives of
fuzzy processes

Tpy(t)􏽨 􏽩
α

� Tpy
α
1(t), Tpy

α
2(t)􏽨 􏽩, p ∈ (0, 1], α ∈ [0, 1],

Tqy(t)􏽨 􏽩
α

� Tqy
α
1(t), Tqy

α
2(t)􏽨 􏽩, q ∈ (1, 2], α ∈ [0, 1],

(44)

provided these two intervals define fuzzy numbers
Tpy(t), p ∈ (0, 1] and Tqy(t), q ∈ (1, 2] in RF, otherwise
we apply Definition 2 and $eorem 7, then we have one of
the following cases for q ∈ (1, 2] and p ∈ (0, 1]:

(i) System (1, 1)

Tqy
α
1(t) + aTpy

α
1(t) + by

α
1(t) � g

α
1(t) y

α
1(0) � σα01, y

α
1( 􏼁′(0) � σα11,

Tqy
α
2(t) + aTpy

α
2(t) + by

α
2(t) � g

α
2(t) y

α
2(0) � σα02, y

α
2( 􏼁′(0) � σα12.

⎧⎨

⎩ (45)

(ii) System (1, 2)

Tqy
α
2(t) + aTpy

α
1(t) + by

α
1(t) � g

α
1(t) y1(0) � σα01, y

α
1( 􏼁′(0) � σα11,

Tqy
α
1(t) + aTpy

α
2(t) + by

α
2(t) � g

α
2(t) y2(0) � σα02, y

α
2( 􏼁′(0) � σα12.

⎧⎨

⎩ (46)

(iii) System (2, 1)

Tqy
α
2(t) + aTpy

α
2(t) + by

α
1(t) � g

α
1(t) y1(0) � σα01, y

α
2( 􏼁′(0) � σα11,

Tqy
α
1(t) + aTpy

α
1(t) + by

α
2(t) � g

α
2(t) y2(0) � σα02, y

α
1( 􏼁′(0) � σα12.

⎧⎨

⎩ (47)

(iv) System (2, 2)

Tqy
α
1(t) + aTpy

α
2(t) + by

α
1(t) � g

α
1(t) y1(0) � σα01, y

α
2( 􏼁′(0) � σα11,

Tqy
α
2(t) + aTpy

α
1(t) + by

α
2(t) � g

α
2(t) y2(0) � σα02, y

α
1( 􏼁′(0) � σα12,

⎧⎨

⎩ (48)

where [σ0]
α � [σα01, σ

α
02], [σ1]

α � [σα11, σ
α
12] and

[g(t)]α � [gα
1(t), gα

2(t)].
Theorem 8. Let n, m ∈ 1, 2{ } and y � [y1, y2] be a solution
(n, m) for problem (41) on I. 0en y1 and y2 solve the as-
sociated system (n, m).
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Proof. By using $eorem 4 and Remark 4 and suppose y is
the solution (n, m) of problem (41), according to Definition
5, then Tp(n)

, p ∈ (0, 1] and Tq(n,m)
, q ∈ (1, 2] or (t1− pD1

n and
t2− qD2

n,m) exist and satisfy problem (41). By $eorem 6 in
[14], (21) and (25) and substituting y1, y2 and their con-
formable fractional derivatives in problem (41), we get the
system (n, m) corresponding to solution (n, m). $is
completes the proof. □

Theorem 9. Let n, m ∈ 1, 2{ }, p ∈ (0, 1] and yα
1 and yα

2 solve
the system (n, m) on I, for all α ∈ [0, 1]. Let
[y(t)]α � [yα

1(t), yα
2(t)]. If y has valid cut sets on I and

Tp(m)
D1

n exists, then y is a solution (n, m) for fuzzy problem
(41).

Proof. Let q ∈ (1, 2] and [y(t)]α � [yα
1(t), yα

2(t)] is q-dif-
ferentiable fuzzy function, let p ∈ (0, 1], so by using $e-
orems 6 and 7 and $eorem 6 in [14] and Remark 4, we can
compute D1

ny, Tp(n)
y and Tp(m)

D1
ny, p(m) � q(n,m) − 1

according to (yα
1)′, (yα

2)′, t2− q(yα
1)′′, t2− q(yα

2)′′. Due to the
fact that yα

1 and yα
2 solve system (n, m), from Definition 5,

then y is a solution (n, m) for equation (41). □

5. Examples

Example 1. We consider a conformable fractional ordinary
differential equation [13]:

d3/2y(t)

dt
3/2 � k, t≥ 0,

y(0) � σ0, y′(0) � σ1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(49)

where k � σ0 � σ1 are the triangular fuzzy numbers having
α-cuts [α − 1, 1 − α]. If y is solution (1, 1) for problem (49)
and p � 1/2, then [D1

1y(t)]α � [(yα
1)′(t), (yα

2)′(t)] and

T3/2(1,1)
y(t)􏼔 􏼕

α
� 􏼂T1/2(1)

y
α
1( 􏼁′(t), y

α
2( 􏼁′(t)􏼂 􏼃

α

�
d3/2

dt3/2
y
α
1(t),

d3/2

dt3/2
y
α
2(t)􏼢 􏼣

α

,

(50)

and they satisfy system (1, 1) associated with equation (41).
Using $eorems 6 and 4, so the conformable fractional
system (1, 1) has only the following solution:

y
α
1(t) � (α − 1)

4
3

t
3/2

+ t + 1􏼒 􏼓,

y
α
2(t) � (1 − α)

4
3

t
3/2

+ t + 1􏼒 􏼓.

(51)

$en, y(t) � [α − 1, 1 − α]((4/3)t3/2 + t + 1) has valid
α-cuts for t≥ 0. By $eorem 2.3 in [20], y(t) is a con-
formable fractional derivative of order (3/2)(1,1) for t≥ 0. So
y(t) defines a solution (1, 1) for t≥ 0. For solution (1, 2), we
deduce

y
α
1(t) � (α − 1) −

4
3
t
3/2

+ t + 1􏼒 􏼓,

y
α
2(t) � (1 − α) −

4
3
t
3/2

+ t + 1􏼒 􏼓,

(52)

where y(t) has valid α-cuts for t ∈ [0, 0.25] and is a con-
formable fractional derivative of order (3/2)(1,2) for
t ∈ (0, 0.25). Hence, y(t) gives us a solution on t ∈ (0, 0.25).
For solution (1, 2), we get

y
α
1(t) � (α − 1) −

4
3
t
3/2

− t + 1􏼒 􏼓,

y
α
2(t) � (1 − α) −

4
3
t
3/2

− t + 1􏼒 􏼓,

(53)

where y(t) has valid α-cuts for t ∈ [0, 0.51]. We can see y(t)

is a solution (1, 2) on (0, 0.51). Finally, system (2, 2) gives

y
α
1(t) � (α − 1)

4
3
t
3/2

− t + 1􏼒 􏼓,

y
α
2(t) � (1 − α)

4
3
t
3/2

− t + 1􏼒 􏼓,

(54)

where y(t) has valid α-cuts for all 0≤ t≤ 0.25 and defines a
solution (2, 2) on t ∈ (0, 0.25). $en, we have an example of
a fuzzy conformable fractional ordinary differential equation
with four solutions.

Example 2. Given a conformable fractional ordinary dif-
ferential equation [13, 21]

d3/2y(t)

dt
3/2 �

d1/2y(t)

dt
1/2 , t≥ 0,

y(0) � σ0,

y′(0) � σ1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(55)

where σ0 and σ1 are the triangular fuzzy numbers having
α-cuts

σ0􏼂 􏼃
α

� [α − 1, 1 − α],

σ1􏼂 􏼃
α

� [α, 2 − α], for all α ∈ [0, 1].
(56)

To find solution (1, 1), we have

y
α
1(t) � − 1 + αe

t
,

y
α
2(t) � − 1 +(2 − α)e

t
,

(57)

where y(t) has valid α-cuts for t≥ 0 and y(t) � − 1 + σ1et.
From $eorem 2.3 in [20], y(t) is a conformable fractional
derivative of order (3/2)(1,1) for t≥ 0. So y(t) defines a
solution (1, 1) for t≥ 0. For solution (1, 2), we deduce

y
α
1(t) � − 1 + e

t
+(α − 1)e

− t
,

y
α
2(t) � − 1 + e

t
+(1 − α)e

− t
.

(58)

We see that y(t) has valid alpha-cut and
y(t) � − 1 + et + σ0e− t. From $eorem 2.3 in [20], y(t) is a
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conformable fractional derivative of order T(3/2)(2,2)
for t≥ 0.

Since system (1, 2) has only the above solution, then solution
(1, 2) does not exist. For solution (2, 1), we get

y
α
1(t) � − 1 + αe

t
,

y
α
2(t) � − 1 +(2 − α)e

t
.

(59)

y(t) has valid α-cuts and y(t) is a conformable fractional
derivative of order (3/2)(1,1) for t. $en, solution (2, 1) does
not exist. For solution (2, 2), we deduce

y
α
1(t) � − 1 + e

t
+(α − 1)e

− t
,

y
α
2(t) � − 1 + e

t
+(1 − α)e

− t
.

(60)

We see that y(t) has valid α-cut and
y(t) � − 1 + et + σ0e− t. From $eorem 2.3 in [20], y(t) is a
conformable fractional derivative of order (3/2)(2,2) for all
t≥ 0. $en y(t) defines a solution for t≥ 0. $en, we have a
fuzzy conformable fractional ordinary differential equation
and two solutions.

6. Conclusion

By using the concept of conformable generalized derivative
and its extension to fractional derivatives of order q ∈ (0, 2],
we show that we have several possibilities or types to define
fractional derivatives of order q ∈ (0, 2] of fuzzy-number-
valued functions. $en, we propose a new method to solve
fuzzy fractional differential equations based on the selection
of conformable derivative types covering all former solu-
tions. With these ideas, the selection of conformable de-
rivative type in each step of deprivation plays a crucial role.

For future research, we will solve the fractional fuzzy
conformable partial differential equations [22, 23] by using
the proposed method.
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