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Amidst the wide spectrum of recognition methods proposed, there is still the challenge of these algorithms not yielding optimal
accuracy against illumination, pose, and facial expression. In recent years, considerable attention has been on the use of swarm
intelligence methods to help resolve some of these persistent issues. In this study, the principal component analysis (PCA) method
with the inherent property of dimensionality reduction was adopted for feature selection. The resultant features were optimized
using the particle swarm optimization (PSO) algorithm. For the purpose of performance comparison, the resultant features were
also optimized with the genetic algorithm (GA) and the artificial bee colony (ABC). The optimized features were used for the
recognition using Euclidean distance (EUD), K-nearest neighbor (KNN), and the support vector machine (SVM) as classifiers.
Experimental results of these hybrid models on the ORL dataset reveal an accuracy of 99.25% for PSO and KNN, followed by ABC
with 93.72% and GA with 87.50%. On the central, an experimentation of the PSO, GA, and ABC on the YaleB dataset results in

100% accuracy demonstrating their efficiencies over the state-of-the art methods.

1. Introduction

Automated biometric recognition is fast gaining recognition
as the most trusted security systems in the 21* century. This
is perhaps attributed to the recent significant advances in
parallel processing techniques and also the search for most
reliable security systems due to the sharp increases in crimes
worldwide. The earliest biometric features that were auto-
mated for recognition include fingerprints where the unique
ridge skin patterns were utilized. Others include the retina,
iris, palm, skin, and nose tip. Fingerprints, retina, and iris
recognition systems are known to yield very accurate results
[1], but hardened criminals, being sensitively aware of the
security implications, mostly avoid presenting their bio-
metric features to be captured into databases. Thus, auto-
mated face recognition systems are now the obvious choice
[2] because people cannot hide their facial images from
installed CCTV cameras all the time. This makes the
technology the least intrusive and a hotbed research area as

researchers continue to propose newer algorithms that
outperform existing ones.

Since automated face recognition study is new as
compared to fingerprint and others already stated, the
problems associated with it are still eminent. For example,
Zhang, Luo, Loy, and Tang [3] perceived the problem of
facial landmark detection, which is among the central focus
of the system development. Most of the face detection al-
gorithms are slow and produce poor recognition accuracies
(Owusu, Zhan, and Mao, 2014). Other unraveled challenges
in the face recognition research have to do with occlusion,
pose variation, illumination normalization, age, and gender
[4]. In unconstrained environments, there is a significant
decrease in recognition accuracy, thus making it difficult to
accurately identify faces. Therefore, there is a need to have
techniques that improve face recognition in these envi-
ronments. Tu, Li, and Zhao [5] attempted to solve the
problem of illumination and pose by using DL-Net and
N-Net methods. However, this method could not adequately
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account for large-scale normalized albedo images and face
recognition in the wild. Another challenge in the face rec-
ognition research has to do with testing for the efficacy of the
experimental results. There are no standard datasets that is
generally recognized by the research community to be used
for testing. The use of specific datasets depends on the in-
dividual researcher’s choice. Most of the datasets are pre-
meditated and therefore do not represent a real-world
scenario. In terms of ethnicity too, there is a challenge.
Currently, there is no dataset that is well-balanced for race,
gender, and age.

The problem of nonuniform illumination also arises
when the lighting conditions vary at different angles. Thus,
the proportion of light reflected by the face is different. This
phenomenon can lead to the misidentification of an indi-
vidual [6]. Similarly, a random gyration due to individual
movement can also lead to misclassifications in 4D recog-
nitions. An input image and interperson image could appear
dissimilar due to the rotation of the image [7]. The main
purpose of this study is to explore the popular techniques
and bring forth an approach that leverage on computational
cost. Moreover, this method will take into account illumi-
nation, pose, and the facial expression. The proposed ap-
proach enhances the outcomes of the principal component
analysis (PCA) technique using the optimization techniques
approach. Additionally, the improvement in accuracy in this
research transform to a general improvement in the security
and integrity of biometric locks.

In this study, we explored the question of which is the
finest or suitable optimization algorithm to use to maximize
recognition. It also responds to which classifier suits the
recommended approach and again which method utilizes
less computational resource and time. The proposed method
for this research requires the preprocessing of image; then,
features are subsequently examined and extracted using
PCA. This will be followed by the augmentation of the said
teatures using PSO, ABC, and GA with classification cul-
minating the entire process.

2. Related Works

Face recognition is mainly performed in four phases, visa-a-viz.,
feature extraction, face detection, face synthesis, and recognition
[8]. Chihaoui et al. [9] stated that face recognition techniques
are mainly in three categories. The first is the use of procedures
that require the usage the whole face as input. The second
approach is considering only some features or regions of the
face, and the final method is the simultaneous usage of global
and local facial traits. Furthermore, numerous datasets are
geared towards the solution of specific face recognition prob-
lems, and these datasets are taken under laboratory conditions.
However, there are some datasets that attempt to solve multiple
problems and are taken under real-world conditions [9].
Fazilov, Mirzaev, and Mirzaeva [10] examined an algorithm to
enhance the classification of objects in higher dimensions. The
proposed algorithm formed a subset of correlated images, and
then, a feature representation was elected to build elementary
transformation models in the representative features’ subspace.
The algorithm pursues the augmentation of the accuracy of
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recognition, learning time, and finally, object recognition time.
The solution of the problem of low face recognition accuracy
due to large samples and limited availability of training samples
was solved by He, Wu, Sun, and Tan [11] when they proposed
cross-modality images of heterogeneous face recognition
(HREF). The study proposed the Wasserstein CNN framework
that utilizes one network to project near infra-red and visual
images to a Euclidean space. The proposed method is a modality
invariant deep feature learning architecture for NIR-VIS HFR.
The Wasserstein space that separates the NIR and VIS distri-
bution is subsequently computed, and then, the correlation is
levied on the connected layers to mitigate overfitting on small
NIR datasets.

Similarly, Rahimzadeh, Arashloo, and Kittler [12] solved
the optimization problem of MAP inference using the
Markov random field (MRF) model by utilizing the pro-
cessing power of the GPU’s. The multiresolution analysis
technique, incremental subgradient approach, and efficient
message passing approach were used to obtain the maxi-
mum efficiency gain. Efficiency was enhanced by using the
multiresolutional daisy features to attain invariance against
occlusion and illumination. The proposed approach reduced
the computational cost by 200% when compared to baseline
methods. Likewise, Chan et al. [13] attempted the problem of
training and adapting deep learning networks to different
data and tasks. Chan et al. offered a method of passing
images into a cascaded principal component analysis (PCA)
filter for training PCANet. PCANet is subsequently used for
feature extraction using the MultiPIE, extended YaleB, AR,
FERET, and LWF databases. Moreover, PCANet is also a
reference for reviewing advanced deep learning architec-
tures containing a large number of image classifications.
Also, Deng, Hu, Wu, and Guo [14] put forward the creation
of a face image to mitigate varying illumination and pose,
respectively, using only one frontal face image to develop an
extended generic elastic model (GEM) and a multidepth
model. Pose-aware metric learning (PAML) was learned by
means of linear regression to synthesize each pose in their
corresponding metric space, and it yielded an accuracy of
100%. Chen et al.[15] on the other hand proposed a residual-
based deep face reconstruction neural network for the ex-
traction of features from varying poses and illumination.
This method changes illumination and pose images to
frontal face images with an average lighting condition. By
comparing the proposed triplet loss and the Euclidean loss,
the experimentation proved better for the performance of
the latter over the former. However, only one database was
used for this study, and there were no results to compare the
proposed method with.

Tu, Li, and Zhao [5] also solved the problem of illu-
mination, pose, and expression by using a DL-Net and
normalization network (N-Net). The DL-Net purges the
illumination and then rebuilds the input image to an albedo
image. The N-Net normalizes the albedo image and extracts
features by supervised learning. The MultiPIE database es-
tablishes efficiency of the proposed method in augmenting
face recognition accuracy under illumination, expression,
and varying poses. The study concludes by stating that the
extracted features can improve conventional feature
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extraction methods. Zhang et al. [16] also proposed an
emotion recognition model with better accuracy than the
SOTA model. They extracted the facial expressions of seven
different emotions. The extracted image is filtered through a
combination of the Shannon entropy and multiscale feature
extraction, and the result is classified using a fuzzy support
vector machine (SVM). The study used the stratified cross-
validation as the validation metric, and thus, an overall
accuracy of 96.77% accuracy was achieved. Ghazi and Ekenel
[17] improved the accuracy under occlusion, variations in
illumination, and misalignment of facial features by using
two deep CNN models, VGG-Face and Lightened pretrained
on large datasets. These datasets were then used to extract
facial features. They also used 5 databases to attempt a
solution to the problem. The AR face dataset was used as the
analytical tool for the effects of facial obstruction, CMU PIE,
and the Extended Yale dataset B to analyze the variation in
illumination. The color FERET database was used for impact
analysis on view invariance, and last, the FRGC dataset is for
evaluation of multiview catalogues. The authors then used
the Facial Bounding Box Extension to scan the entire head
and extract deep features, thus improving the results. They
compared their results between the Facial Bounding Box
Extension to other methods, and there was a significant
improvement in results [18]. However, Zhang et al. opti-
mized face landmark detection by taking advantage of
supplementary data from the attributes of the features. The
study proposed feature extraction using four convolutional
layers. Each one of these layers produces several feature
maps that are activated using rectified linear units. The layers
are then coupled using max-pooling to produce a shared
vector. The Multi-Attribute Facial Landmark (MAFL),
AFLW, and Caltech Occluded Faces in the Wild (COFW)
are subjects to mean error and failure rate validation. The
study concluded that the auxiliary task is more efficient by
learning the dynamic task coeflicient, and this, in turn,
makes the proposed method more robust to occluded faces
and significant view invariance [19].

This approach encouraged Ding and Tao [20] to pro-
pound a homographic pose normalization approach which
handles the loss of semantic correspondence, occlusion, and
nonlinear facial texture wrapping in PIFR. The proposed
method first projects a lattice of three-dimensional facial
landmarks into a two-dimensional face for feature extrac-
tion. Second, an optimal warp is appraised using a homo-
graphic corrective texture deformation due to pose
variation. This is performed around each landmark on the
local patch. The restored occluded features are used for face
recognition using established face descriptors [20]. How-
ever, Sharma and Patterh [21] proposed a technique,
whereby the face is identified by the Viola-Jones algorithm.
Then, the eyes, nose, and mouth are discovered by means of
the proposed hybrid PCA. The features are subsequently
mined using LBP for every part found. PCA is then applied
to each feature extracted for recognition. The ORL face
dataset was used with the recognition rate as the recognition
metric. The study concluded that there is a higher recog-
nition rate for the proposed hybrid PCA approach for
varying facial expressions and pose when pitted with SOTA,

PCA + wavelet, CA, 2DPCA + DWT, and local binary pat-
tern algorithms. They claimed that this approach can be
extended to illumination, age, or partial occlusion problems.
Interestingly, Duong, Luu, Quach, and Bui [22] presented an
approach to deep appearance models (DAM) that accurately
capture shape and texture variation under large variations
using the deep Boltzmann machine (DBM). DAM replaced
the active appearance model (AAM). This method begins by
employing the use of DBM to ascertain the landmark dis-
tribution points on the face data, and then, the facial data are
vectorized as a texture model. The two layers (shape and
texture) are then interpreted by constructing and using a
high-level layer. The LFW, Helen, and FG-NET databases
were used for the experimentation. The RMSE values of the
proposed method to the controlled method (bicubic and
AAM) showed a significant improvement in the recognition
rate [22].

Duan and Tan [23] also proposed a method of the low
complexity method of learning pose-invariant features
without the need for prior pose information. The proposed
approach removes the pose from a face image and, by so
doing, extracts local features. Self-similarity features are first
generated from a face image when the distance that separates
the features of different nonoverlapping blocks is evaluated.
Then, the linear transformation is subtracted from the local
features, and the transformation matrix is acquired by re-
ducing the distance between pose variant features. This
matrix is created while discriminative information across
persons is retained. Nevertheless, Singh, Zaveri, and
Raghuwanshi [24] have proposed a rough membership
classifier (RMF) for the classification of pose images. Feature
extraction was performed using log-Gabor, and SVD’s are
used for the reduction of redundant features. KNN classifier
is finally applied on the reduced Gabor features. ORL,
Georgian Face database, CMU PIE, Head Pose Image da-
tabases were used with similar performance metrics to Duan
and Tan [23]. The study concluded that the proposed
method is best suited for mug shots in law enforcement.
Moreover, it improves the recognition of face images with
occlusion, and the method is augmented using modeling
techniques to gain improved results. However, the use of
three methods for testing reduces the optimality of the
proposed methods for substantial datasets with varying
images. Nevertheless, Zhao, Li, and Liu [25] have proposed a
MSA +PCA for pose-invariant FR. First, features are
extracted using the affine-invariant multiscale autoconvo-
lution (MSA) transformation. Furthermore, the decorrela-
tion of these traits and the reduction of the MSA proportions
are performed using principal component analysis. Finally,
the principal components with the highest eigenvalues are
classified using KNN. The experimentation points out how
computationally expensive the proposed method is during
the MSA feature extraction phase.

Abdalhamid and Jeberson [26] presented an abled pose-
invariant FR system via artificial bee colony optimized
K-nearest neighbor classifier (ABC-KNN). The method used
video as input for conversion into frames. During the
preprocessing of the converted images, the adaptive Lee filter
(ALF) was applied for image enhancement by removing



noise. The Viola-Jones (V]) algorithm is then used for face
segmentation from the right eyes, nose, and mouth. Com-
plete-LBP (CLBP), center symmetric local binary pattern
(CS-LBP) features, Gabor features (GF), and patterns of
gradient orientation magnitudes (POEM) descriptors are
used for when quirks are extracted from the segmented
image. ABC-KNN is applied as classification for the image.
Recognition accuracy was the performance evaluation
metric. Consequently, F. Zhang, Yu, Mao, Gou, and Zhan
[27] propounded an approach for the PIFER framework
based on feature learning using deep learning. The PCA-Net
used frontal images that were not labeled during the learning
process of the features. The latter are consequently used by
CNN for feature mapping across the space separating the
nonfrontal and frontal faces. The novel description gener-
ated by the maps is then used to describe nonfrontal faces to
achieve a standard characteristic to describe arbitrary faces.
The multiview robust features are then trained using a single
classifier for varying poses. BU-3DFE Static FEW was used
during the experimentation stage and recognition as a
performance evaluation metric. After this technique has
been contrasted with other techniques and frameworks, the
proposed process seems to outperform SOTA techniques.
Additionally, this method can be used to pose robust feature
extraction when trained instead of training the model for
different pose variations.

Finally, Sang, Li, and Zhao’s [28] method for PIFR fuses
texture and depth into a framework using joint Bayesian
classifiers. The output is then identified using a similarity
estimator between the input and the face database. However,
there is a high computational cost for recognition of face
images in large face databases. Furthermore, experimenta-
tion was extensive for various poses, and multiple methods
were not compared to the current method.

3. Research Methodology

The research design for this study includes image pre-
processing, feature extraction with PCA, the optimization of
these features using PSO, ABC, and GA, and finally the
classification of objects using KNN, SVM, and EUD. The
datasets for the study are YaleB and AT&T popularly known
as ORL. These datasets were selected with the justification
that they have well-defined challenges necessary for vali-
dating the facial recognition algorithm. Subsequent sections
explain in detail the major parts of the study design.

3.1. Feature Extraction. This component of the design ac-
quires relevant biometric descriptors from a given image. In
the process, high volume of data is obtained making it
necessary to select only high contributing descriptors.
Several techniques exist for this task; however, PCA is
adopted for this study due to its popularity and efficiency in
this domain [29].

3.1.1. Principal Component Analysis. The primary goal of
principal component analysis for facial recognition is the
transformation of higher dimensional data into a lower
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feature subspace known as the eigenface. This eigenspace
represents the locus of the covariance matrix of the feature
landmarks. Despite its usefulness, they are computationally
expensive given a higher dimensional data. This necessitates
the adoption of an alternate algorithm with similar prop-
erties and structures [30] as PCA but relatively inexpensive
known as singular value decomposition (SVD). Taking a
matrix X with dimension 7 x m, a PCA can be defined as the
Eigen decomposition of the covariance matrix X' X. This
yields an eigenvalue A with its corresponding eigenvectors
W. These eigenvectors are used as the transformation op-
erator on X to obtain a new matrix T with the same di-
mension as X as shown in

T=XW. (1)

Equation (1) is with the assumption that all components
(i.e., columns) in W are principal. However, in practice,
some of these components are expected to be redundant;
hence, W is ordered by A. With the ordered W, truncations
can be performed using the first ¥ components for analysis.
By implication, we have W, being an m by r matrix giving us
the new transformed matrix T, shown in

T, = XW, . (2)

As stated earlier, operations of PCA are expensive, and
SVD with properties mathematically identical to PCA is
preferred for implementation. Equation (3) shows the SVD
of X.

X = uzv®, (3)

where y is the left singular vector, V* is the conjugate
transpose of the right singular vector, and X contains the
singular values on its diagonals. Computing the eigenvalue
decomposition for X" X with equation (3) to obtain uou”, it
becomes obvious that W is identical to V, while the ordered
singular values (0,0,0;...) are proportional to A. Again,
with the property that 4 and V are unitary matrices, we have

pu=1I, (4)

VaV=1I, (5)

where I is the identity matrix. From equations (1) and (3)
and noting that W is identical to V, we have

T=XV=usV'V = usl, (6)

T=ux. (7)

These equations further justify why SVD is computa-
tionally inexpensive compared to PCA which computes the
covariance X!X. Taking the principal components of
equation (7), we have

Tr = .urzr . (8)
Finally, since the requirement is W and not the Eigen

decomposition of XTX, SVD can be used to efficiently
compute W.
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3.2. Feature Optimization. The section of the study describes
the swarm intelligence algorithms used for the feature op-
timization. Among these methods are artificial bee colony,
genetic algorithm, and particle swam optimization.

3.2.1. Artificial Bee Colony. The artificial bee colony (ABC)
is one of the swarm-based algorithms designed with the
foraging actions of the honeybees. The four components of
the behavioral model of ABC are mainly the food source,
scouting bees, onlooker bees, and employed bees. The food
source denotes a possible solution to the clustering
problem as the scout bee carries out a global search. This
search is performed stochastically, while the onlooker and
employed bee search for adjacent solutions. The employed
bees subsequently evaluate the precision of the solution
from the previously stored solutions in memory. This in-
formation is successively passed on to onlooker bees in the
dance area. This ensures that the best food source is chosen,
and the stagnated food sources within an already set cycle
are abandoned and replaced with new sources. This process
is repeated until there is a convergence to obtain the op-
timal solution. Mathematically, we have the following
steps.

Step one: randomly initialize solutions
x;fori={1,2,...,FS}, where i represents each food
source, and FS represents the total food source. Fur-
thermore, initialize onlookers and employ bees using a
random function generator in

xij = xj rand (0) 1)(xmaxj - xj ), (9)

where x;; = [x;1, X5, ... x; p] is a vector of length D
with x,,,,; and x; denoting the maximum and mini-
mum values of the j* dimension.

Step two: iteratively new solutions are found by each
employed bee using

vy = %95 = %), (10)

where v;; = [v;;,v;p, ..., v; p] signifies the new solu-
tions within the local range of x;; = [x;1, X5, . . ., X; p]
and ¢;;€ (=1,1). The sum of the Euclidean distance
between the sample points and their cluster midpoints
is known to be inversely proportional to the fitness
value of all candidate sources. In the selection of the
sources, a greedy algorithm is employed by comparing
the fitness values of old and new positions.

Step three: probability p; of the solution x; is computed
using

fit;

1

b £i1 ﬁtn,

(11)

where fit; is the fitness value of x;. Onlooker bees use
this probability to select new x; values by searching for
the local optimums while following step two to cal-
culate the fitness value.

Step four: if onlooker and employed bees are unable to
identify new and better candidate solution through the
local search after some predefined iterations, the so-
lution x; is discarded and substituted with scout bees’
new solution. These scout bees then use random global
selection to search for new solutions.

Step five: step two to four is repeated until the defined
stopping criterion is met returning the optimal output

3.2.2. Genetic Algorithm. Genetic algorithm (GA) on the
other hand is based on genetics and the theory of natural
selection. It is a stochastic algorithm which finds the best
solution by effectively finding the global optimum in a larger
space. A nonnegative fitness value is obtained using the
fitness function. This value is used to summarize how close
the optimal solution is to the global best (Mahmud, Haque,
Zuhori, and Pal, 2014). A GA begins by generating random
numbers (called chromosomes) with population size n. Each
chromosome has its fitness value computed, and the stop-
ping criterion is checked. The GA operators such as selec-
tion, crossover, and mutation to drive the chromosomes
toward convergence are explained further.

Selection. This operator creates offspring from an existing
population by using a process comparable to natural se-
lection in biological lifeforms. Selection once more accen-
tuates on the better performance of individuals in the
population. This helps with the expectancy of their offspring
having the likelihood of carrying on the genetic information
to a successive generation. Consequently, the convergence is
impacted greatly by the magnitude of the selection process.
Hence, the selection criteria should prevent premature
convergence by maintaining population diversity and bal-
ance with the crossover and mutation operations.

Crossover. The crossover operator mixes information be-
tween two parents in a manner matching sexual repro-
duction. The objective of the crossover procedure is to give
“birth” to an improved offspring. This is achieved by ex-
ploring different portions of the search space.

Mutation. Mutation procedure changes the values of the
randomly selected bit within each string, thereby preventing
the GA from being stuck at the local minimum through the
scattering of genetic data, hence maintaining the variation in
the population. This process is repeated until the optimal
solution is achieved or the predetermined number of gen-
erations elapses.

3.2.3. Particle Swarm Optimization. Particle swarm opti-
mization (PSO) is also an optimization algorithm influenced
by biology. It was derived by observing the collective be-
havior and swarming of a flock of birds and fish schools [30].
The algorithm comprises of solutions known as population,
with each having a series of parameters which represent a
coordinate in a space with multiple dimensions. Further-
more, a collection of these particles becomes a population



with the particles probing the search space to find the op-
timal solution. Each particle tracks its former optimal so-
lution in memory and then labels these solutions as the
personal best and global best. The locus of the ™ particle is
then defined in the D-multidimensional space as

Xi Z[xil’xi2>xi3""’xiD]> (12)

and the population of the swarm as

X =[x, %0, X35+ - o, XN (13)

The particles then iteratively update their respective
positions in the parameter space when searching for the
optimal solution using

xE+ D) =x@)+v(t+1), (14)

where v; is the velocity components of the i™ particle along
the D-dimensions with ¢ and #+1, indicating a dual con-
secutive run of the process. Velocity of the i™ particle is
defined in equation (15) with three terms: the first is inertia
which prevents the particles from drastically changing di-
rection, the second term describes the ability of particles
returning to the previously known best position, and the last
term describes the particles moving (swarm) closer to the
best position:

vi(t+ 1) =v;(t) + ¢, (pi —x; (1))R; + ¢, (g — x; (1))R,,
(15)
where p; is the personal best of the particle, g is the global
best, and ¢, and c,, in the range of 0<c¢;,c, <4, are the
cognitive and social coefficients respectively. Finally, R; and
R, are the two diagonal matrices randomly generated from a
uniform distribution in [0,1]. This ensures that the social and
cognitive components have a random effect on the velocity
update in equation (15). Since the particles are derived from
the convergence of the personal and global best solutions,
the stochastic weight of the two accelerating terms and the
trajectories are semirandom. This requires that equations
(14) and (15 are iterated until a stopping criterion is met.
Algorithmically, we have the following pseudocode.

3.3. PSO Algorithm.
(1) N particle initialization

(a) Initialize the position x;(0)Vie 1: N

(b) Initialize the particles best position to its position
P;(0) = x;(0)

(c) Calculate the fitness of each particle, and if
f(xj (0)) = f(x; (0))Vi# j, initialize the global
best as g=x; (0)

(2) Repeat until condition is met

(a) Update the particle velocity in accordance with
equation (15)

vi(t+1) = v; (1) +¢; (p; — x: ()R, + 5 (g — x; (1)) R,.
(16)

(b) Update the particle position using equation (14)
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x;(t+1)=x;(t)+v;(t +1). (17)

(c) Evaluate the fitness of the
flt+1)=f(p)

(d) If f(x;(t+1))>f(p;), update personal best: p;
= (x;(t+1))

(e) If f(x;(t+1))=f(g), update global best: g=
(x; (t+1)).

(3) Assign the best solution to g at the end of the it-
erative process.

particle

3.4. Classification. After the optimization of the extracted
feature vectors, classification models are built to address
the face recognition challenges. There are myriads of
predefined models for this task given the feature set.
Among these are SVM, KNN, K-means, Euclidean dis-
tance, VGGNet, and CNN. Other pretrained face classifiers
such as the VGG-Face also exits which estimate the sim-
ilarity between the face image of a subject and relevant
features selected from the face images in the database. In
this study, the Euclidean distance (EUD), K-nearest
Neighbor (KNN), and the support vector machine (SVM)
were used.

4. Implementation of Methods

4.1. Implementation Pipeline. The implementation pipeline
for this study is shown in Figure 1. From the figure, every
image undergoes a series of preprocessing and subsequent
feature selection and finally features optimization. These
optimized features are trained for feature matching.

4.2. Environmental Setup. The face recognition system
implemented in this study was developed, trained, and tested
using Matlab R2018b on an HP desktop processor Intel ®
Core™ i7-770T CPU @ 2.90 GHz, Linux Ubuntu 20.04 LTS
operating system.

4.3. Image Preprocessing. The first step taken in image
analysis is the preprocessing of the image for undesirable
noise. These components are detrimental to the examination
of the image and thus are removed via preprocessing. All
images with dimensions more than 96-by-84 pixels are
downsampled. This is followed by the conversion of all
colored images to grayscale. The outputs of the images are
separated into training and test sets. Eighty percent of the
images are considered as training sets with 20 percent as the
test set. This preprocessing is implemented so that the
complexity will be reduced and the computational time
improved.

4.4. Feature Extraction. This section further illuminates on
the feature extraction approach used in this study. Among
the objectives of this study is the implementation of an
offline facial recognition system with an improved and
robust feature extraction method using optimization
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Standardized
face image

Face Features
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preprocessing extraction 3
Feature
vectors
1 Feature
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Output
P Feature Feature
matching classification 5

6

Ficure 1: Implementation pipeline.

techniques. This method will be tested using the AT&T and
YaleB face datasets as they contain faces with varying illu-
mination, different poses, occluded faces, dissimilar ex-
pressions, or a combination of them. The mean of the
features is computed, and the feature of the first principal
component of each image is selected. The mean face for
AT&T and YaleB datasets is shown in Figures 2 and 3,
respectively.

4.5. Dimensionality Reduction and Feature Selection.
Given the computed mean face of the training data, the
binary singleton expansion function is applied as an ele-
ment-wise operator. The resultant image is decomposed
with the single value decomposition function to reduce the
coefficient used to characterize the image. The cumulative
sum of the square of the diagonal matrix is computed to
produce the principal component with the first k eigenvalue
of the component selected. The eigenvectors are then nor-
malized into eigenfaces. The sample output of this process on
the AT&T and YaleB datasets is shown in Figures 4 and 5,
respectively.

Once more, the binary singleton expansion function is
used to transform the test data by using the mean face. These
transformed train and test data are then optimized for better
classification results.

5. Results and Discussion

This section describes in detail the results of the experiment
and the analysis of the results. Moreover, comparisons
between other optimization methods using the same data-
base and three different classifiers will be discussed.

5.1. Numerical Results. Generally, in recording the perfor-
mance of a facial recognition model, statistical metrics such
as accuracy, recall, precision, F-measure, and among others

‘Mean’ face

10 20 30 40 50 60 70 80
FIGURE 2: Mean face for the AT&T dataset.

‘Mean’ face
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FiGURE 3: Mean face the YaleB dataset.

are used. For an eflicient evaluation and a valid comparison
with the existing study, the accuracy metric is selected. The
recognition accuracy is computed for all the classification
methods as applied on different datasets with varying op-
timization methods. Tables 1-7 show the average, maxi-
mum, and minimum recognition accuracies for the datasets
with different classification methods. This experiment was
conducted with a thousand five hundred (1500) iterations
with/without considering the optimization of the extracted
features.

5.2. Discussion. From the result shown in Section 4.1, it is
observed that the model’s performance on the AT&T dataset
is fairly low in general. This could be attributed to the oc-
clusion, varying pose, and expression exhibited in the face
images making it naturally difficult to model. On the con-
trary, the model’s performance was relatively good as it
contains only images with varying illumination. From Ta-
ble 1, it can be seen that the accuracy is highest for KNN and
SVM at 100% each for the YaleB dataset. Nevertheless,
optimizing the features with GA saw a significant decrease of
the KNN classifier to 70% with a 9.8% reduction using the
Euclidean distance method as shown in Table 3. There is no
loss as shown in Tables 2 and 4 for KNN and SVM when
ABC and PSO optimization is performed. However, 4% and
5% reduction for PSO and ABC, respectively, was noted
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FI1GURE 4: First six eigenfaces of AT&T.
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FIGURE 5: First three eigenfaces of YaleB.

TaBLE 1: Recognition accuracy without the use of the optimization algorithm.

Default recognition accuracies

EUD KNN SVM Dataset
29.94 77.84 82.05 AT&T
82.63 100 100 YaleB

TABLE 2: Recognition accuracies for the YaleB database with the PSO algorithm.

YaleB-particle swarm optimization (PSO)

EUD KNN SVM
87.92 100 91.72 Average
100 100 100 Maximum

10.53 100 0 Minimum
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TABLE 3: Recognition accuracies for the YaleB database with the GA algorithm.

YaleB-genetic algorithm (GA)

EUD KNN SVM

70.04 70.04 99.15 Average

100 100 100 Maximum

10.53 10.523 91.23 Minimum
TaBLE 4: Recognition accuracies for the YaleB database with the ABC algorithm.

YaleB-artificial bee colony (ABC)

EUD KNN SVM

74.71 100 99.60 Average

100 100 100 Maximum

17.54 100 95.61 Minimum
TaBLE 5: Recognition accuracies for the AT&T database with the PSO algorithm.

AT&T-particle swarm optimization (PSO)

EUD KNN SVM

28.46 80.46 59.85 Average

36.25 99.25 78.75 Maximum

18.75 67.5 5 Minimum
TaBLE 6: Recognition accuracies for the AT&T database with the GA algorithm.

AT&T-genetic algorithm (GA)

EUD KNN SVM

28.78 47.05 54.86 Average

40 87.5 86.25 Maximum

17.5 7.5 15 Minimum
TaBLE 7: Recognition accuracies for the AT&T database with the PSO algorithm.

AT&T-artificial bee colony (ABC)

EUD KNN SVM

28.50 66.78 35.55 Average

43.75 93.75 72.5 Maximum

17.5 8.75 8.75 Minimum

when the EUD classifier was used. Consequently, there isa  in Tables 6 and 7. The order of experimentation is given as

large difference in recognition accuracy using the AT&T  follows.
database. Without the use of the optimization method, the

AT&T database’s recognition plummeted to 29.94, 77.84, PCA+EUD

and 82.05 for EUD, KNN, and SVM, respectively, as shown PCA +KNN

in Table 1. However, using the PSO optimization technique PCA +SVM

saw an improvement in the average recognition accuracy to

80.46% for KNN. There is a significant degradation when PCA+PSO+ED
using the SVM classifier with an average recognition ac- PCA +PSO + KNN
curacy of 59.85%. Again, EUD saw 28.46% average recog- PCA +PSO + SVM
nition accuraCY.ff)r PSO as shown in Table 5. Conversely, the PCA + GA + ED
average recognition accuracy for GA and ABC reduced to

47.05 and 66.78, respectively, when using KNN and 54.86% PCA +GA +KNN

and 35.55% when using SVM as can be separately observed PCA+GA+SVM
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PCA + ABC+ED
PCA + ABC+KNN
PCA + ABC+SVM

By observation, the PCA + PSO + EUD has 15.19% of the
recognition accuracy below 79.83%, which is the recognition
accuracy of PCA + EUD for the YaleB dataset. This indicates
that PSO optimizes the features well with 84.81% of the
experiments producing better results. In addition, there is no
change in the recognition accuracy of KNN. This points with
PSO not reducing the results achieved when the optimi-
zation technique is performed. Conversely, SVM saw less
than 1% of the recognition accuracies below 90%. This
demonstrates that over 99% of the results for the
PCA +PSO +SVM have recognition accuracy above 90%
with 95% of the recognition accuracy at 100%. Therefore, the
5% reduction in PCA + SVM can be considered insignificant.
As a final point, PSO optimizes well for EUD and SVM.
Similarly, PCA + GA+EUD has over 71% of the results
above that of PCA + EUD. KNN and SVM, however, have
60% and 100% of the results greater than that of PCA + KNN
and PCA +SVM, respectively. Yet still, PCA + GA + KNN
shows significant decay of results from its default 100%.
SVM, on the other hand, displays a negligible reduction in
average recognition accuracy. With this, SVM seems to
produce better results than both KNN and EUD with respect
to the use of the GA optimization algorithm.

In like manner, the YaleB dataset results for
PCA + ABC+EUD give rise to 28% of the data above the
default 79.83% of PCA + EUD. However, the ABC optimized
recognition for KNN and SVM revealed no significant loss of
results with an average recognition accuracy of 100% and
99.6% for KNN and SVM, respectively. It can be established
that the result optimized by ABC and classified using KNN
are appropriate for the YaleB dataset, and ABC optimizes
well for KNN and SVM on the said dataset. Table 8 shows the
first 20 results of the total experiments for PSO, ABC, and
GA optimization algorithms implemented on the YaleB
dataset using EUD, KNN, and SVM classifiers. Nevertheless,
the substantial reduction of the results observed when the
AT&T dataset is used stems from the increase in parameters
for recognition. The AT&T dataset contains images that are
occluded, and it also has varying poses and expressions.
PCA +PSO+EUD for the AT&T face dataset produced
results that are on average below PCA +EUD for the da-
tabase. 51% of the 1500 results obtained were lower than the
default 29.94% for PCA + EUD. The overall average recog-
nition of PCA +PSO + EUD for the AT&T database, how-
ever, was 28.46% as shown in Table 5. It is perceived that the
deterioration of average recognition is offset by the larger
values of the other recognitions. 48% of the result above the
default 29.94% is not insignificant, yet it is a small percentage
for consideration. KNN on the other hand has 31% of the
results above the 77.84% default recognition. Still, the av-
erage recognition accuracy achieved was 3% higher than the
default. Thus, 80.46% average recognition accuracy for KNN
with PSO-optimized features (PCA +PSO +KNN) is the
best combination for the AT&T database since none of the
results for SVM was above its 82.05% baseline recognition.

Applied Computational Intelligence and Soft Computing

Again, PCA + GA +EUD indicates 28.78% average recog-
nition accuracy. This is similar to the average results got by
all 3 optimization methods using EUD as the classifier.
However, GA and ABC achieved 47.05% and 66.78% average
recognition accuracy for the KNN classifier, respectively.
This illustrates an atrophy of the result from 77.84% to
47.05% for GA and 66.78% for ABC. GA suffers 30%
degradation, while ABC saw an 11% reduction in average
recognition accuracy. Moreover, the average recognition
accuracy for both GA and ABC for the SVM classifier
plummeted further than that of KNN. A 27% reduction in
average recognition accuracy using the SVM classifier for
GA supersedes that of ABC, which has 46.5% reduction.
Thus, it concludes that GA and ABC using SVM as the
classifier is not suitable for this approach. The first 20 results
are shown in Table 9.

Again, the linear kernel was used for the SVM classifier
when the experiment was performed. This kernel has the
propensity of improving computational time compared to
other SVM kernels, and it is suitable for high dimensional
data [31]. However, the linear kernel in this experiment
appears to have sacrificed the accuracy for computational
time. Thus, the kernel chosen does not produce good re-
sults. Other kernels such as the polynomial, Gaussian,
radial basis function (RBF), or ANOVA could be used for
SVM in future research, and the result is compared to the
proposed method. Similarly, Table 1 indicates that SVM is a
better classifier when the linear kernel is used and when no
optimization algorithms are utilized. Thus, both AT&T and
YaleB datasets produce the best results for SVM. Now,
comparing Tables 2-4, it is perceived that a perfect rec-
ognition accuracy of 100% for the maximum of all meta-
heuristic algorithms and classifiers is achieved. This indi-
cated that all optimization methods can be used for the
YaleB database regardless of the classifier. Conversely, the
maximum recognition accuracy for the algorithms used for
augmentation gave the impression that the KNN classifier
was better. This means that PSO + KNN, ABC + KNN, and
GA +KNN have better recognition accuracy than their
SVM counterparts. This shows that the optimization al-
gorithms have degraded the results produced by the SVM
classifier. Nonetheless, GA’s maximum recognition was
better than that of the default SVM (PCA +SVM).
Therefore, GA should be preferred when an SVM classifier
with a linear kernel is chosen. Furthermore, the algorithms
improved the highest recognition accuracy achieved by the
EUD classifier only. With this, PSO is selected as the ideal
optimization algorithm for the YaleB and AT&T datasets.
Juxtaposing the proposed method to other approaches, it is
shown in Table 10 that the offered approach is effective than
other SOTA methods. The culmination of this research
presented the proposed optimization method and classifier,
given their respective datasets in Table 11.

Finally, Table 12 shows the time taken for each exper-
iment carried out. It is seen that PSO has the lowest average
time for the experiment with 1.594s, 1.592s, and 55.46s for
EUD, KNN, and SVM, respectively. PSO +SVM saw the
highest computational cost with 55.46s for all experimen-
tation. However, it required less than 2 seconds for
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TaBLE 8: YaleB experiment results for PSO, GA, and ABC using EUD, KNN, and SVM classifiers.

YaleB-PSO YaleB-GA YaleB-ABC

EUD KNN SVM EUD KNN SVM EUD KNN SVM
100 100 100 60.526 60.526 99.123 36.842 100 100
100 100 100 99.123 99.123 100 35.088 100 100
71.93 100 100 51.754 51.754 100 28.07 100 100
100 100 100 100 100 98.246 71.93 100 99.123
95.614 100 100 41.228 41.228 98.246 86.842 100 100
99.123 100 100 40.351 40.351 100 100 100 100
90.351 100 100 94.737 94.737 98.246 71.053 100 99.123
99.123 100 100 99.123 99.123 99.123 47.368 100 100
100 100 100 35.088 35.088 99.123 53.509 100 100
100 100 100 99.123 99.123 100 54.386 100 100
85.965 100 100 100 100 100 100 100 100
67.544 100 98.246 100 100 100 57.895 100 100
82.456 100 100 46.491 46.491 100 91.228 100 100
87.719 100 100 97.368 97.368 99.123 30.702 100 98.246
88.596 100 100 41.228 41.228 100 92.982 100 98.246
83.333 100 98.246 28.07 28.07 96.491 100 100 100
93.86 100 100 100 100 98.246 50 100 100
100 100 100 50 50 97.368 72.807 100 100
70.175 100 99.123 100 100 100 27.193 100 100

TaBLE 9: AT&T experiment results for PSO, GA, and ABC using EUD, KNN, and SVM classifiers.

AT&T-PSO AT&T-GA AT&T-ABC

EUD KNN SVM EUD KNN SVM EUD KNN SVM
30 82.5 70 28.75 53.75 51.25 27.5 71.25 53.75
26.25 80 61.25 37.5 31.25 37.5 31.25 55 33.75
28.75 76.25 40 32.5 78.75 76.25 28.75 38.75 20
32.5 76.25 75 36.25 20 30 23.75 76.25 41.25
27.5 77.5 62.5 23.75 51.25 70 31.25 10 8.75
27.5 80 75 27.5 31.25 35 26.25 71.25 27.5
30 86.25 55 28.75 35 38.75 31.25 55 27.5
33.75 87.5 73.75 27.5 63.75 62.5 30 42.5 23.75
23.75 71.25 66.25 33.75 35 40 27.5 77.5 47.5
23.75 76.25 68.75 30 56.25 71.25 28.75 42.5 16.25
31.25 72.5 62.5 36.25 28.75 35 26.25 50 22.5
26.25 73.75 68.75 27.5 46.25 56.25 23.75 76.25 37.5
325 86.25 7.5 27.5 46.25 60 30 77.5 52.5
30 83.75 63.75 28.75 11.25 16.25 25 45 31.25
30 85 65 27.5 53.75 50 27.5 67.5 37.5
22.5 83.75 50 30 28.75 33.75 30 45 40
31.25 78.75 63.75 26.25 67.5 65 26.25 70 33.75
28.75 68.75 56.25 35 58.75 62.5 28.75 86.25 56.25
31.25 87.5 70 30 57.5 60 23.75 45 10

TasLE 10: Recognition accuracy of other methods on the YaleB and AT&T datasets.

Author Method Recognition accuracy (%) Database
[32] Generalized low-rank approximation of matrices (GLRAM) 82.18 YaleB
[33] FDDL 96.2 YaleB
[34] Local nonlinear multilayer contrast patterns (LNLMCP) 97.50 YaleB
[35] Discriminative sparse representation via I2 regularization 82.61 YaleB
[32] GLRAM 97.25 AT&T
[33] Fisher discriminative dictionary learning (FDDL) 96.7 AT&T
[31] PSO-KNN 98.75 AT&T
[31] PCA-LDA fusion algorithm 98.00 AT&T
[35] Discriminative sparse representation via I2 regularization 95.00 AT&T
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TaBLE 11: Proposed classification and optimization techniques for both datasets.

Proposed selection AT&T

YaleB

Optimization technique
Classification method

Particle swarm optimization (PSO)
K-nearest neighbor

Particle swarm optimization (PSO)
K-nearest neighbor

TABLE 12: Average time taken for experiments.

Time in seconds for Particle swarm  Artificial Genetic
experimentation optimization  bee colony algorithm
Euclidean distance 1.594 2.104 1.648
K-nearest neighbor 1.592 2.115 1.646
Support vector 55.46 4871 4.445

machine

PSO +EDU and PSO + KNN trials. Subsequently, the ABC
and GA meta-heuristic algorithms produced a similar result
to PSO, but PSO is computationally less expensive than both.

6. Conclusion

This study looks at how to augment PCA feature with the
selected optimization method to improve the accuracy of
face recognition models. The proposed implementation
shows that the choice of PSO as an optimization method
works well in an unconstrained environment of the real
world, since pose, occlusion, and expression are among the
dominate face recognition problems found in the uncon-
strained environments. The default recognition accuracy of
the YaleB showed 100% accuracy for both SVM and KNN
classifiers. However, the ORL database did not attain perfect
recognition due to the inherent nature of the dataset.
Nonetheless, the use of optimization algorithms on the
selected features saw an increase in recognition accuracy
from 82.63% to a maximum of 100% for EUD. This indicates
that all three evolutionary algorithms can be used to improve
the accuracy of results. However, due to the ORL database
catering for 3 parameters, the maximum recognition did not
reach 100% but 99.25% which is promising using the PSO
algorithm and KNN classifier. Last, the PCA + PSO + KNN
approach is chosen for this study due to its ability to handle
the increase in parameters, and it also outperforms other
SOTA algorithms. These parametric increases move the
recognition closer to real-world human face recognition.
Moving forward, this study can be extended by looking at
other recent swarm intelligent optimization models used in
other fields with the property of it be being less expensive,
Other private datasets with more stricter challenges could be
used to further validate this model. This remains a limitation
to this study.

Data Availability

The secondary data source used to support the findings of
this study are available from the AT&T database (https://
www.kaggle.com/kasikrit/att-database-of-faces) and YaleB
database (https://github.com/Suchetaaa/CS663-
Assignments/tree/
0426d951d0212ed3dd831377a0df11551670ab87/
Assignment-4/1/CroppedYale).
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