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Mapping of soil properties is an important operation as it plays an important role in the knowledge about soil properties and how
it can be used sustainably. *e study was carried out in a local government area in Bangladesh in order to map out some soil
properties and assess their variability within the area. From the study area, a total of 92 soil samples (0–20 cm) were collected from
different cropping patterns at an interval of 2.2× 2.2 km2 on a regular grid design. A portable global positioning system (GPS) was
used to collect coordinates of each sampling site.*en, soil properties, that is, pH, electrical conductivity (EC), soil organic carbon
(SOC), total nitrogen (Total N), and soil available nutrients (P, K, and S) were measured in the laboratory. After the normalization
of data, classical statistics were used to describe the soil properties, and geostatistical analysis was used to illustrate the spatial
variability of the soil properties by using kriging interpolation techniques in a GIS environment. Results show that the spatial
distribution and spatial dependency level of soil properties can be different even within the small or large scale. According to cross-
validation results, for most soil properties, the kriging interpolation method provided the least interpolation error. *e generated
maps of soil properties that indicate soil nutrient status over the study region could be helpful for farmers and decision-makers to
enhance site-specific nutrient management. Also, these prototype maps would be helpful for future nutrient and fertilizer
applications management, including a site-specific condition to not only reduce the cost of input management but also prevent
any environmental hazard. It also demonstrates that the effectiveness of geostatistics and GIS techniques provided a powerful tool
for this study in terms of regionalized nutrient management.

1. Introduction

Bangladesh, one of the most densely settled countries in the
world whose economy, is largely based on agriculture which
contributes 13.31% of Gross Domestic Product (GDP) at
current prices [1]. *e land is the principal resource which
employs around 40% of the total labor force and feeds about
164.6 million of its population [2, 3]. *e total cultivable
land is estimated to be 9.10 million hectares with an average
cropping intensity of 179 percent per year. High population
growth (1.37 per year) with low growth in agricultural

productivity adversely affects the living standard in the
country [3, 4].*e country has one of the lowest land-person
ratios in the world, estimated at 0.088 ha per person [3]. *e
number of agricultural farm households is estimated at 1.66
million, which accounts for 46.61% of total households [4].
*ere is huge pressure on the land to produce more crops to
ensure self-sufficiency in food. According to the agricultural
statistics database of the Food and Agriculture Organization
of the United Nations [5], total cropland extent at the global
scale, computed as the sum of arable land and permanent
crop area, is about 15.3 million km2. *ese statistics account
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for all cropland used at least once in five years but neglect
areas with long fallow periods. *e total harvested crop area
reported in the same database is 11.8 million km2 yr−1,
indicating a global average cropping intensity of 0.77 crop
harvests per year. However, the extent of fallow land is larger
than the difference between global cropland extent and
global harvested crop areas because many areas are har-
vested more than once per year.

Soil properties vary in different spatial areas due to the
combined effect of biological, physical, and chemical pro-
cesses over time [6] and can vary within farmland or at the
landscape scale [7, 8]. Different land use and management
practices greatly impact soil properties [9], and knowledge of
the variation in soil properties within farmland use is es-
sential in determining production constraints related to soil
nutrients. With the introduction of commercial fertilizers,
the physical properties of the soil were thus seriously
neglected by both the farmers and soil scientists. *is is
especially true for Bangladesh, where the focus of soil science
has mainly been concerned with soil chemistry and soil
fertility. However, better crop varieties and increased use of
fertilizers will fail to increase yield in the long run. *e
contribution of these inputs can only be realized if soil
physical properties are properly managed [10]. Land use
without adequate planning leads to soil impoverishment and
low crop yield, which results in a decline in the socioeco-
nomic and technological level of the rural population
[11, 12]. *erefore, to undertake soil planning for use and
management purposes, it is important to evaluate how the
chemical and physical properties of the soil are distributed in
a determined area.

A tool often used to analyze how soil properties are
spatially distributed in an area is geostatistics. It is effective
for understanding the magnitude and structure of the spatial
variability of the physical and chemical properties [13]. *e
study of spatial variability of soil chemical and physical
properties is important for agriculture because it aims to
minimize the effects of variability on crop yield, optimizing
the agricultural production systems [14, 15]. Meanwhile, the
soil is a nonrenewable resource [16], and the perception of
soil nutrient valuation becomes extremely significant for
better agrarian productivity and the economic development
of each nation. Correspondingly, inappropriate fertilizer rate
application [17] and improper land management [18]
contribute to the low nutrients contents in these soils
[19–21]. *is had resulted in tenaciously muted crop yields.
For improving crop yields and increasing the income of
smallholder farmers, we need to increase the productivity of
these soils. Also, the spatial distribution of the major soil
nutrients needs to be mapped, and based on the outcomes of
the distribution map, applicable fertilizer requirements
could be recommended for localized intervention. Subse-
quently, the mapped outcomes of the soil nutrient valuation
could then be used for effective monitoring of changes that
might occur between cropping schemes and seasons over
time. *en, monitoring of the nutrient concentrations will
enable shareholders to evaluate soil fertility enhancement or
else in such localities. Consequently, the costly and tedious
conventional methods required to acquire soil nutrient

information will also be abridged when nutrient levels are
mapped since those conventional techniques are no more
affordable [22, 23]. *erefore, mapping of the nutrient
concentrations will provide spatial soil nutrients informa-
tion that can be used as a decision support tool. *us, de-
veloping spatial distribution maps of soil nutrients levels is
incredibly necessary for the “diversified cropping” regions of
which Jessore district of Bangladesh is one [24] because it
will help improve agricultural management tractrices and
refine sustainable resource use together with providing a
baseline against which future soil nutrients can be recom-
mended at site-specific localities [25, 26]. However, the
mapping of soil nutrients concentrations, especially nitrogen
(N), phosphorus (P), potassium (K), and sulfur (S), would
also accelerate appropriate monitoring and review of rec-
ommended agricultural tools at localities from time to time.
*is may also help in the valuation of the influence of a
specific technology at a specific time (e.g., every 10 years) in a
specific place depending on the evaluation of the soil quality
[27]. Likewise, due to the promising development of pre-
cision agriculture knowledge [25, 28, 29], scientists and
decision-makers in the field of soil science would be in a
better position to implement site-specific technologies, if
accurate levels of soil nutrients in particular locations in the
territory are mapped. *is tactic will enhance soil fertility
management outcomes and increase the interest of small-
holder farmers to invest more in the agricultural sector.

*e lack of any previous study makes it hard to assess the
nutrient profile of the land (specific area) and suggest proper
management protocols to farmers. Many smallholder
farmers reside in the Jessore district in Bangladesh and have
poor access to agricultural inputs, including organic and
inorganic fertilizers. *erefore, the objective of this study
was to generate appropriate soil properties models in order
to generate a spatial distribution map of major soil nutrient
(N, P, K, and S) contents across the Jessore district of
Bangladesh. *e results of the study would, therefore, reveal
the spatial variation and pattern of distribution of N, P, K,
and S nutrient contents across the study area. Also, their
evaluation would help to make the appropriate decision to
the application of inorganic fertilizer into the soil for sus-
tainable crop production.

2. Materials and Methods

2.1. Study Area. *e research was conducted in the Jessore
region (23.1681N to 89.2042 E), located in the western part
of the Ganges River floodplain which is predominantly
highland and medium highland. Most areas have a complex
relief of broad and narrow ridges and interridge depressions,
separated by areas with smooth, broad ridges, and basins.
*ere is an overall pattern of olive-brown silt loams and silty
clay loams on the upper parts of floodplain ridges and dark
grey mottled brown, mainly clay soils on ridge sites and in
basins. In this region, major cropping patterns are Rice-
Mustard-Rice, Rice-Mustard-Rice/Pulse, Rice-Vegetables,
Wheat-B.Aus/Jute-Fallow, Wheat-B.Aus/Jute-T.Aman,
Wheat-Pumpkin-Orchard, Lentil-Sesame-T.Aman and
Sugarcane-Boro-T.Aman, and so on. Soil fertility and
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productivity change over time and this change is in a
negative direction because of intensive cropping with
modern varieties, improper and imbalanced use of fertilizer
and manure [30]. Again, crops grown in different cropping
patterns and environments responded differently to fertilizer
nutrients. Mineral fertilizer inputs are the crucial factors to
the overall nutrient balance in intensive cropping systems
[31, 32].

2.2. Soil Sampling andAnalysis. A total of 92 soil samples were
collected from the surface (0–20 cm) at an approximate interval
of 2.2× 2.2km2 on regular grid design (Figure 1) with the help
of a handheld global positioning system (GPS) over the entire
Jessore Sadar (total area 435.22km2) of Bangladesh. Regular
sampling is proved to be more accurate in predicting spatial
distribution than random sampling [33]. For each soil sample,
two to three replicates were taken in spring 2017 under different
cropping patterns (e.g., wheat, rice, corn, pulse, sesame, maize,
lentil, groundnut, watermelon, vegetable, ladies finger, chili,
pumpkin, orchard, and fallow) within a distance of 100m and
the samples were combined and homogenized by hand mixing.
Nineteen (19) more points were sampled for cross-validation
(Figure 1) purposes.*e collected soil samples were air-dried by
spreading on a separate sheet of paper and were transported to
the laboratory. After drying, the larger aggregates were broken
gently by crushing them in a wooden hammer. A portion of the
crushed soils was passed through a 2.0mm sieve to separate the
coarse (>2mm) and fine (<2mm) fractions. *e sieved soils
were then preserved in a plastic container and labeled properly.
*ese were later used for various chemical analyses. Afterward,
soil pH was determined electrochemically with the help of a
glass electrode pH meter keeping up the soil-to-water ratio 1 :
2.5 as recommended by Jackson [34]. *e EC (electrical
conductivity) of the soil was measured at a soil-to-water ratio of
1 : 5 with the help of an ECmeter [35]. Total nitrogen of the soils
was determined by the colorimetric method [36] following
sulfuric acid (H2SO4) digestion as recommended by Jackson
[37]. Available phosphorus was extracted from the soil with the
help of 0.5M NaHCO3(Olsen’s method) at pH 8.5 and the
molybdophosphoric blue color method of examination was
used for determination [38]. *e available potassium was
extracted from the soil with 1N NH4OAc at pH 7.0 [34] and
analyzed by a flame analyzer at 589nm for determination [37].
Organic carbon of samples was determined by Walkley and
Black’s wet oxidation method as outlined by Jackson [34].

2.3. Geostatistical Analysis. Descriptive statistical analysis
was carried out first to determine the mean, maximum,
minimum, standard deviation, and coefficients of variation
(CV) of the variables of the data. In geostatistical analysis,
the semivariogram was calculated for each soil variable as
follows [39, 40]:

c(h) �
1

2N(h)
􏽘

N(h)

i�1
z xi( 􏼁 − z xi + h( 􏼁􏼂 􏼃

2
, (1)

where z(xi) is the value of the variable z at the sampled
location xi, h is the distance lag in meters, and N(h) is the

number of pairs of sample points separated by h. For ir-
regular sampling, it is rare for the distance between the
sample pairs to be exactly equal to h. *erefore, h is often
represented by a distance interval. For the distance lag h, the
semivariance is c(h).

An experimental semivariogram plot was obtained by
computing semivariances at different distance lags. In
general, there are three important parameters useful for
characterizing the spatial dependence of soil variables in the
semivariogram plot: nugget (C0), partial sill (C), and range.
Partial sill reflects the amount of spatial structural variance.
Range expresses the distance at which the semivariogram
stabilizes around a limiting value, and the nugget is defined
as the variability at a scale smaller than the sampling interval
and/or sampling and analytical error. *e experimental
semivariogram was then fitted with a suitable theoretical
model: spherical, exponential, and Gaussian [41–43]. *e
models provide information about the spatial structure as
well as the input parameters for kriging interpolation.
Kriging is considered as the optimal spatial interpolation for
making the best linear unbiased estimates of regionalized
variables at unknown locations. *e spatial prediction of the
value of a soil variable z at an unknown point x0is calculated
as a weighted average followed [39, 40]:

􏽢z x0( 􏼁 � 􏽘
n

i�0
λiz xi( 􏼁, (2)

where 􏽢z(x0)is the value to be estimated at the location x0,
z(xi) is the known value at the sampling site xi,, and λiis the
weight. *ere are n sites within the search neighborhood
around x0used for estimation, and the magnitude of n will
depend on the size of the moving search window and on user
definition. Kriging differs from other methods (such as
inverse distance-weighted), in that the weight function λiis
no longer arbitrary, being calculated from the parameters of
the best-fitted variogram model under the conditions of
unbiasedness and minimized estimation variance for in-
terpolation. In this study, ordinary kriging was deployed for
the interpolation of soil variables on a grid with a spatial
resolution of 10m.

2.4. Statistical Analysis. *e descriptive statistics (mean,
median, standard deviation and standard error of mean,
skewness, and kurtosis) were calculated for all soil param-
eters using SPSS v.16 classical statistics. Before the con-
struction of variograms, the data were tested for normality
(Kolmogorov–Smirnov test). *e pairwise Pearson’s cor-
relation between the soil chemical properties was calculated
in RStudio v1.1.463. Geostatistical analysis, including the
development of sample variograms and kriging, was per-
formed with the help of a geostatistical software, ArcMap
10.3. *e degree of spatial dependency of each variable was
decided with geostatistical methods using semivariogram
analysis and kriging [44].

2.5. Cross-Validation of the Predicted Model. In cross-vali-
dation, the values estimated by ordinary kriging were
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compared to the values observed in the nineteen (19)
sampling points in the study area. Subsequently, different
indices, mean absolute error (MAE), root mean squared
error (RMSE), and coefficient of determination (R2) between
observed and predicted soil variables of the cross-validation
were used to assess the performance of the kriging
interpolation.

3. Results and Discussion

3.1. Descriptive Statistics of Major Soil Properties in the Study
Area. *e results about the Kolmogorov–Smirnov test in-
dicated normality for most of the variables (Table 1) which
suggests that they were all normally distributed. Also, it
indicates that the constraint values strongly varied among
fields. *us, the majority of soil properties measured in the
study area were similar in terms of mean and median values,
while mean values are usually somewhat higher than the
median (Table 1), which indicates dominant measures of
central tendency. Many other kinds of research also noted
similar results, including Brejda et al. [45], Cambardella and
Karlen [46], Cambardella et al. [47], Emadi et al. [48], and
Young et al. [49]. *e coefficient of variation for all the
variables observed was very different ranging within
3.35–76.54% at 0–20 cm depth. *e lowest coefficient of
variation was observed in pH with a value of 3.35%, which
could be as a result of the uniform conditions in the area
such as little changes in slope and its direction leading to a
uniformity of soil in the area [48, 50–53], while electrical
conductivity (76.54%) had the highest variation at a specific
depth. *e higher variability of soil properties in terms of
coefficient of variation is SOC, electrical conductivity (EC),
available phosphorus, and potassium (CV≥ 35%). By con-
trast, the lower variability (CV≤ 15%) was observed for soil
pH, while moderate variability (CV= 15–34%) was found for
total nitrogen and available sulfur according to the guide-
lines provided by Warrick [54] for the variability of soil
properties. Table 1also indicates that the skewness and
kurtosis indices of the soil variables deviated considerably
from the standard values of 0 and 3, respectively, at 0–20 cm
depth. *ese variations in chemical properties are mostly
related to the different soil management practices carried out
in the study area, parent material on which the soil is formed,
the role of the depth of groundwater, and irrigation water
quality [52, 53, 55].

3.2. Correlations among Selected Soil Properties. Pearson’s
product-moment correlation coefficient was calculated for
each property to characterize the relationship among se-
lected soil chemical properties (pH, SOC, Total N, Av P, Av
K, Av S, and EC) (Table 2). In general, moderately significant
correlations were found between some variables in the study
area as reported, for example, SOC with Av P (r= 0.501,
P< 0.01), SOC with pH (r= 0.342, P< 0.01), Av K with pH
(r= 0.419, P< 0.01), Av K with Av P (r= 0.413, P< 0.01), and
Total N with EC (r= 0.358, P< 0.01). Significant correlation
can also be identified between pH and Av P (r= 0.290,
P< 0.01). It is clear that SOC was strongly negatively

correlated with EC (r=−0.652, P< 0.01) and moderately
correlated with Total N (r=−0.209, P< 0.05). Moreover,
more significant and stronger correlation was observed
between SOC and Av K (r= 0.558, P< 0.01) than other soil
properties. *e soil EC was found to be responsible for
variable distribution of different soil minerals, and it was
found that Av P, Av K, and Av S were negatively correlated
with EC with r=−0.174, −0.173 and -0.235 (P< 0.05), re-
spectively. In general, a moderate association between dif-
ferent soil chemical properties was observed.

3.3. Geostatistical Analysis

3.3.1. Semivariogram and Spatial Dependency. *e possible
spatial structure of the different soil properties was
identified by calculating the semivariograms and the best
model that describes these spatial structures was iden-
tified. Model parameters for the best fit semivariogram
models are presented in Table 3 and Figures (2–4). *e
model with the best fit was applied to each parameter, the
accuracy of soil property values can be estimated through
kriging (using modeled semivariogram parameters) at
unsampled locations was tested using different error
estimates. *e parameters were noted including the
nugget effect (Co), the sill (Co + C), and the range of
influence for each soil. Also, the degree of autocorrelation
between the sampling points was found to be related to
spatial dependency (nugget: sill ratio) and expressed in
percentages. *e spatial dependent variables were clas-
sified as randomly spatially dependent if the ratio
(nugget: sill) was >75% and moderately spatially de-
pendent if the ratio is between 25 and 75%, while it is
strongly spatially dependent if it is <25% [47, 56–60]. A
large range indicates that the observed values of a soil
variable are influenced by other values for this variable
over greater distances than soil variables, which have
smaller ranges [61].

Various models are used for semivariogram analysis. *e
spherical model was used to estimate the hypothetical semi-
variogram parameter in ArcGIS 10.3. *e nugget value de-
notes the random variation usually derived from the accuracy
of measurement or variations of the properties that cannot be
detected in the sample range [60].*e sill value is representing
the upper limit of the fitted semivariogram model [42]. *e
nugget to sill ratio implies the spatial dependence of soil
properties. *e range of the semivariogram denotes the av-
erage distance through which the variable semivariance rea-
ches its highest value. A small effective range indicates a
distribution pattern composed of small patches [62].

*e nugget effect can be defined as an indicator of
continuity at close distances. Soil properties with a lower
nugget effect were generally defined by the spherical sem-
ivariogram model (Table 3). *e soil parameters including
pH, electrical conductivity (EC), soil organic carbon (SOC),
and available potassium (Av K) follow a strong spatial
distribution (except total nitrogen (Total N), available
phosphorus (Av P), and available sulfur (Av S)) and clear
patchy distribution all over the study area as the percent
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Figure 1: Map showing study area and soil sampling locations in the Jessore Sadar under different cropping patterns.

Table 1: Descriptive statistics (n= 92) of soil chemical properties at the depth of 0–20 cm.

Minimum Maximum Mean (µ) Median SD (σ) Variance CV (%) Skewness Kurtosis
pH 6.77 7.98 7.47 7.47 0.25 0.06 3.35 −0.59 0.63
EC (dSm−1) 0.00 1.98 0.81 0.66 0.62 0.39 76.54 0.26 −1.42
SOC (%) 0.12 1.46 0.73 0.73 0.38 0.15 52.05 0.21 −0.94
Total N (%) 0.23 0.46 0.38 0.39 0.06 0.00 15.79 −0.78 −0.11
Av P (ppm) 45.37 361.19 129.14 104.66 80.57 6491.66 62.39 1.75 2.77
Av K (ppm) 25.04 166.09 74.34 69.78 31.37 983.95 42.20 1.14 1.67
Av S (ppm) 39.98 173.09 99.38 96.63 29.19 852.49 29.37 0.57 0.19
CV (%) = σ/µ× 100, where CV= coefficient of variation, σ = standard deviation, µ=mean, pH= soil pH, EC= electrical conductivity, SOC= soil organic
carbon, Total N= total nitrogen, Av P= available phosphorus, Av K= available potassium, and Av S = available sulfur.

Table 2: Correlation matrix based on Pearson’s correlation coefficients among soil chemical properties in the study area.

Correlations

pH EC
(dSm−1) SOC (%) Total N

(%) Av P (ppm) Av K
(ppm)

Av S
(ppm)

pH Pearson
correlation 1

EC (dSm−1) Pearson
correlation −0.177 1

SOC (%) Pearson
correlation 0.342∗∗ −0.652∗∗ 1

Total N (%) Pearson
correlation −0.011 0.358∗∗ −0.209∗ 1

Av P (ppm) Pearson
correlation 0.290∗∗ −0.174 0.501∗∗ 0.041 1

Av K
(ppm)

Pearson
correlation 0.419∗∗ −0.173 0.558∗∗ 0.001 0.413∗∗ 1

Av S (ppm) Pearson
correlation 0.144 −0.235∗ 0.094 −0.084 0.246∗ 0.053 1

∗∗Correlation is significant at the 0.01 level (2-tailed). ∗Correlation is significant at the 0.05 level (2-tailed).
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Table 3: Semivariogram model parameters for soil nutrients at the depth of 20 cm.

Soil properties Model type Nugget (C0) Partial sill (C) Sill (C0 +C) Nugget/sill ratio (%) Spatial class Range (degree)
pH Spherical 0.0048 0.0607 0.0655 7.33 Strong 0.0383
EC (dS/m) Spherical 0.0909 0.3056 0.3965 22.92 Strong 0.0493
SOC (%) Spherical 0.0024 0.1614 0.1638 1.47 Strong 0.0688
Total N (%) Spherical 0.0025 0.0014 0.0039 64.10 Moderate 0.1734
Av P (ppm) Spherical 3,074.00 3,429.90 6503.9 47.26 Moderate 0.0402
Av K (ppm) Spherical 0 1,001.06 1001.06 0 Strong 0.0414
Av S (ppm) Spherical 546.93 407.29 954.22 57.32 Moderate 0.1593
∗Nugget/sill ratio (%) = [C0/(C0 +C)]× 100. ∗∗Strong =% nugget <25%; moderate =% nugget 25–75%; random=% nugget >75% [47].
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Figure 2: Continued.
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Figure 2: Fitted semivariograms illustrating the strength of statistical correlation between major soil nutrients: (a) pH, (b) electrical
conductivity (EC), and (c) soil organic carbon (SOC) in the study area.
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nugget value includes 7.33%, 22.92%, 1.47%, and 0.00%,
respectively (Table 3 and Figures 2–4). Also, the value of the
nugget effect for Av K and SOC was lower at a specific depth
in the study area which suggests that the grid variance of
variables is low. *us, this result implies that the near and
away samples have similar and different values, respectively.
*erefore, the nugget effects that are small and close to zero
indicate a spatial continuity between the neighboring points;
this finding is similar to the result of Vieira and Gonzalez
[63] and Jafarian and Kavian [64] which showed that
semivariogram of Total N had very small nugget effect. *e
spatial variability of estimating soil properties varies within
range and this model can calculate the unsampled within a
neighboring distance of about 0.0383 degrees for pH, 0.0493
degrees for EC, 0.0688 degrees for SOC, 0.01734 degrees for

Total N, 0.0402 degrees for Av P, 0.0414 degrees for Av K and
0.1593 degrees for Av S, respectively. *eir spatial depen-
dency might be controlled by both intrinsic variations of soil
properties and extrinsic factors such as human-induced
activities [65, 66].

3.3.2. Spatial Interpolation and Mapping of Soil Properties.
Soil parameters maps obtained by ordinary kriging inter-
polation are presented in Figures 5–11. In addition, model
parameters for the best fit semivariogram models are dis-
played in Table 3and Figures 2–4. *e results showed that all
the soil samples varied considerably all over the studied area.
A high ratio (100%) of nuggets means that the slope of the
semivariogram was close to zero, and the soil variable was
considered nonspatially correlated (pure nugget). When the
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Figure 3: Fitted semivariograms illustrating the strength of statistical correlation between major soil nutrients: (a) total nitrogen (total N),
(b) available phosphorus (Av P), and (c) available potassium (Av K) in the study area.
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Figure 4: Fitted semivariograms illustrating the strength of statistical correlation between major soil nutrients: (a) available Sulfur (Av S) in
the study area.
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Figure 5: Spatial distribution of soil pH contents in the study area.
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distribution of soil properties is moderately or strongly
spatially correlated, the average extent of these patches is
given by the range of the semivariogram. Again, if the ratio
was <25% or the slope of the semivariogram was far from
zero, that means a large part of the variance is introduced
spatially, implying a strong spatial dependence of the var-
iable. *eir spatial dependency may be controlled by both
intrinsic variations of soil properties and extrinsic factors
such as human-induced activities [65, 66]. However, the
unknown spatial dependence of the variable might exist at a
lower scale even if a high nugget : sill ratio was obtained [67].

*e map of different attributes (Figures 5–11) shows the
spatial distribution map of soil properties generated using
the best interpolation method (ordinary kriging interpola-
tion). *e maps of pH follow a strong spatial (Table 3)
pattern and clear patchy distribution all over the studied area
(Figure 5). *e pH of the soil was lower in the southern part
of the study area, while higher pH was found at the western
site of the study area. Soils were usually characterized by
having extensive areas with pH values between 7.35 and 7.82

(Figure 5), which indicates a mildly alkaline nature over the
study area. Lake [68] reported that pH might be changed
with current intensive agricultural practices and the relative
absence of acidic cations which may raise pH above 7.

It was found that all over the study areas with a gradual
decrease in electrical conductivity from northwest to southeast
(Figure 6) site of the field. *e electrical conductivity values of
soil samples show a strong spatial dependency (Table 3) and an
opposite trend like SOC. Soils were usually characterized by
having extensive areas with concentrations from 0.39 to 1.38
dSm−1 (Figure 6) found almost all over the studied area. As the
electrical conductivity of soils varies depending on the amount
of moisture held by soil particles, thus its variability is distinct
throughout the sampling area [69].

*e map of SOC shows that almost two-thirds of the
study area has a SOC content of less than 1%, which is the
critical limit for organic carbon in most agricultural alkaline
soils. *e semivariograms and kriging interpolation map of
SOC show a parallel (strong) spatial pattern trend as soil pH,
while the opposite direction was observed for EC (Table 3). A
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Figure 6: Spatial distribution of soil electrical conductivity (EC) contents in the study area.
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lower percentage of SOC was found in the northwestern site
of the study area, while a higher percentage of SOC was
observed in the eastern and middle part of the study region
(Figure 7). Also, soils were usually characterized by having
extensive areas with SOC contents from 0.79 to 1.06%
(Figure 7) in the study field. *e major driving factors for
low concentration of SOC over study area could be long-
term cultivation practices [70], low water content, and high
soil temperature [71].*e variability of SOCmight be due to
the land use pattern which might be the dominant factors of
SOC in an area with the same parent material and the same
climatic condition. Similarly, this variability may be based
on landscape attributes including slope, aspect, and eleva-
tion [72].

Total N kriging interpolation map shows a moderate
spatial (Table 3) dependency and clear patchy distribution
pattern all over the studied area (Figure 8). *e autocor-
relation (semivariograms) analysis of the Total N displays a
parallel (moderate) spatial scattering trend as Av S and Av P
(Table 3). Also, soils were usually characterized by having
extensive areas through Total N from 0.39% to 0.42%

(Figure 8) noticed around the study area. Moreover, the
higher contents of Total N were found only at the western
site for this study. *e moderate spatial dependence in Total
N contents in diverse land-use patterns may be aided by the
use or addition of NPK fertilizers, while grassland resto-
ration is frequently encouraged by planting N fixing alfalfa
[73].

According to the spatial distribution of Av P and Av K
shows a clear patchy distribution all over the studied area
(Figures 9 and 10). As expected from autocorrelation
analysis (Table 3), the spatial distribution map of Av P shows
moderate spatial continuity (small and high values of Av P
occur near to each other). Also, soils were generally char-
acterized by having extensive areas with available phos-
phorus (Av P) contents from 173.11 to 204.23 ppm
(Figure 9). In contrast, the kriging map of Av K shows a
strong spatial continuity of Av K with an increase along the
northeast toward the center and southern part of the study
area. Almost half the study region (west, northwest, and
south) has an Av K less than 95 ppm (Figure 10), which is a
critical limit for agricultural production [74]. In this study,
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Figure 7: Spatial distribution of soil organic carbon (SOC) contents in the study area.
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the spatial variability of soil available potassium (Av K) may
be influenced due to regional factors such as topography,
climate, and soil matrix [39]. Also, we assume that an in-
tensive cropping system and low application rate of K
fertilizer could be the two major reasons causing severe
potassium depletion in the observed area [75–77]. *e high
and low amounts of Av P and Av K revealed that their spatial
pattern might be also influenced by anthropogenic causes
such as fertilization.

However, comparatively the lower content of available
sulfur (Av S) was detected at the northern site for the present
study area, while a relatively higher content of available
sulfur (Av S) was detected at the southern site. *e semi-
variogram of available sulfur (Av S) indicates that the
moderate spatial correlation (Table 3) implies that a large
part of the variance is introduced spatially. Also, soils were
usually characterized by having extensive areas with avail-
able sulfur (Av S) contents between 95.45 and 121.19 ppm
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Figure 8: Spatial distribution of total soil nitrogen (total N) contents in the study area.
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(Figure 11). In this study area, the lower contents of sulfur
may be the consequence of predominantly washed-out
sulfur in the form of sulfates, especially under leaching
circumstances [69, 78].

3.4. Accuracy Assessment of the Predicted Model. *e fit of
the models of the semivariograms and kriging

interpolation was based on the values of the coefficients of
determination of the cross-validation near the coeffi-
cients of the straight line 1 : 1 (Figure 12), the lower values
of MAE, and the higher values of R2 (Table 4), according
to Robertson and Goovaerts [79–81]. *e spherical model
has fitted to the variables pH, EC, SOC, Total N, Av K, and
Av S, indicating that the behavior of these variables (soil
properties) is less erratic on a small scale [82]. According
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Figure 9: Spatial distribution of available soil phosphorus (Av P) contents in the study area.
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to McBratney and Webster [83], these mathematical
models best fit the soil properties. *is also shows that
semivariogram parameters obtained from fitting of the

experimental semivariogram and kriging interpolation
values were reasonable to describe the spatial variation of
all the studied soil properties.
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Figure 10: Spatial distribution of available soil potassium (Av K) contents in the study area.
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Figure 12: Continued.
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Figure 11: Spatial distribution of available soil sulfur (Av S) contents in the study area.
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4. Conclusion

Assessing spatial variability andmapping of soil properties is
an important prerequisite for precision agriculture because
these maps will measure spatial variability and provide the
basis for controlling it. It would also help in reducing the
amount of inorganic (fertilizer) inputs being added to the
soil in the form of supplements so as not to overburden the
soil which can lead to pollution thereby degrading the land.
Statistical analysis showed that the coefficient of variation for
all the variables observed was very different ranging within
3.35–76.54% at 0–20 cm depth of soil. For geostatistical
analysis of soil variables, the value of nugget: sill ratio ranges
from 0% (Av K) to 64.10% (Total N), which indicates that
internal (e.g., the soil-forming processes) factors were
dominant over external (e.g., human activities) factors.
However, the soil pH, EC, SOC, and Av K had a strong
spatial dependency with a nugget : sill ratio of <25% since it
was induced by structural factors. Meanwhile, other soil
variables (Total N, Av S, and Av P) had moderately spatially
dependency with nugget : sill ratio of 25–75% since these
variables were mostly determined by both internal and
external factors. *e autocorrelation distances of all vari-
ables differed from 0.0383 degrees (pH) to 0.1743 degrees
(Total N), which implies the sampling design is reasonable.
Scattering maps, resulting from kriging interpolation,
demonstrated that these studied areas were categorized by
an opposite trend for Av S (higher in southeastern site) and
EC (higher in northwestern site). By contrast, Total N and

soil pH differed all over the studied area, whereas Av K and
Av P had a high percentage at the center of the study area.
*e areas with low SOC contents (0.26–0.52%) and Av P
(110.85–141.98 ppm) were mainly detected in the north-
western site of the study area. According to cross-validation
results, kriging interpolation method provided the least
interpolation error for most of the soil properties. It also
demonstrates the effectiveness of GIS techniques in the
interpolation of unsampled data.*ese results can be used to
make recommendations of best agricultural management
practices within the locality and also improve the livelihood
of smallholder farmers.
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