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Soil erosion induced by rainfall under prevailing conditions is a prominent problem to farmers in tropical sloping lands of
Northeast Vietnam. This study evaluates possibility of predicting erosion status by machine learning models, including fuzzy
k-nearest neighbor (FKNN), artificial neural network (ANN), support vector machine (SVM), least squares support vector
machine (LSSVM), and relevance vector machine (RVM). Model evaluation employed a historical dataset consisting of ten
explanatory variables and soil erosion featured four different land use managements on hillslopes in Northwest Vietnam. All 236
data samples representing soil erosion/nonerosion events were randomly prepared (80% for training and 20% for testing) to assess
the robustness of the five models. This subsampling process was repeatedly carried out by 30 rounds to eliminate the issue of
randomness in data selection. Classification accuracy rate (CAR) and area under receiver operating characteristic (AUC) were
used to evaluate performance of the five models. Significant difference between different algorithms was verified by the Wilcoxon
test. Results of the study showed that RVM model achieves the best outcomes in both training (CAR =92.22% and AUC =0.98)
and testing phases (CAR=91.94% and AUC=0.97). Four other learning algorithms also demonstrated good performance as
indicated by their CAR values surpassing 80% and AUC values greater than 0.9. Hence, these results strongly confirm the efficacy
of applying machine learning models for soil erosion prediction.

1. Introduction

Water erosion often causes loss of soil from the field,
breakdown of soil structure, and decline of organic matter
and nutrients [1]. Erosion leads to reduction of cultivable
soil depth and decline in soil fertility, eventually reducing
production. Furthermore, sedimentation downstream re-
duces the capacity of rivers, reservoirs, and drainage ditches,
which shortens their designs’ life. It also enhances the risk of
flooding and blocks irrigation channels [2]. The soil erosion
severity is highly variable depending on site’s climate, soil,
topography, cropping, and land management [3]. Particu-
larly, soil erosion potential in tropical areas is high due to
heavy rainfall coupled with land management such as mono
cropping in the uplands of Northwest Vietnam [4, 5].
Accelerated erosion is often observed at the beginning of the

cropping season when heavy rains coincide with poor
ground cover [6]. Climatic condition, soil characteristic,
land form, and land management significantly contribute to
soil erosion in different weights that need to be investigated.

Soil loss studies at the plot scale have been of crucial
importance to identify the mechanism of the processes. The
erosion plot experiments can help to introduce new erosion
prevention technologies as it provides access to reliable and
consistent erosion measurements and large numbers of data
necessary to test new models [7]. Most recent empirical
models employed data from plot studies such as USLE/
RUSLE based on Universal Soil Loss Equation A = RKLSCP,
where A is computed soil loss, R is the rainfall-runoff
erosivity factor, K is a soil erodibility factor, L is the slope
length factor, S is the slope steepness factor, C is a cover
management factor, and P is a supporting practices factor
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[8, 9], SWAT [10], a physically based model Water Erosion
Prediction Project (WEPP) [11], and Tradeofts (InVEST)
Sediment Delivery Ratio (SDR) model [12], etc.

Machine learning approaches could provide a helpful
alternative to deal with the multivariate and complex nature
of problems in soil science and geoscience [13-16]. Artificial
neural network (ANN) generally predicts soil loss at ac-
ceptable results [17, 18] or even better than that of WEPP
model (2011) [19]. Kohonen Neural Networks (KNN),
multivariate adaptive regression splines [20], and support
vector classification coupled with metaheuristic [21] being
used for runoff-erosion modeling had shown a superior
result to the conventional multiple linear regression model
[22]. Soil erosion prediction is a complex and dynamic
process, requiring comparison of various advanced machine
learning algorithms. Machine learning has demonstrated
great potentiality and effectiveness for solving complex soil
science problems. This modern method can construct data-
driven models from historical datasets and establish pre-
diction models used for predicting various complex phe-
nomena including soil erosion [23-25].

This study elucidates potential application of five
competent machine learning models to predict soil erosion:
artificial neural network (ANN), support vector machine
(SVM), least squares support vector machine (LSSVM),
relevance vector machine (RVM), and fuzzy k-nearest
neighbor (FKNN) using a dataset containing ten explanatory
variables, collected from fields in Northwest Vietnam. The
ANN method is inspired from the actual neural systems of
human brain; this method possesses the universal approx-
imating capability and can accurately approximate any
nonlinear function [26, 27]. SVM is a robust machine
learning model which is based by the structural risk mini-
mization [28]; therefore, SVM is less susceptible to over-
fitting than ANN. LSSVM and RVM can be considered as
variants of the original SVM. The first reformulates the
model training procedure of SVM so that it is only required
to solve a linear system instead of a constrained nonlinear
programming problem in SVM [29]. The latter model of
RVM takes advantage of Bayesian framework to construct
more robust and sparse models which may result in less
numbers of support vectors than the standard SVM [30]. The
sparseness property of a RVM means that this approach can
be resilient to noise and less susceptible to noisy data
samples [31, 32]. In addition, the FKNN [33] is an extension
of the standard k-nearest neighbor (KNN) algorithm; this
model incorporates the fuzzy theory into the KNN model
structure to enhance the flexibility of data modeling and
better constructs the class decision boundary. Due to such
characteristics and advantages, these five models are selected
to be employed in this study.

2. Research Methodology

2.1. The Dataset. The erosion dataset was collected from two
experiments that featured four different land use manage-
ments in Northwest Vietnam during three vyears
(2009-2911). Details of the experiments have been described
in [34]. In brief, erosion plots were arranged in a randomized
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complete block design with four treatments, three replicates.
The employed treatments represent conventional local
farmers’ maize cropping practice based on slashing, burning,
and ploughing with fertilization (1), and soil conservation
practices such as grass barrier (Panicum maximum) (2),
minimum tillage with cover crop (Arachis pintoi) (3), or
relay cropping with Adzuki beans (Phaseolus calcaratus).
The minimum tillage and/or cover crop option provided
better land cover and less disturbed soil condition, hence
lowering soil loss. Each plot is sized 72m” (4 m wide and
18 m slope length), laid on slopes within 24.8-34.8 degrees.
A system of buckets was installed to collect the deposited
sediment subjected to soil erosion from the above plots.
Erosion data were recorded on storm basic in the three years:
2009-2011.

2.2. Description of Soil Erosion Data. Climate, soil, topog-
raphy, and land use factors affect rill and inter-rill soil
erosion caused by raindrop impact and surface runoft. More
precisely, soil erosion depends on the erosivity caused by the
amount and intensity of rainfall and runoff, and the resis-
tance of the soil surface or the degree of erodibility caused by
intrinsic soil properties, adopting land use practices, and the
topography of the landscape as described by slope length and
steepness. To represent these factors, a set of ten explanatory
variables has been chosen as described in Table 1. Data
distributions are shown in the histograms (Figure 1). In this
study, we classify the dependent variables either as “erosion”
or “nonerosion.” When soil loss measured in the field is
greater than 3 tons per hectare, it is considered as a sig-
nificant erosion in tropical regions [36]; otherwise, the loss is
negligible. A total of 236 data samples had been collected,
within which 118 records were classified as “erosion.”

E =1099[1 - 0.72 exp (—1.27i)]. (1)

OC denotes organic matter.

3. Machine Learning Methods for Soil Erosion
Status Prediction

3.1. Artificial Neural Network (ANN). ANN is a widely
employed machine learning method inspired by biological
neural networks. This method simulates the knowledge
acquisition and reasoning processes occurring the human
brain [37-41]. Given the learning task is to train a function
f: X € RP — Y € R!, where D denotes the number of
input attributes, an ANN model employed to learn the
function f typically includes the input, hidden, and output
layers.

Via a training process, the knowledge learnt by an ANN
model is adapted and stored in the form of matrices of
connection weights. Generally, the parameters of an ANN
model are trained via a process that employs the framework
of error backpropagation [42, 43]. Overall, an ANN-based
soil erosion classification model can be expressed as
follows:
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TaBLE 1: Statistical descriptions of soil erosion influencing factors [20].

Influencing factors Notation Min Max Mean Std.
EI30 (MJ*mm/haxhr) X, 0.000 3008.930 573.642 814.696
Slope (degree) X, 24.830 34.770 29.049 2.324
OC topsoil (%) X3 0.890 2.790 1.747 0.584
pH topsoil Xy 5.130 7.060 5.866 0.581
Topsoil bulk density g/cm’ Xs 1.230 1.580 1.398 0.080
Topsoil porosity (%) Xs 46.340 59.480 52.762 3.016
Topsoil texture (silt fraction %) X5 31.350 37.710 33.902 1.486
Topsoil texture (clay fraction %) Xg 18.610 38.350 29.138 4.807
Topsoil texture (sand fraction %) Xo 29.660 46.510 36.954 4.375
Soil cover (%) X0 1.050 97.640 44276 26.741

Note: EI30 denotes the kinetic rainfall energy which is the product of total storm energy (E) times the maximum 30 min intensity (I30). Storm energy E is
adapted for tropical condition [35]:
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Ficure 1: Data distribution.



FX)=SM[by + Wy, X (falbo+ Wi x X)), (2)

where by and b; denote the two bias vectors of the input and
hidden layers, respectively, f4 represents the activation
function. SM is the softmax activation function [44, 45],
Wior1 is the matrix of connection weights between the input
and hidden layer, and Wy;;, denotes that between the
hidden and the softmax layer.

The softmax activation function used to compute the
class probability is expressed as follows:

exp (z;)
Yo exp(z)

where CN represents the number of output classes.

6(2) = (3)

3.2. Support Vector Machine (SVM). Proposed by [28], the
SVM algorithm was a powerful method for linear binary
classification. The algorithm aims at constructing a hyper-
plane to separate positive and negative samples with the
margin as large as possible. The SVM models are highly
suitable for medium-size datasets and are less susceptible to
overfitting than ANN models [46-48]. Given a training
dataset {x;, y,}r., with input data x, € R* and corre-
sponding class labels y, € {-1,+1}, the SVM algorithm
establishes a decision boundary so that the gap between
classes is as large as possible. Moreover, SVM relies on the
kernel trick to cope with nonlinear classification problems
[49-51]. The formulation of the SVM training process can be
described as the following optimization problem:

N
. 1 1
minimize J, (w,e) = szw + CE Z ei,
k=1

subjected to yk(wT(p (xp) + b) >1-¢, k=1,.,N, ¢>0,
(4)

where w € R, denotes a normal vector to the classification
hyperplane and b € R represents the model bias; e, >0
denotes slack variables; ¢ is a penalty constant; and ¢ (x)
represents a nonlinear mapping from the input space to the
high-dimensional feature space.

By solving the above constrained optimization problem,
the final SVM model used for pattern classification is
expressed as follows [52]:

N4

y(x) = sign(Z .y K (x4 x1) + ), (5)

k=1

where «; is the solution of the dual form of the optimization
described in equation (2), SV represents the number of
support vectors (the number of ;. > 0), and K(.) denotes the
radial basis function (RBF) kernel [52]:

2
K(xpx;) = exp(—M), (6)

20

where o denotes the RBF parameter.
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3.3. Least Squares Support Vector Machine (LSSVM).
LSSVM is a least squares version of the standard SVM within
which the model structure is identified by solving a set of
linear system instead of a nonlinear optimization problem
[53, 54]. Similar to the standard SVM, the LSSVM relies on
kernel functions to deal with complex and nonlinear datasets
[55-57]. The LSSVM formulation for pattern classification
can be stated as follows [58]:

1 1Y
minimize ], (w,e) = EwTw + )/5 Z ei,
k=1

subjected to yk(wT(p(xk) + b) =l-¢, k=1,.,N,
(7)

where w € R" is the normal vector to the classification
hyperplane, and b € R is the bias; e, € R represents error
variables; and y >0 denotes a regularization constant.

By solving the above optimization problem, the LSSVM
classification model can be expressed as follows:

N
y(x) = sign(Z oy K (xp x;) + b>’ (8)

k=1

where a; and b are the solution of the systems stated in
equation (4). K(.) also denotes the RBF kernel function [54].

3.4. Relevance Vector Machine (RVM). RVM, proposed by
[59], is a Bayesian inference-based method that can be
employed for solving classification problems. The functional
form of RVM is similar to that of the support vector ma-
chine. Furthermore, an expectation maximization based
method is utilized to construct the RVM prediction model
[60].

Compared to the aforementioned SVM and LSSVM, the
Bayesian-based RVM requires fewer tuning parameter;
hence, the model construction phase of the RVM can be fast
to accomplish [61, 62]. Furthermore, a RVM model often
results in good predictive performance thanks to its
sparseness property. It is because a RVM model relies on a
small number of relevant vectors extracted from the training
samples to construct the classification model [31].

The RVM-based classification model is presented
compactly as follows [30]:

M
y(5w) =Y 0,9, () +w,=w-9, 9)
m=1

where w = [wy, Wy, ..., w,,] represents a vector of the model
weights and ¢ = [1, ¢, (x,), 9, (x,), ..., ¢, (x,)] denotes a
vector of Gaussian basis functions.

The Gaussian basis function basis is given as follows : ¢,, (x)
2
ool
2xbvt )

where b represents the width of the Gaussian basis function.

(10)
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3.5. Fuzzy k-Nearest Neighbor (FKNN). Proposed by [33],
the FKNN algorithm is an extension of the original
k-nearest neighbor [63]. One major advantage of the
FKNN is that it takes into account the distances among
samples. The FKNN utilizes the concept of fuzzy logic to
express the membership strength of data instances in each
class. The membership degree of a data instance in a class
is computed as a function of distance to its nearest
neighbors [64].

The FKNN classifier computes a fuzzy partition matrix
U= [uy] as follows [64]:

0.51 +<%> x0.49, ifc(x;)=i
u;j(x) = ui(xj) = ,
(%) x 049, ifc(x;)#i
(11)

where #; denotes the number of neighbors of the data in-
stance x; that is actually in the i th class and c(x;) represents
the class label of x;.

Based on the matrix U, the fuzzy memberships of a new
sample x in different classes can be obtained and the class
label having the largest membership degree is selected as the
output for a new input data x. The fuzzy memberships of x
are computed as follows:

O )

u; (x) = (12)

Z'}=1<1/<||x - xj||(2/(m_l))>) ’

where i=1,2,..., C, and j=1,2,., k. Moreover, k is the
number of nearest neighbors. The parameter m is called the
fuzzy strength coefficient.

3.6. Performance Metrics. The classification accuracy rate
(CAR) is employed to measure and compare the perfor-
mance of classifiers. CAR is the percentage of correct
classified cases calculated by the following equation:

N
CAR = — x 100%, (13)
Na

where Nc and Na represent the numbers of correctly clas-
sified instances and the total number of instances,
respectively.

In addition to CAR, true positive rate (TPR) (the per-
centage of positive instances correctly classified), false
positive rate (FPR) (the percentage of negative instances
misclassified), false negative rate (FNR) (the percentage of
positive instances misclassified), and true negative rate
(TNR) (the percentage of negative instances correctly
classified) are also utilized to quantify the performance of
classifier [65]. The formulation for calculating the above four
metrics is as follows:

5
TP
TPR = ————,
TP + FN
FP
FPR= ———,
FP + TN
(14)
FN
FNR=——,
TP + FN
TN
TNR = —,
TN + FP

where TP, TN, FP, and FN represent the numbers of true
positive, true negative, false positive, and false negative,
respectively.

Receiver operating characteristic, a graphical plot that
illustrates the performance of a binary classifier system as its
discrimination threshold is varied, can be applied to sum-
marized TPR and FPR [65]. The area under the ROC curve,
or AUC for short, can be calculated to quantitatively exhibit
the classification performance of a model [66].

3.7. Selection of Model Parameters. All values representing
soil erosion/nonerosion are randomly divided into two
subsets: a training dataset (80%) was used for model es-
tablishment and a test dataset (20%) was used to measure the
model generalization capability. The data were normalized
into the range between 0 and 1 with the Z-score normali-
zation by the following equation:

Xo — Uy

X, = S

(15)
X

where X, and X,, denote the normalized and the original
input variables, respectively, and y, and s, are the mean and
the standard deviation of the variable X,, respectively.

Five machine learning algorithms, ANN, SVM, LSSVM,
RVM, and FKNN, were used to establish the soil erosion
status prediction models. The FKNN model is coded in
MATLAB environment by the authors. The ANN and SVM
models are implemented in MATLAB environment with the
Statistics and Machine Learning Toolbox [67]. The LSSVM
and RVM models are established via the toolboxes devel-
oped by [68, 69], respectively.

A fivefold cross-validation procedure coupled with grid
search was carried out to identify appropriate free param-
eters for model performance. The model training and pre-
diction was repeatedly carried out five times on five mutual
exclusive groups being separated from the whole dataset.
Model selection was based on a set of free parameters that
leads to the highest average CAR. Moreover, the grid search
procedure employed for a model with two free parameters is
described in Algorithm 1.

4. Results and Discussion

4.1. A Preliminary Analysis on the Relevancy of Input Factors
with Mutual Information. A preliminary analysis on feature
relevancy was evaluated prior to model training and pre-
diction phases. This analysis may help to identify irrelevant
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PM= {@&}// Performance matrix
p= Pi@d)

2= Pr(J))

End For
PM(i,j)= CarFol d(f)/5
End For
End For

Establishing Training Subset 1, Training Subset 1
Establishing parameter pools P,, P,

For i=1: NHP1//NHPI =number of available hyperparameters in P,
For j=1: NHP2//NHP2 =number of available hyperparameters in P,
For f=1:5//5 is the number of data folds
Train the prediction model with the training set (80%)

Model prediction with the testing subset (20%)
CarFold(f) = CAR (%) of the testing subset

Finding the best set of p; and p, based on PM

ALGORITHM 1: A typical grid search procedure for parameter selection.

input variables. In this study, the mutual information
method [70] was utilized to compute the independence
relationship of each conditioning factor to the class label
(erosion/nonerosion). It is proper to note that large mutual
information indicates a strong relevancy between the con-
ditioning factor and the class label. The analysis result is
shown in Figure 2 that provides the mutual information
values of all input variables. It is clearly shown that the input
factor Xy (topsoil texture-clay) obtains the highest mutual
information value, followed by the input factor X; (EI30), X
(topsoil texture-sand), X;, (soil cover), and X, (pH topsoil).
The factors X3 (OC top soil), X, (slope), and X5 (topsoil bulk
density) receive comparatively low mutual information
values. Since all mutual information values are not null, the
subsequent model establishment phase should take into
account all of the ten factors. This study shows that mutual
information of slope (factor 2) is lower than pH (factor 4),
which may be explained by change in pH causing physical
properties of the soil to change in the clayey soil rich in Al,
Ca, and Mg [34] leading to the development of soil water
erosion [71].

4.2. Model Calibration. The ANN model requires the se-
lection of the number of neurons in the hidden layers and
the learning rate. In this experiment, we study the number of
neurons within the range of 5 to 30 and the learning rate
parameter within the set of [0.001, 0.01, 0.1, 1]. The model
performances of ANN with different number of neurons are
reported in Figure 3(a). The best ANN model
(CAR=87.92%) corresponds to a model consisting of 15
neurons and the learning rate =0.01.

For the case of SVM, the model performance corre-
sponding to different sets of the penalty parameter ¢ and
the kernel function parameter o is investigated. It is worth
noticing that the parameter ¢ influences the model
complexity and the parameter o affects the smoothness of
the classification boundary of SVM. These two parameters
of an SVM model are allowed to be varied within the range
0f 0.01 and 1000. The SVM model performance with each

Mutual information

1 2 3 4 5 6 7 8 9 10

Influencing factors

FIGURE 2: Preliminary analysis of feature relevancy with mutual
information.

pair of ¢ and o is illustrated in Figure 3(b). The best values
of the penalty parameter ¢ and the kernel function pa-
rameter o are 1000 and 10 (with CAR=90.11%),
respectively.

Figure 3(c) reports the model selection of LSSVM in
which the regularization (y) and the kernel function (o)
parameters are studied. The best LSSVM corresponds to
p=10 and 0=>5 with CAR=288.50%. In the case of FKNN,
the highest model accuracy obtained from the fivefold cross-
validation is accompanied with the value of nearest
neighbors k=3 and the fuzzy strength m=2 (see
Figure 3(d)). In addition, the classification accuracy of RVM
corresponding to different values of the Gaussian bandwidth
(b) is provided in Figure 3(e) in which b=0.015 is the most
suitable value that leads to an average CAR =91.45%.

4.3. Water Erosion Prediction Modeling. It is noted that a
single run of experiment cannot reliably exhibit the capa-
bility of the soil erosion status prediction model due to the
issue of randomness in data selection. Thus, a repeated
subsampling process consisting of 30 runs was carried out.
After 30 runs, the performance metrics of the five employed
models are summarized in Table 2. Figure 4 illustrates the
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FIGURE 3: Model performance analysis: (a) ANN, (b) SVM, (c) LSSVM, (d) FKNN, and (e) RVM.
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TaBLE 2: Performance metrics of five soil erosion prediction models.

Metri FKNN ANN SVM LSSVM RVM
etrics
Mean Std Mean Std Mean Std Mean Std Mean Std
Training phase
CAR (%) 100.00 0.00 92.72 0.95 96.21 0.71 93.02 0.69 92.22 0.86
AUC 1.00 0.85 0.97 0.00 0.97 0.01 0.94 0.01 0.98 0.00
TPR 1.00 0.00 0.90 0.01 0.95 0.01 0.88 0.01 0.90 0.02
FPR 0.00 0.00 0.05 0.01 0.03 0.01 0.02 0.01 0.05 0.01
FNR 0.00 0.00 0.10 0.01 0.05 0.01 0.12 0.01 0.10 0.02
TNR 1.00 0.00 0.95 0.01 0.97 0.01 0.98 0.01 0.95 0.01
Testing phase
CAR (%) 83.19 6.33 88.33 5.62 85.97 7.62 88.61 512 91.94 5.99
AUC 0.91 0.05 0.95 0.03 0.86 0.09 0.91 0.05 0.97 0.03
TPR 0.86 0.09 0.88 0.08 0.89 0.07 0.83 0.09 0.91 0.08
FPR 0.20 0.11 0.11 0.10 0.17 0.13 0.06 0.08 0.07 0.09
FNR 0.14 0.09 0.13 0.08 0.11 0.07 0.17 0.09 0.09 0.08
TNR 0.80 0.11 0.89 0.10 0.83 0.13 0.94 0.08 0.93 0.09
(A) Training phase: AUC = 1.00 (B) Testing phase: AUC = 0.91
1.00 - . . - T -_———— 1.00 - T T — T
4 4
4 4
0.90 ¢ ,’ 0.90 ¢ ,’
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E=| 4 k= 4
g 040} .7 g 040} 7
) ’ ) ’
=1 4 = ’
& 0.30 ¢ ,/ & 0.30 ,/
’ ’
0.20 + . 0.20 .
’ ’
7’ ’
0.10 ¢ ’ 0.10 .
4 4
4 ’
0.00 — 0.00 —
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--- No predictive power
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(@

FiGUre 4: Continued.
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(A) Training phase: AUC = 0.97

(B) Testing phase: AUC = 0.95
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(A) Training phase: AUC = 0.97
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FIGURE 4: Receiver operating characteristic curves of models: (a) FKNN, (b) ANN, (c) SVM, (d) LSSVM, and (e) RVM.

average ROC curves with each model in both training and
testing phases.

The RVM model has obtained the most desirable pre-
diction accuracy in the testing phase (CAR=91.74% and
AUC=0.97) (Table 2). The LSSVM is the second best model
(CAR=88.61% and AUC=0.91); ANN ranks as the third
model (CAR=88.33% and AUC=0.95), followed by SVM
(CAR=85.97% and AUC =0.86) and FKNN (CAR =83.19%
and AUC=0.91). The results also point out exceptionally
high values of TPR (0.90) and TNR (0.94) yielded by RVM.

The box plot shown in Figure 5 summarizes the CAR and
AUC results of the five models obtained from 30 runs.

In addition, the Wilcoxon signed-rank test [72] was
employed to investigate whether the prediction perfor-
mances of each pair of methods were statistically different.
This is a nonparametric hypothesis test used for model
comparison. The significance level of the test (p value) was
set to be 0.05. Based on the threshold p value =0.05, if the p
value of the test was lower than 0.05, we could reject the null
hypothesis that the performances of the two models of
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FiGURE 5: Performance of soil erosion prediction models: (a) CAR and (b) AUC.
Test result p-values
Models FKNN  ANN  SVM  LSSVM RVM Models  FKNN ANN SVM LSSVM RVM
FKNN x - - - - FKNN x 0.0054  0.0823 0.0056 0.0002
ANN ++ x + - - ANN 0.0054 x 0.1725 0.8599 0.0337
SVM ++ - x - - SVM 0.0823 0.1725 x 0.2616 0.0043
LSSVM ++ + + x - LSSVM 00056  0.8599  0.2616 x 0.0125
RVM ++ ++ ++ ++ x RVM 0.0002 0.0337  0.0043 0.0125 x

FIGURE 6: Performance comparison of the five soil erosion prediction models using Wilcoxon signed-rank test.

interest are statistically indifferent. Comparison of each pair
of models is presented in Figure 6. In this table, the symbols
77 =) stand for a significant win, a win, a

« »

+4+,” “+,” “==" and
significant loss, and a loss, respectively. Observably, RVM
attains four significant wins over other benchmark models.
LSSVM, as the second best approach, obtains a significant
win over FKNN, and two wins over ANN and SVM. FKNN
receives three significant losses in the duals with ANN,
LSSVM, and RVM, and one loss in the dual with SVM.
Based on the experimental results supported by the
employed statistical test, it can be stated with confidence that
the RVM is the best suited method for the current dataset.
The outstanding performance of this machine learning
approach can be explained by its advantages including the
ease of model establishment and improved generalization.
The first advantage of the RVM may stem from the fact that
this model only requires one hyperparameter which is the
width of the Gaussian basis function. The second advantage
of the model is based on the model sparseness; the RVM only
selects a small portion of the training samples as crucial data
points to construct the classification model. Therefore, this
advanced machine learning model is less susceptible to noisy
data points than other employed machine learning ap-
proaches. Based on these findings, the RVM is strongly
recommended for soil erosion prediction problems under
this tropical prevailing condition. Broader spectrum of data
collected in wider conditions is required for a more com-
prehensive prediction in the future.
It is proper to note that most conventional erosion
prediction models based on physical or empirical or both

face difficulties in model development and in predictive
accuracy. Moreover, model parameters often need to be
calibrated against observed data, creating problems with
model identification and the physical interpretability of
model parameter [73]. Developing concepts for erosion
processes requires a considerable length of time due to the
natural complexity of the systems where erosion occurs.

Furthermore, the appropriateness of erosion concepts
commonly employed in model structures is still questionable
[74]. Despite the fact that physical processes of detachment,
transport, and deposition in overland flow are well recog-
nized and have been widely incorporated within erosion
models, the experimental procedures to test conditions
when processes are occurring concurrently have only re-
cently been developed [75]. Our initiative of using machine
learning approaches therefore proves to be a promising
alternative for erosion prediction in which it overcomes
obstacles in parameterization, calibration, and validation
processes that are often considered to be the main difficulties
while applying conventional models.

5. Conclusion

This study evaluated performances of five machine learning
algorithms, namely, FKNN, ANN, SVM, LSSVM, and RVM,
using a historical dataset collected in tropical slopping fields
featured by ten soil erosion conditioning factors. Experi-
mental results supported by the Wilcoxon signed-rank test
pointed out that RVM was deemed best suited for the
problem at hand. The RVM model achieved the best
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performance in the testing phase (CAR=91.94% and
AUC=0.97). Four other learning algorithms also demon-
strated good performance as indicated by their CAR values
surpassing 80% and AUC values greater than 0.9. Thus, these
results strongly confirm the efficacy of applying machine
intelligence for solving the problem of interest. Furthermore,
RVM can be a very promising tool to assist landowners and
managers to quickly identify potential soil erosion areas and
develop preventive measures. The reasons for the good
performance of RVM may lie in the fact that this model
utilizes Bayesian inference to obtain parsimonious solutions
the soil erosion prediction problem in this study which is
modeled as a pattern classification task. The employed
Bayesian inference of RVM can help to result in a robust
classification model which features a small number of
support vectors. Therefore, the decision boundary con-
structed by such support vectors has good generalization
property and resilience to noise. These facts explain why
predictive accuracy of RVM is better than those obtained
from other machine learning models.

Future extensions of the current works may include the
following:

(i) Investigation of the capabilities of other advanced
machine learning models (such as tree ensemble,
functional tree, gradient boosted regression tree,
stochastic gradient tree boost, alternating decision
tree, logistic model tree, boosted regression trees,
random forest, and naive Bayes variants) in soil
erosion prediction

(ii) Collection of more data samples to increase the
current data size and therefore enhance the gen-
eralization as well as applicability of the current
data-driven models

(iii) Investigation of other influencing factors of soil
erosion to ameliorate the explicability of the current
study
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