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Data envelopment analysis (DEA) is a powerful tool for evaluating the efficiency of decision-making units for ranking and
comparison purposes and to differentiate efficient and inefficient units. Classic DEA models are ill-suited for the problems where
decision-making units consist of multiple stages with intermediate products and those where inputs and outputs are imprecise or
nondeterministic, which is not uncommon in the real world.+is paper presents a new DEAmodel for evaluating the efficiency of
decision-making units with two-stage structures and triangular intuitionistic fuzzy data.+e paper first introduces two-stage DEA
models, then explains how these models can be modified with intuitionistic fuzzy coefficients, and finally describes how arithmetic
operators for intuitionistic fuzzy numbers can be used for a conversion into crisp two-stage structures. In the end, the proposed
method is used to solve an illustrative numerical example.

1. Introduction

Data envelopment analysis is a standard quantitative tool
with extensive use in efficiency evaluations and performance
analysis [1]. DEA measures the relative efficiency of deci-
sion-making units (DMUs) with similar inputs and outputs
in order to give an estimation of how efficient a unit is in
comparison with other units [2–4].

However, most of the commonly used DEA models are
criticized for treating units as black boxes and ignoring their
internal processes, the efficiency of these processes, and their
relationships [5, 6].+is black box approach causes the analysis
tomiss a lot of valuable information about DMUs and limits its
scope to the fundamental inputs and the ultimate outputs [7].
To address this issue, Färeet al. [8] introduced network data
envelopment analysis (NDEA) and explained its importance
for having a more accurate efficiency analysis of DMUs.

Unlike traditional DEA models, NDEA models have no
fixed formulation and can be developed into different forms

based on the type of process and network structure [9].
NDEA can very well illustrate the relationships and inter-
dependencies between internal processes and accurately
calculate the overall efficiency as well as the efficiency in each
stage [3, 10]. In addition, this method can be used for ac-
curate tracking of the sources of inefficiency in inefficient
units [11]. +e two-stage network structure is one of the
NDEA topologies that has been extensively studied by re-
searchers [12–15].

Typically, data in DEA models are crisp and deter-
ministic, but given the high frequency of uncertainties in
real-world problems and impreciseness in real-world data,
one simply cannot depend on classical mathematics to solve
these problems. +e solution to this issue is to use the gray
dimension of classical logic, which is fuzzy logic, to improve
the results of themodels.+e theory of fuzzy sets, which is an
extended version of crisp sets, was first proposed by Zadeh
[16], originally with the purpose of developing a more ef-
ficient model for use in natural language processing.
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Over the years, many researchers have used fuzzy logic in
DEA models. For example, the works of Kao and Liu [17],
Ramezanzadeh et al. [18], Saati et al. [19], Lertworasirikul
et al. [20], Emrouznejad and Mustafa [21], Mirhedayatian
et al. [22], Guo and Tanaka [23], Ghapanchi et al. [24],
Sadeghi et al. [25], Rostamy-Malkhalifeh andMollaeian [26],
and Houshyar et al. [27] are some examples of studies
conducted on DEA models with fuzzy data.

Following the development of fuzzy logic, Atanassov in
1986 [28] further expanded the theory of fuzzy sets to propose
the intuitionistic fuzzy sets with three attributes: membership
degree, nonmembership degree, and hesitation degree. +us,
intuitionistic fuzzy sets (IFSs) can efficiently model imperfect
information, so to compare with fuzzy sets, IFSs are more
effective in dealing with ambiguity and uncertainty [16, 29].

+e use of fuzzy logic in other fields such as intuitionistic
fuzzy DEA has been considered by researchers. For example,
Arya and Yadav [30] developed intuitionistic fuzzy DEA
models and their duals based on alpha-cuts and proposed an
approach for finding intuitionistic fuzzy inputs and outputs in
order to convert inefficient DMUs to efficient ones in an
intuitionistic fuzzy environment. Puri and Yadav [31] pre-
sented an intuitionistic fuzzy DEA model where inputs and
outputs are triangular intuitionistic fuzzy numbers. Otay et al.
[32] used intuitionistic fuzzy sets to evaluate the efficiency of
health and treatment centers in Istanbul, Turkey. Hajiagha et al.
[33] presented weighted aggregation models for inputs and
outputs with intuitionistic fuzzy data. Arya and Yadav [34]
proposed amodel called SBM,which is a nonradial DEAmodel
for evaluating the efficiency of DMUs where inputs and
outputs have intuitionistic fuzzy data. As the above review
shows, despite many studies in this area, there has been no
study on two-stage DEA in intuitionistic fuzzy environment.
+is study aims to expand the two-stage model of Chen et al.
[35] for the intuitionistic fuzzy environment.

+e two-stagemodel of Kao andHwang [36] is an opposite
model to consider the relationships between subprocesses and
the overall process, and this model is certainly more logical
than its precedents. However, this model cannot be extended to
work under variable returns to scale (VRS) conditions, as it
becomes nonlinear in these conditions. Chen et al. [35]
modified this model into a similar model that is additive and
can be used under both constant returns to scale (CRS) and
VRS conditions. Also, unlike themodel of Kao andHwang [36]
which cannot deal with intermediate variables with dual input/
output roles, the model of Chen et al. [35] can properly
consider both roles of these variables. +erefore, this paper
presents a new model, based on the two-stage model of Chen
et al., for evaluating the efficiency of two-stage DMUs with
intuitionistic fuzzy numbers under VRS conditions.

+erefore, themotivation of this present study is to develop
two-stage DEA models in intuitionistic fuzzy environment
with the variable returns to scale assumption based on theChen
et al. [35] model. Linearization of the nonlinear two-stage DEA
models of intuitionistic fuzzy numbers that have computa-
tional complexity overcomes the limitations in using of these
models in intuitionistic fuzzy environments. Another aim of
this study is to linearize the proposed model with the expected
value of intuitionistic fuzzy numbers.

2. Preliminary

2.1. IntuitionisticFuzzySet. Intuitionistic fuzzy set (IFS) is one
of the generalizations from the fuzzy set theory [16]. Out of
several higher-order fuzzy sets, IFS has been found to be more
capable of dealing with vagueness. First introduced by Ata-
nassov [37], IFS can be viewed as an alternative approach to
conventional fuzzy set in dealing with cases with insufficient
information. Fuzzy sets only consider the degree of acceptance,
whereas IFS is characterized by both a membership function
and a nonmembership function so that the sum of both values
is less than one [28]. IFSs have been used across different fields
of science, including the studies by Atanassov [28, 38–40],
Szmidt and Kacprzyk [29], Buhaescu [41], Ban [42],
Deschrijver and Kerre [43], and Stoyanova [44].

Definition 1 (see [28]). Assume X is a reference set. In this
case, set 􏽥A

I which is a subset ofX is Atanassov’s intuitionistic
fuzzy set defined as follows:

􏽥A
I

� ≺x, μ􏽥A
I (x), υ􏽥A

I (x)≻,∀x ∈ X􏼚 􏼛. (1)

Such that, μ􏽥A
I (x), υ􏽥A

I (x) are membership function and
nonmembership function of 􏽥A

I, respectively, which are
defined as μ􏽥A

I (x): X⟶ [0, 1], υ􏽥A
I (x): X⟶ [0, 1] and

satisfy 0≤ μ􏽥A
I (x) + υ􏽥A

I (x)≤ 1. In addition, for each x ∈ X,
intuitionistic index or the hesitancy degree of x, πx is defined
as πx � 1 − μ􏽥A

I (x) − υ􏽥A
I (x).

2.1.1. Intuitionistic Fuzzy Number

Definition 2 (see [32]). Let 􏽥A
I be an IFS in X; then, 􏽥A

I is said
to be an intuitionistic fuzzy number (IFN), if

(1) it is normal, i.e., ∀x∘ ∈ X: μ􏽥A
I (x∘) � 1, υ􏽥A

I (x∘) � 0
(2) μ􏽥A

I (x)is convex, i.e., μ􏽥A
I (λx1 + (1 − λ)x2)≥

min μ􏽥A
I (x1), μ􏽥A

I (x2)􏼚 􏼛,∀x1, x2 ∈ X, λ ∈ [0, 1]

(3) υ􏽥A
I (x)is concave, i.e., υ􏽥A

I (λx1 + (1 − λ)x2)≤
max υ􏽥A

I (x1), υ􏽥A
I (x2)􏼚 􏼛,∀x1, x2 ∈ X, λ ∈ [0, 1]

Definition 3. An IFN can be named
≺x, μ􏽥A

I (x), υ􏽥A
I (x)≻ � (a1, a2, a3, a4; b1, b2, b3, b4), such that

degrees of membership μ􏽥A
I (x) and nonmembership υ􏽥A

I (x)

are as follows:

μ􏽥A
I (x) �

fA(x), a
1 ≤x< a

2
,

1, a
2 ≤x≤ a

3
,

gA(x), a
3 <x≤ a

4
,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

υ􏽥A
I (x) �

hA(x), b
1 ≤x< b

2
,

0, b
2 ≤x≤ b

3
,

kA(x), b
3 ≤x< b

4
,

1, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)
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where fA, kAare monotonically increasing functions and
gA, hA are monotonically decreasing functions.

2.1.2. Triangular Intuitionistic Fuzzy Number. Triangular
intuitionistic fuzzy number (TIFN) is a useful tool in
expressing ill-known quantities [45].

Definition 4 (see [13]). An IFN is said to be a TIFN if its
membership function (μ􏽥A

I (x)) and its nonmembership
function (υ􏽥A

I (x)) are as follows:

μ􏽥A
I (x) �

x − a
1

a
2

− a
1, a

1 <x≤ a
2
,

1, x � a
2
,

x − a
3

a
2

− a
3, a

2 ≤x< a
3
,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υ􏽥A
I (x) �

x − a
2

a
1′

− a
2
, a

1′ ≤ x≤ a
2
,

0, x � a
2
,

x − a
2

a
3′

− a
3
, a

2 ≤x≤ a
3′

,

1, otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where a1′ ≤ a1 ≤ a2 ≤ a3 ≤ a3′ .
+is TIFN is shown in the form of 􏽥A

I
�

(a1, a2, a3; a1′ , a2, a3′).

2.1.3. Arithmetic Operations on Intuitionistic Fuzzy
Numbers. Let 􏽥A

I
� (a1, a2, a3; a1′ , a2, a3′) and 􏽥B

I
�

(b1, b2, b3; b1′ , b2, b3′) be TIFNs, then the following rela-
tionships hold:

(i)The addition of 􏽥A
I and 􏽥B

I is 􏽥A
I⊕􏽥BI

� a
1

+ b
1
, a

2
+ b

2
, a

3
+ b

3
; a

1′
+ b

1′
, a

2
+ b

2
, a

3′
+ b

3′
􏼒 􏼓,

(ii)The product of 􏽥A
I and 􏽥B

I is 􏽥A
I ⊗ 􏽥B

I ≈ a
1
b
1
, a

2
b
2
, a

3
b
3
; a

1′
b
1′

, a
2
b
2
, a

3′
b
3′

􏼒 􏼓,

(iii) For every k ∈ R; k􏽥A
I

�

ka
1
, ka

2
, ka

3
; ka

1′
, ka

2
, ka

3′
􏼒 􏼓, if k> 0,

ka
3
, ka

2
, ka

1
; ka

3′
, ka

2
, ka

1′
􏼒 􏼓, if k< 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

2.1.4. Expected Values of Intuitionistic Fuzzy Numbers and
2eir Characteristics

Definition 5 (see [46]). Let 􏽥A
I

� (a1, a2, a3, a4; b1, b2, b3, b4)

be an IFN, then the expected interval is defined, as follows:
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EI 􏽥A
I

􏼒 􏼓 � EL
􏽥A

I
􏼒 􏼓, ER

􏽥A
I

􏼒 􏼓􏼔 􏼕,

whereEL
􏽥A

I
􏼒 􏼓 �

b
1

+ a
2

2
+
1
2

􏽚
b2

b1
hA(x) −

1
2

􏽚
a2

a1
fA(x)dx,

andER
􏽥A

I
􏼒 􏼓 �

a
3

+ b
4

2
+
1
2

􏽚
a4

a3
gA(x) −

1
2

􏽚
b4

b3
kA(x)dx.

(5)

Accordingly, the expected value based on this IFN is
defined as

EV 􏽥A
I

􏼒 􏼓 �
EL

􏽥A
I

􏼒 􏼓 + ER
􏽥A

I
􏼒 􏼓􏼒 􏼓

2
.

(6)

Proposition 1. If 􏽥A
I

� (a1, a2, a3; a1′ , a2, a3′) be a TIFN,
then

(i) EI 􏽥A
I

􏼒 􏼓 �
a
1′

+ 2a
2

+ a
1

4
,
a
3

+ 2a
2

+ a
3′

4
⎡⎣ ⎤⎦, (7)

(ii) EV 􏽥A
I

􏼒 􏼓 �
a
1′

+ a
1

+ 4a
2

+ a
3

+ a
3′

8
. (8)

Proof. According to Definitions 3–5,

EL
􏽥A

I
􏼒 􏼓 �

a
1′

+ a
2

2
+
1
2

􏽚
a2

a1′

x − a
2

a
1′

− a
2

−
1
2

􏽚
a2

a1

x − a
1

a
2

− a
1 dx.

(9)

Firstly,

􏽚
a2

a1′

x − a
2

a
1′

− a
2
dx �

1

a
1′

− a
2

x
2

2
− a

2
x􏼠 􏼡 �

1

a
1′

− a
2

a
2

􏼐 􏼑
2

2
− a

2
􏼐 􏼑

2
−

a
1′

􏼒 􏼓
2

2
+ a

1′
a
2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

1

a
1′

− a
2

−
a
2

􏼐 􏼑
2

2
−

a
1′

􏼒 􏼓
2

2
+ a

1′
a
2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
1

a
1′

− a
2

−
1
2

a
1′

− a
2

􏼒 􏼓
2

􏼠 􏼡 � −
1
2

a
1′

− a
2

􏼒 􏼓.

(10)

Secondly,

􏽚
a2

a1

x − a
1

a
2

− a
1 dx �

1
a
2

− a
1

x
2

2
− a

1
x􏼠 􏼡 �

1
a
2

− a
1

a
2

􏼐 􏼑
2

2
− a

1
a
2

−
a
1

􏼐 􏼑
2

2
+ a

1
􏼐 􏼑

2⎛⎝ ⎞⎠ �
1

a
2

− a
1

1
2

a
2

− a
1

􏼐 􏼑
2

􏼒 􏼓 �
1
2

a
2

− a
1

􏼐 􏼑.

(11)

So,

EL
􏽥A

I
􏼒 􏼓 �

a
1′

+ a
2

2
−
1
4

a
1′

− a
2

􏼒 􏼓 −
1
4

a
2

− a
1

􏼐 􏼑 �
a
1′

+ 2a
2

+ a
1

4
. (12)

With this process, ER(􏽥A
I
) � ((a3 + 2a2 + a3′)/4) and

EV(􏽥A
I
)are proved too. □

Remark 1. +e expected value is a linear operator, meaning
that for any two IFNs such as 􏽥A

I and 􏽥B
I, the following re-

lationship holds:

EV 􏽥A
I

+ 􏽥B
I

􏼒 􏼓 � EV 􏽥A
I

􏼒 􏼓 + EV 􏽥B
I

􏼒 􏼓. (13)

2.1.5. Accuracy Function of TIFNs

Definition 6. (see [47]). Let 􏽥A
I

� (a1, a2, a3; a1′ , a2, a3′) be a
TIFN. +e score function for the membership function
μ􏽥A

I (x) is denoted by S(μ􏽥A
I )and is defined by

S(μ􏽥A
I ) � ((a1 + 2a2 + a3)/4). +e score function for the

nonmembership function υ􏽥A
I (x) is denoted by S(v􏽥A

I )and is
defined by S(v􏽥A

I ) � (a1′ + 2a2 + a3′/4). +e accuracy func-
tion of 􏽥A

I is denoted by f(􏽥A
I
) and defined by

f 􏽥A
I

􏼒 􏼓 �
S μ􏽥A

I􏼒 􏼓 + S v􏽥A
I􏼒 􏼓

2

�
a
1

+ 2a
2

+ a
3

􏼐 􏼑 + a
1′

+ 2a
2

+ a
3′

􏼒 􏼓

8
.

(14)

2.2. Network Data Envelopment Analysis and Two-Stage
Structures. DEA is one of the most effective methods for
efficiency evaluation and comparison of decision-making
units. +e development of the DEA literature has led to the
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emergence of several different models for efficiency as-
sessment, and one of which is the DEA with a network
structure. In these models, the production process consists
of multiple stages, which are linked together and to their
inputs, intermediate products, and outputs via a set of
processes. +e two-stage structure was first introduced by
Färe [9] and later expanded in other works [8, 48, 49]. Färe
and Grosskopf also [49] formulated the relationships be-
tween various production processes in the framework of
NDEA, where the hierarchical structure of activities is
replaced with a network structure [11]. At first, these
structures were designed so that the outputs of the first stage
were the only inputs of the second stage. However, later, the
two-stage network structures were expanded to allow the
second stage to take other inputs on top of the outputs of the
first stage. Efficiency evaluation of two-stage systems is one
of the interesting topics in the field of DEA.

3. Materials and Methods

3.1. Development of the Two-Stage DEA Model in the Intui-
tionistic Fuzzy Environment. As mentioned, the present
study aims to expand the model of Chen et al. [35] for an
intuitionistic fuzzy environment. +erefore, first, the model
of Chen et al. should be briefly introduced. Suppose there are
n numbers of two-stage decision-making units of the form
DMUj, (j � 1, . . . , n) that need to be evaluated. In the first
stage, each DMUj takes m inputs of the form
Xij, (i � 1, . . . , m) to produce D outputs of the form
Zdj, (d � 1, . . . , D), which are considered intermediate
products and will be the inputs of the second stage. +e
second stage produces s outputs in the form of
Yrj, (r � 1, . . . , s). According to the model of Chen et al.
[35], the overall efficiency of this unit under the VRS as-
sumption is as follows:

E∘ � max􏽘
s

r�1
μryrj∘ + u

1
+ 􏽘

D

d�1
πdzdj∘ + u

2

s.t. 􏽘
D

d�1
πdzdj − 􏽘

m

i�1
ωixij + u

1 ≤ 0, j � 1, 2, . . . , n,

􏽘

s

r�1
μryrj − 􏽘

D

d�1
πdzdj + u

2 ≤ 0, j � 1, 2, . . . , n,

􏽘

m

i�1
ωixij∘ + 􏽘

D

d�1
πdzdj∘ � 1, j � 1, 2, .., n,

πd, μr,ωi ≥ 0, d � 1, . . . , D; r � 1, . . . , s; i � 1, . . . , m,

u
1
, u

2 free in sign,

(15)

where u1, u2 are unrestricted in sign, and their sign defines
the returns to scale, as follows:

(A) If u1, u2 < 0, then returns to scale is increasing
(B) If u1, u2 > 0, then returns to scale is decreasing

(C) If u1, u2 � 0, then returns to scale is constant

If the variables are represented by IFNs, then model (15)
can be rewritten, as follows:

􏽥E
I

∘ � max􏽘
s

r�1
􏽥μI

r ⊗ 􏽥y
I
rj∘ + u

1⊕􏽘
D

d�1
􏽥πI

d ⊗ 􏽥z
I
dj∘ + u

2

s.t. 􏽘
D

d�1
􏽥πI

d ⊗ 􏽥z
I
djΘ􏽘

m

i�1
􏽥ωI

i ⊗ 􏽥x
I
ij + u

1 ≤ 􏽥0I
, j � 1, 2, . . . , n,

􏽘

s

r�1
􏽥μI

r ⊗ 􏽥y
I
rjΘ􏽘

D

d�1
􏽥πI

d ⊗ 􏽥z
I
dj + u

2 ≤ 􏽥0I
, j � 1, 2, . . . , n,

􏽘

m

i�1
􏽥ωI

i ⊗ 􏽥x
I
ij∘⊕􏽘

D

d�1
􏽥πI

d ⊗ 􏽥z
I
dj∘ �

􏽥1I
, j � 1, 2, . . . , n,

􏽥πI
d, 􏽥μI

r, 􏽥ωI
i ≥ ε> 0, d � 1, . . . , D; r � 1, . . . , s; i � 1, . . . , m,

u
1
, u

2 free in sign.

(16)
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Here,ε is a small number that is used to prevent giving a
weight of zero to the undesirable factors of the DMU under
evaluation.

+e aim of this study is to expand the above two-stage
DEA model with TIFNs. +erefore, model (16) is rewritten
based on TIFNs and the method of Puri and Yadav [31] to
obtain

􏽥E
I

∘ � max􏽘
s

r�1
μ1r , μ2r , μ3r ; μ1′r , μ2r , μ3′r􏼒 􏼓⊗ y

1
rj ∘ , y

2
rj ∘ , y

3
rj ∘ ; y

1′
rj ∘ , y

2
rj ∘ , y

3′
rj ∘􏼒 􏼓 + u

1⊕􏽘
D

d�1
π1

d, π2
d, π3

d; π1′
d , π2

d, π3′
d􏼒 􏼓

⊗ z
1
dj ∘ , z

2
dj ∘ , z

3
dj ∘ ; z

1′
dj ∘ , z

2
dj ∘ , z

3′
dj ∘􏼒 􏼓 + u

2

s.t. 􏽘
D

d�1
π1d, π2d, π3d; π1′d , π2d, π3′d􏼒 􏼓⊗ z

1
dj, z

2
dj, z

3
dj; z

1′
dj, z

2
dj, z

3′
dj􏼒 􏼓Θ􏽘

m

i�1
ω1

i ,ω2
i ,ω3

i ;ω1′
i ,ω2

i ,ω3′
i􏼒 􏼓

⊗ x
1
ij, x

2
ij, x

3
ij; x

1′
ij , x

2
ij, x

3′
ij􏼒 􏼓 + u

1 ≤ (0, 0, 0; 0, 0, 0), j � 1, 2, . . . , n,

􏽘

s

r�1
μ1r , μ2r , μ3r ; μ1′r , μ2r , μ3′r􏼒 􏼓⊗ y

1
rj, y

2
rj, y

3
rj; y

1′
rj, y

2
rj, y

3′
rj􏼒 􏼓Θ􏽘

D

d�1
π1

d, π2
d, π3

d; π1′d , π2
d, π3′

d􏼒 􏼓

⊗ z
1
dj, z

2
dj, z

3
dj; z

1′
dj, z

2
dj, z

3′
dj􏼒 􏼓 + u

2 ≤ (0, 0, 0; 0, 0, 0), j � 1, 2, . . . , n,

􏽘

D

d�1
π1d, π2d, π3d; π1′

d , π2d, π3′d􏼒 􏼓⊗ z
1
dj, z

2
dj, z

3
dj; z

1′
dj, z

2
dj, z

3′
dj􏼒 􏼓 + u

2 ≤ (0, 0, 0; 0, 0, 0), j � 1, 2, . . . , n,

􏽘

D

d�1
π1d, π2d, π3d; π1′

d , π2d, π3′d􏼒 􏼓⊗ z
1
dj, z

2
dj, z

3
dj; z

1′
dj, z

2
dj, z

3′
dj􏼒 􏼓 + u

2 ≤ (0, 0, 0; 0, 0, 0), j � 1, 2, . . . , n,

􏽘

D

d�1
π1d, π2d, π3d; π1′

d , π2d, π3′d􏼒 􏼓⊗ z
1
dj, z

2
dj, z

3
dj; z

1′
dj, z

2
dj, z

3′
dj􏼒 􏼓 + u

2 ≤ (0, 0, 0; 0, 0, 0), j � 1, 2, . . . , n,

􏽘

D

d�1
π1d, π2d, π3d; π1′

d , π2d, π3′d􏼒 􏼓⊗ z
1
dj ∘ , z

2
dj ∘ , z

3
dj ∘ ; z

1′
dj ∘ , z

2
dj ∘ , z

3′
dj ∘􏼒 􏼓 � (1, 1, 1; 1, 1, 1), j � 1, 2, . . . , n,

π1d, π2d, π3d; π1′d , π2d, π3′d􏼒 􏼓≥ ε> 0, d � 1, . . . , D,

μ1r , μ2r , μ3r ; μ1′r , μ2r , μ3′r􏼒 􏼓≥ ε> 0, r � 1, . . . , s,

ω1
i ,ω2

i ,ω3
i ;ω1′

i ,ω2
i ,ω3′

i􏼒 􏼓≥ ε> 0, i � 1, . . . , m,

u
1
, u

2 free in sign.

(17)
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Using the arithmetic operations described in relations
(4) for TIFNs, model (17) is rewritten into the following
form:

􏽥E
I

∘ � max 􏽘
s

r�1
μ1ry

1
rj ∘ + 􏽘

D

d�1
π1dz

1
dj ∘ , 􏽘

s

r�1
μ2ry

2
rj ∘ + 􏽘

D

d�1
π2dz

2
dj ∘ , 􏽘

s

r�1
μ3ry

3
rj ∘ + 􏽘

D

d�1
π3dz

3
dj ∘ ; 􏽘

s

r�1
μ1′r y

1′
rj ∘ + 􏽘

D

d�1
π1′d z

1′
dj ∘ , 􏽘

s

r�1
μ2ry

2
rj ∘

⎛⎝

+ 􏽘

D

d�1
π2dz

2
dj ∘ , 􏽘

s

r�1
μ3′r y

3′
rj ∘ + 􏽘

D

d�1
π3′d z

3′
dj ∘

⎞⎠ + u
1

+ u
2

s.t. 􏽘
D

d�1
π1

dz
1
dj − 􏽘

m

i�1
ω3

i x
3
ij, 􏽘

D

d�1
π2dz

2
dj − 􏽘

m

i�1
ω2

i x
2
ij, 􏽘

D

d�1
π3

dz
3
dj − 􏽘

m

i�1
ω1

i x
1
ij; 􏽘

D

d�1
π1′d z

1′
dj − 􏽘

m

i�1
ω3′

i x
3′
ij , 􏽘

D

d�1
π2dz

2
dj

⎛⎝

− 􏽘
m

i�1
ω2

i x
2
ij, 􏽘

D

d�1
π3′

d z
3′
dj − 􏽘

m

i�1
ω1′

i x
1′
ij

⎞⎠ + u
1 ≤ (0, 0, 0; 0, 0, 0), j � 1, 2, . . . , n,

􏽘

s

r�1
μ1ry

1
rj − 􏽘

D

d�1
π1

dz
1
dj, 􏽘

s

r�1
μ2ry

2
rj − 􏽘

D

d�1
π2

dz
2
dj, 􏽘

s

r�1
μ3ry

3
rj − 􏽘

D

d�1
π3dz

3
dj; 􏽘

s

r�1
μ1′r y

1′
rj − 􏽘

D

d�1
π1′d z

1′
dj, 􏽘

s

r�1
μ2ry

2
rj

⎛⎝

− 􏽘
D

d�1
π2dz

2
dj, 􏽘

s

r�1
μ3′r y

3′
rj − 􏽘

D

d�1
π3′

d z
3′
dj

⎞⎠ + u
2 ≤ (0, 0, 0; 0, 0, 0), j � 1, 2, . . . , n,

􏽘

m

i�1
ω1

i x
1
ij ∘ + 􏽘

D

d�1
π1dz

1
dj ∘ , 􏽘

m

i�1
ω2

i x
2
ij ∘ + 􏽘

D

d�1
π2

dz
2
dj ∘ , 􏽘

m

i�1
ω3

i x
3
ij ∘ + 􏽘

D

d�1
π3

dz
3
dj ∘ ; 􏽘

m

i�1
ω1′

i x
1′
ij ∘ + 􏽘

D

d�1
π1′

d z
1′
dj ∘ , 􏽘

m

i�1
ω2

i x
2
ij ∘

⎛⎝

+ 􏽘
D

d�1
π2dz

2
dj ∘ , 􏽘

m

i�1
ω3′

i x
3′
ij ∘ + 􏽘

D

d�1
π3′

d z
3′
dj ∘

⎞⎠ � (1, 1, 1; 1, 1, 1), j � 1, 2, . . . , n,

π1d, π2d, π3d; π1′
d , π2d, π3′d􏼒 􏼓≥ ε> 0, d � 1, . . . , D,

μ1r , μ2r , μ3r ; μ1′r , μ2r , μ3′r􏼒 􏼓≥ ε> 0, r � 1, . . . , s,

ω1
i ,ω2

i ,ω3
i ;ω1′

i ,ω2
i ,ω3′

i􏼒 􏼓≥ ε> 0, i � 1, . . . , m,

u
1
, u

2 free in sign.

(18)

As the coefficients of model (18) show, this model is
represented by IFNs with 6 components. +erefore, this model
is converted to a linear crisp (nonfuzzy) model based on the

expected value of IFNs. After determining the expected value
based on the objective function and the constraints of model
(18), model (19) will be obtained, as follows:
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EV 􏽥E
I

∘􏼒 􏼓 � maxEV 􏽘

s

r�1
μ1ry

1
rj ∘ + 􏽘

D

d�1
π1dz

1
dj ∘ , 􏽘

s

r�1
μ2ry

2
rj ∘ + 􏽘

D

d�1
π2dz

2
dj ∘ , 􏽘

s

r�1
μ3ry

3
rj ∘ + 􏽘

D

d�1
π3dz

3
dj ∘ ; 􏽘

s

r�1
μ1′r y

1′
rj ∘

⎛⎝⎛⎝

+ 􏽘
D

d�1
π1′

d z
1′
dj ∘ , 􏽘

s

r�1
μ2ry

2
rj ∘ + 􏽘

D

d�1
π2dz

2
dj ∘ , 􏽘

s

r�1
μ3′r y

3′
rj ∘ + 􏽘

D

d�1
π3′d z

3′
dj ∘

⎞⎠ + u
1

+ u
2⎞⎠,

s.t. EV 􏽘
D

d�1
π1

dz
1
dj − 􏽘

m

i�1
ω3

i x
3
ij, 􏽘

D

d�1
π2dz

2
dj − 􏽘

m

i�1
ω2

i x
2
ij, 􏽘

D

d�1
π3

dz
3
dj − 􏽘

m

i�1
ω1

i x
1
ij; 􏽘

D

d�1
π1′d z

1′
dj − 􏽘

m

i�1
ω3′

i x
3′
ij , 􏽘

D

d�1
π2dz

2
dj

⎛⎝⎛⎝

− 􏽘
m

i�1
ω2

i x
2
ij, 􏽘

D

d�1
π3′

d z
3′
dj − 􏽘

m

i�1
ω1′

i x
1′
ij

⎞⎠ + u
1⎞⎠≤EV((0, 0, 0; 0, 0, 0)), j � 1, 2, . . . , n,

EV 􏽘
s

r�1
μ1ry

1
rj − 􏽘

D

d�1
π1

dz
1
dj, 􏽘

s

r�1
μ2ry

2
rj − 􏽘

D

d�1
π2

dz
2
dj, 􏽘

s

r�1
μ3ry

3
rj − 􏽘

D

d�1
π3dz

3
dj; 􏽘

s

r�1
μ1′r y

1′
rj − 􏽘

D

d�1
π1′d z

1′
dj, 􏽘

s

r�1
μ2ry

2
rj

⎛⎝⎛⎝

− 􏽘
D

d�1
π2dz

2
dj, 􏽘

s

r�1
μ3′r y

3′
rj − 􏽘

D

d�1
π3′

d z
3′
dj

⎞⎠ + u
2⎞⎠≤EV((0, 0, 0; 0, 0, 0)), j � 1, 2, . . . , n,

EV 􏽘
m

i�1
ω1

i x
1
ij ∘ + 􏽘

D

d�1
π1dz

1
dj ∘ , 􏽘

m

i�1
ω2

i x
2
ij ∘ + 􏽘

D

d�1
π2

dz
2
dj ∘ , 􏽘

m

i�1
ω3

i x
3
ij ∘ + 􏽘

D

d�1
π3

dz
3
dj ∘ ; 􏽘

m

i�1
ω1′

i x
1′
ij ∘ + 􏽘

D

d�1
π1′

d z
1′
dj ∘ , 􏽘

m

i�1
ω2

i x
2
ij ∘

⎛⎝⎛⎝

+ 􏽘

D

d�1
π2dz

2
dj ∘ , 􏽘

m

i�1
ω3′

i x
3′
ij ∘ + 􏽘

D

d�1
π3′

d z
3′
dj ∘

⎞⎠⎞⎠ � EV((1, 1, 1; 1, 1, 1)), j � 1, 2, . . . , n,

π3′d ≥ π
3
d ≥ π

2
d ≥ π

1
d ≥ π

1′
d ≥ ε> 0, d � 1, . . . , D,

μ3′r ≥ μ
3
r ≥ μ

2
r ≥ μ

1
r ≥ μ

1′
r ≥ ε> 0, r � 1, . . . , s,

ω3′
i ≥ω

3
i ≥ω

2
i ≥ω

1
i ≥ω

1′
i ≥ ε> 0, i � 1, . . . , m,

u
1
, u

2 free in sign.

(19)
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Now, according to equation (8) for the expected value of
TIFNs and Remark 1, model (19) can be rewritten into a
linear programming model as follows:

E
I
∘ � max 􏽘

s

r�1
μ1′r y

1′
rj ∘ + μ1ry

1
rj ∘ + 4μ2ry

2
rj ∘ + μ3ry

3
rj ∘ + μ3′r y

3′
rj ∘􏼒 􏼓⎛⎝

+ 􏽘

D

d�1
π1′d z

1′
dj ∘ + π1

dz
1
dj ∘ + 4π2dz

2
dj ∘ + π3dz

3
dj ∘ + π3′d z

3′
dj ∘􏼒 􏼓⎞⎠ + 8u

1
+ 8u

2

s.t. 􏽘
D

d�1
π1′

d z
1′
dj + π1

dz
1
dj + 4π2dz

2
dj + π3dz

3
dj + π3′

d z
3′
dj􏼒 􏼓 − 􏽘

m

i�1
ω1′

i x
1′
ij + ω1

i x
1
ij + 4ω2

i x
2
ij + ω3

i x
3
ij + ω3′

i x
3′
ij􏼒 􏼓≤ − 8u

1
, , j � 1, 2, . . . , n,

􏽘

s

r�1
μ1′r y

1′
rj + μ1ry

1
rj + 4μ2ry

2
rj + μ3ry

3
rj + μ3′r y

3′
rj􏼒 􏼓 − 􏽘

D

d�1
π1′

d z
1′
dj + π1

dz
1
dj + 4π2dz

2
dj + π3

dz
3
dj + π3′

d z
3′
dj􏼒 􏼓≤ 8u

2
, j � 1, 2, . . . , n,

􏽘

m

i�1
ω1′

i x
1′
ij ∘ + ω1

i x
1
ij ∘ + 4ω2

i x
2
ij ∘ + ω3

i x
3
ij ∘ + ω3′

i x
3′
ij ∘􏼒 􏼓 + 􏽘

D

d�1
π1′

d z
1′
dj ∘ + π1

dz
1
dj ∘ + 4π2dz

2
dj ∘ + π3

dz
3
dj ∘ + π3′

d z
3′
dj ∘􏼒 􏼓 � 8, j � 1, 2, . . . , n,

π3′
d ≥ π

3
d ≥ π

2
d ≥ π

1
d ≥ π

1′
d ≥ ε> 0, d � 1, . . . , D,

μ3′r ≥ μ
3
r ≥ μ

2
r ≥ μ

1
r ≥ μ

1′
r ≥ ε> 0, r � 1, . . . , s,

ω3′
i ≥ω

3
i ≥ω

2
i ≥ω

1
i ≥ω

1′
i ≥ ε> 0, i � 1, . . . , m,

u
1
, u

2 free in sign.

(20)

So, solving model (20) gives the overall efficiency EI
∘ of

each decision maker based on TIFNs.
In the following, the method of efficiency assessment of

each stage of the two-stage structure based on TIFNs is
explained.

+e first case: if the efficiency of the first stage has a
higher priority, according to model (15) of Chen et al. [35],
the efficiency assessment model for the first stage will be as
follows:

E
1∗
∘ � max 􏽘

D

d�1
πdzdj∘ + u

1
,

s.t. 􏽘
D

d�1
πdzdj + u

1
− 􏽘

m

i�1
ωixij ≤ 0, j � 1, 2, . . . , n,

􏽘

s

r�1
μryrj + u

2
− 􏽘

D

d�1
πdzdj ≤ 0, j � 1, 2, . . . , n,

1 − E∘( 􏼁 􏽘

D

d�1
πdzdj∘ + 􏽘

s

r�1
μryrj∘ + u

1
+ u

2
� E∘, j � 1, 2, . . . , n,

􏽘

m

i�1
ωixij∘ � 1, j � 1, 2, . . . , n,

πd, μr,ωi ≥ 0, d � 1, . . . , D; r � 1, . . . , s; i � 1, . . . , m,

u
1
, u

2 free in sign,

(21)
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whereE∘ is the optimal value of model (15). Using the same procedure followed for assessing overall
efficiency (model (18)), the efficiency of the first stage based
on TIFNs is obtained, in the following:

E
1∗
∘ � max 􏽘

D

d�1
π1′

d z
1′
dj ∘ + π1

dz
1
dj ∘ + 4π2dz

2
dj ∘ + π3

dz
3
dj ∘ + π3′

d z
3′
dj ∘􏼒 􏼓 + 8u

1
,

s.t. 􏽘
D

d�1
π1′

d z
1′
dj + π1

dz
1
dj + 4π2dz

2
dj + π3

dz
3
dj + π3′

d z
3′
dj􏼒 􏼓 − 􏽘

m

i�1
ω1′

i x
1′
ij + ω1

i x
1
ij + 4ω2

i x
2
ij + ω3

i x
3
ij + ω3′

i x
3′
ij􏼒 􏼓 + 8u

1 ≤ 0, j � 1, 2, . . . , n,

􏽘

s

r�1
μ1′r y

1′
rj + μ1ry

1
rj + 4μ2ry

2
rj + μ3ry

3
rj + μ3′r y

3′
rj􏼒 􏼓 − 􏽘

D

d�1
π1′

d z
1′
dj + π1

dz
1
dj + 4π2dz

2
dj + π3

dz
3
dj + π3′

d z
3′
dj􏼒 􏼓 + 8u

2 ≤ 0, j � 1, 2, . . . , n,

1 − E
I
∘􏼐 􏼑 􏽘

D

d�1
π1′d z

1′
dj ∘ + π1

dz
1
dj ∘ + 4π2dz

2
dj ∘ + π3dz

3
dj ∘ + π3′

d z
3′
dj ∘􏼒 􏼓⎛⎝ ⎞⎠ + 􏽘

s

r�1
μ1′r y

1′
rj ∘ + μ1ry

1
rj ∘ + 4μ2ry

2
rj ∘ + μ3ry

3
rj ∘ + μ3′r y

3′
rj ∘􏼒 􏼓

+8u
1

+ 8u
2

� 8E
I
∘ , j � 1, 2, . . . , n,

􏽘

m

i�1
ω1′

i x
1′
ij ∘ + ω1

i x
1
ij ∘ + 4ω2

i x
2
ij ∘ + ω3

i x
3
ij ∘ + ω3′

i x
3′
ij ∘􏼒 􏼓 � 8, j � 1, 2, . . . , n,

π3′d ≥ π
3
d ≥ π

2
d ≥ π

1
d ≥ π

1′
d ≥ ε> 0, d � 1, . . . , D,

μ3′r ≥ μ
3
r ≥ μ

2
r ≥ μ

1
r ≥ μ

1′
r ≥ ε> 0, r � 1, . . . , s,

ω3′
i ≥ω

3
i ≥ω

2
i ≥ω

1
i ≥ω

1′
i ≥ ε> 0, i � 1, . . . , m,

u
1
, u

2 free in sign,

(22)

where EI
∘ is the optimal value of model (20) and it is the

overall efficiency too.
To seek the appropriate weights of the first and second

stages for the DMUs, which depend on the ratios of the
inputs of each stage to all inputs of the structure, in the
following, the parameters w1 and w2 are defined.

Note that w1 and w2 intended to represent the relative
importance or contribution of the performances of the
first and second stages, respectively, to the overall per-
formance of the DMU. Suppose that
􏽐

m
i�1 ωixij∘ + 􏽐

D
d�1 πdzdj∘ represent the total size of amount

of resources consumed by the two-stage process, such that
􏽐

m
i�1 ωixij∘and 􏽐

D
d�1 πdzdj∘are the sizes of the stages 1 and 2,

respectively. +en, the values of these parameters are
given by relations (23), as follows:

w1 �
􏽐

m
i�1 ωixij∘

􏽐
m
i�1 ωixij∘ + 􏽐

D
d�1 πdzdj∘

,

w2 �
􏽐

D
d�1 πdzdj∘

􏽐
m
i�1 ωixij∘ + 􏽐

D
d�1 πdzdj∘

.

(23)

Supposing that the optimum weights obtained from
relations (23) are w∗1 , w∗2 , then the efficiency of the second
stage is obtained by the following relation [35]:

E
2∗
∘ �

E
∗
∘ − w
∗
1 · E

1∗
∘

w
∗
2

. (24)

+e second case: if the efficiency of the second stage has a
higher priority, then model (25) can be used to determine
the efficiency of this stage:
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(25)

where EI
∘ is the optimal value of model (20) and it is the

overall efficiency too.
So, the same approach is taken to assess overall efficiency

(model (20)), and the efficiency of the second stage based on
TIFNs is obtained, as follows:

E
1∗
∘ �

E
∗
∘ − w
∗
2 · E

2∗
∘

w
∗
1

. (26)

In the following, a numerical example is given to solve
and evaluate the proposed method for an NDEAmodel with
TIFN efficients.

4. Numerical Example

In this section, a numerical example is solved to illustrate
how the proposed method and model determines efficien-
cies. In this example, there are 12 DMUs, such that each
DMU is contained 3 inputs in the first stage, 2 intermediate
products, and 3 outputs from the second stage. +e sche-
matic diagram of these DMUs is displayed in Figure 1.

+e triangular intuitionistic fuzzy data considered for
the numerical example are provided in Tables 1–3.

After solving models (20), (22), and (24) with the Lingo
software, the overall efficiency, the efficiency of the first stage,
and the efficiency of the second stage for 12DMUs are obtained
as shown in Table 4, as the efficiencies of a two-stage model of
intuitionistic fuzzy data envelopment analysis (IFDEA).

+e results of Table 4 show that the overall efficiency
score of 6 DMUs is 1. Also, for 7 DMUs of 12 DMUs, the
efficiency score of the first stage is equal to 1. However, for
the second stage, 6 of the DMUs have an efficiency score of 1.
In fact, from 7 DMUs with an efficiency score of 1 in the first
stage, only DMU9 has an efficiency score of less than 1 in the
second stage. Among the evaluated units, DMU10 has the

lowest overall efficiency score, which is 0.759. +is unit also
has the lowest efficiency score in the first stage, which is
0.617. In the second stage, the lowest efficiency score is 0.707,
which belongs to DMU9. Based on the obtained overall
efficiency, first-stage efficiency, and second-stage efficiency
scores, the compared DMUs can be classified into three
groups listed in Table 5, where numbers 1 and 0 in this table
are efficient and inefficient, respectively.

According to the classification in Table 5, five of the
DMUs are completely inefficient, one of them is only efficient
in the first stage, and six DMUs are efficient in both stages.

4.1.Comparisonof theEfficiencies betweenaTwo-Stage IFDEA
Model and a Two-Stage DEAModel. To compare the results
of the proposed model, the intuitionistic fuzzy data con-
sidered in the numerical example of this research are
transformed to crisp numbers by relation (14).

+en, using models (15) and (21) and relation (24), Chen
et al. [35], the overall efficiency and the efficiency of the first
stage and the second stage for every 12 DMUs are obtained
as shown in Table 6.

If the obtained results by the proposed model in Ta-
ble 4 are compared with the obtained results in Table 6, it
is observed that in the crisp model, 7 units are efficient in
both stages, while in the proposed model, only 6 units are
efficient in both stages. In other words, the differentiation
between the units in the proposed model has been better.
While the 9th unit, which has been efficient in both stages
in the crisp model, has now been efficient only in the
second stage for the proposed model. Finally, the prox-
imity of the mean of the overall efficiency in the two
methods (μDEA � 0.956, μIFDEA � 0.938), indicated that the
results of the proposed research model are correct and
accurate.
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Stage
I

Stage
II

Outputs
yrj, r = 1, …, s

Intermediate products
Zdj, d = 1, …, D

Inputs
xij, i = 1, …, m

DMUj, j = 1, …, 12

Figure 1: Schematic diagram of the two-stage DMUs considered in the example.

Table 1: Triangular intuitionistic fuzzy inputs assumed for 12 DMUs.

Input 3 Input 2 Input 1 DMUs
(141, 144, 146; 138, 144, 147) (66, 69, 72; 64, 69, 74) (12, 15, 18; 10, 15, 20) 1
(125, 127, 130; 123, 127, 132) (28, 32, 35; 26, 32, 39) (14, 18, 21; 12, 18, 25) 2
(158, 160, 163; 154, 160, 165) (23, 26, 29; 21, 26, 31) (19, 22, 25; 17, 22, 27) 3
(160, 163, 165; 158, 163, 167) (33, 37, 39; 31, 37, 42) (20, 24, 26; 18, 24, 29) 4
(145, 148, 151; 143, 148, 153) (52, 56, 59; 50, 56, 61) (23, 25, 28; 21, 25, 32) 5
(232, 235, 238; 230, 235, 240) (67, 71, 74; 65, 71, 76) (42, 46, 49; 40, 46, 51) 6
(213, 215, 216; 210, 215, 218) (102, 104, 107; 100, 104, 109) (30, 32, 35; 28, 32, 38) 7
(202, 206, 208; 200, 206, 210) (131, 133, 135; 128, 133, 137) (29, 31, 34; 27, 31, 36) 8
(107, 109, 110; 105, 109, 112) (95, 98, 100; 92, 98, 102) (185, 188, 192; 181, 188, 194) 9
(261, 267, 270; 259, 267, 272) (165, 168, 172; 161, 168, 174) (46, 49, 53; 43, 49, 54) 10
(302, 306, 308; 300, 306, 309) (191, 194, 197; 189, 194, 199) (51, 53, 55; 48, 53, 57) 11
(279, 282, 284; 278, 282, 285) (205, 208, 211; 203, 208, 213) (32, 36, 38; 30, 36, 39) 12

Table 2: Triangular intuitionistic fuzzy intermediate products assumed for 12 DMUs.

Output 3 Output 2 Output 1 DMUs
(90, 93, 96; 88, 93, 98) (83, 87, 92; 81, 87, 94) (97, 100, 103; 95, 100, 105) 1
(68, 70, 71; 66, 70, 73) (43, 45, 48; 40, 45, 49) (147, 149, 150; 145, 149, 152) 2
(98, 100, 101; 96, 100, 103) (53, 55, 57; 50, 55, 59) (157, 160, 163; 154, 160, 165) 3
(112, 114, 117; 110, 114, 119) (60, 62, 64; 57, 62, 65) (170, 172, 175; 168, 172, 177) 4
(135, 137, 138; 133, 137, 140) (50, 54, 56; 48, 54, 59) (92, 95, 98; 90, 95, 100) 5
(177, 180, 183; 174, 180, 185) (77, 80, 83; 75, 80, 85) (225, 227, 228; 223, 227, 229) 6
(107, 110, 113; 105, 110, 115) (84, 89, 93; 82, 89, 96) (216, 219, 222; 214, 219, 224) 7
(108, 110, 111; 107, 110, 115) (94, 99, 103; 92, 99, 106) (215, 218, 221; 213, 218, 223) 8
(107, 109, 110; 105, 109, 112) (95, 98, 100; 92, 98, 102) (185, 188, 192; 181, 188, 194) 9
(151, 153, 155; 149, 153, 156) (96, 99, 103; 94, 99, 104) (245, 249, 252; 243, 249, 254) 10
(201, 204, 207; 198, 204, 209) (142, 147, 149; 140, 147, 152) (258, 260, 261; 256, 260, 262) 11
(126, 129, 132; 124, 129, 134) (118, 119, 122; 116, 119, 124) (247, 249, 255; 242, 249, 257) 12

Table 3: Triangular intuitionistic fuzzy outputs assumed for 12 DMUs.

Intermediate 2 Intermediate 1 DMUs
(79, 83, 88; 77, 83, 90) (99, 102, 104; 97, 102, 105) 1
(39, 41, 44; 36, 41, 46) (101, 103, 106; 99, 103, 108) 2
(21, 22, 25; 18, 22, 27) (81, 84, 86; 80, 84, 87) 3
(31, 32, 35; 29, 32, 37) (91, 94, 96; 90, 94, 97) 4
(57, 61, 64; 55, 61, 66) (121, 124, 126; 120, 124, 127) 5
(79, 82, 85; 77, 82, 87) (220, 222, 223; 218, 222, 224) 6
(85, 90, 94; 83, 90, 97) (111, 114, 116; 110, 114, 117) 7
(88, 91, 93; 86, 91, 94) (143, 146, 148; 142, 146, 149) 8
(113, 115, 116; 111, 115, 117) (167, 169, 170; 165, 169, 171) 9
(93, 97, 102; 91, 97, 105) (115, 117, 118; 113, 117, 119) 10
(223, 225, 228; 221, 225, 227) (135, 137, 138; 133, 137, 139) 11
(216, 219, 222; 214, 219, 224) (171, 173, 176; 169, 173, 178) 12
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5. Conclusion

+e classic DEA models were designed to work with de-
terministic data and cannot deal with uncertainties in their
inputs.+e techniques so far developed for the assessment of
inexact (fuzzy) efficiency are also very limited and, in some
cases, defective. Given that inputs and outputs of real-world
problems are not always deterministic and precise and some
data can only be expressed in vague verbal and subjective
terms and thus have a fuzzy or intuitionistic fuzzy nature, the

use of fuzzy sets in mathematical modeling is imperative for
overcoming with the challenges of dealing with such data.

Fuzzy sets are vague sets with imprecise boundaries,
which were first introduced by Zadeh [16], which aimed to
create a simpler model for complex systems. Following the
development of fuzzy logic, intuitionistic fuzzy logic and
fuzzy sets were introduced by Atanassov in 1983, as an
extension to fuzzy logic [28]. Apart from a degree of
membership, IFSs also have a degree of nonmembership.
+is leads to a decision matrix with a more accurate and
reliable assessment and subsequently a more efficient and
effective decision-making capability. +eory of IFS does not
rule out the theory of fuzzy set and does not diminish its
capabilities. Instead, it provides a more effective and efficient
tool for dealing with uncertainty by using the extended form
of fuzzy sets.

By the development of the application of intuitionistic
fuzzy logic, several studies have used this logic in DEA
approach. For example, Daneshvar et al. [50] in their study
used a combination of intuitionistic fuzzy TOPSIS (IF-
TOPSIS) and DEA technique to evaluate decision-making
units in both qualitative and quantitative terms. Edalatpanah
[51] used the CCR model with TIFNs to evaluate the effi-
ciency of decision-making units. In this method, based on
the ranking function, the intuitionistic fuzzy model became
a crisp linear programming model. In another study, Arya
and Yadav [30] developed the CCRmodel with intuitionistic
fuzzy data based on the alpha and beta cut method and
obtained their dual. Also, Arya and Yadav [34] used the SBM
model for IFNs and used the alpha and beta cut method to
solve it. Otay et al. [32], by using the CCRmodel in the input
oriented of the dual case and the addition operator for IFNs,
presented a new hybrid approach consisting of AHP and
DEA. Puri and Yadav [31] used the CCR model based on
TIFNs and then transformed the model into linear pro-
gramming with expected value. Hajiagha et al. [33] used
interval IFNs and the BCC model in the dual case and used
the generalized weighted operator to solve the model. Most
studies in the field of DEA in IF environment are about a
single-stage models. Among studies in network models, we
can mention the study of Shakouri et al. [52]. +ey used the
NDEA model in series and parallel structures. +en, by
introducing the accuracy function, they have transformed
the model into a crisp linear programming and ranked and
evaluated the decision-making units based on the definition
of alpha cut and degree of hesitation. +ese researchers in
series structure, by using the data from Puri and Yadav’s
study [31], evaluated 16 hospital units using triangular fuzzy
data for two inputs and two outputs. In parallel structure,
they used the data of Ameri et al.’s study [53], for evaluating
8 hospital units, including 3 inputs with crisp data and 4
outputs with fuzzy TIFNs.

In another study, Ameri et al. [53] presented a model of
NDEA in parallel structure and in the constant returns to
scale for TIFNs and using the expected value transformed
the model into a crisp linear programming model. Puri and
Yadav [31], in their study, developed models to measure
optimistic and pessimistic efficiencies of each DMU in
intuitionistic fuzzy environment. By using superefficiency

Table 4: +e overall efficiency, the efficiency of the first stage, and
the efficiency of the second stage of a two-stage IFDEA model.

w∗2 w∗1 E2∗
∘ E1∗

∘
Total

efficiency DMUs

0.498 0.502 1 1 1 1
0 1 1 1 1 2
0 1 1 1 1 3
0.945464 0.054536 0.91273 0.8442226 0.9089938 4
0.433431 0.566569 0.989237 0.9920930 0.9908552 5
0.542585 0.457415 1 1 1 6
0.387486 0.612514 0.977777 0.7418682 0.8332796 7
0.521266 0.478734 0.920294 0.8776182 0.8998635 8
0.467056 0.532944 0.707324 1 0.8633039 9
0.412908 0.587092 0.959542 0.6171162 0.7585067 10
0.4 0.6 1 1 1 11
0.4983 0.5017 1 1 1 12

Table 5: Classification of the compared DMUs based on the ob-
tained overall efficiency, first-stage efficiency, and second-stage
efficiency scores.

Category E1∗
∘ E2∗

∘ Total efficiency DMUs

1 1 0 1 . . .

2 0 1 1 . . .

3 1 1 1 1-2-3-6-11-12
4 0 0 1 . . .

5 0 0 0 4-5-7-8-10
6 1 1 0 . . .

7 0 1 0 . . .

8 1 0 0 9

Table 6:+e overall efficiency, and the efficiency of the first and the
second stages of a two-stage DEA model.

DMUs Total efficiency E1∗
∘ E2∗

∘

1 1 1 1
2 1 1 1
3 1 1 1
4 0.881494 0.8924 0.8706
5 0.996749 0.9940 0.9995
6 1 1 1
7 0.834047 0.7063 0.9618
8 0.904673 0.8326 0.9767
9 1 1 1
10 0.85986 0.7966 0.9231
11 1 1 1
12 1 1 1
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technique, algorithms are generated to obtain the complete
ranking of the DMUs when optimistic and pessimistic sit-
uations are considered separately. In this paper, a hybrid of
the IFDEA performance decision model is proposed, to
address the overall performance using optimistic and pes-
simistic situations together in IF environments.

In this paper, Chen et al. [35] by using the developedmodel
of the Kao andHwang [36] presented a new two-stagemodel in
variable returns to scale case and then by using expected value,
the two-stage models of all intuitionistic fuzzy data became the
crisp linear programming problem and deal with the evaluation
of the performance of the units and their internal structures.
+is paper is a special type of the two-stage DEA model in
variable returns to scale case in which all variables are expressed
by TIFNs. Comparing the proposed model of the present study
with the proposed model of Shakouri et al. [52], it can be stated
that the proposedmodel of Shakouri et al. has not been used for
all intuitionistic fuzzy data. +e proposed two-stage model
compared to Shakouri et al. has more power and application in
the real world due to all intuitionistic fuzzy data and due to the
intuitionistic fuzzy environment and two stages of the model,
and the overall structure and each of the stages are separable and
rankable which has made the model a unique advantage over
other models. Also, in the proposed Puri and Yadavmodel [31],
optimistic and pessimistic efficiency under the assumption of
constant returns to scale as well as superefficiency and ranking
of decision-making units for the initial models of DEA, i.e., the
CCR model, in intuitionistic fuzzy environment are expressed.
Although the proposed two-stage model in comparison with
Puri andYadav [31] is in the intuitionistic in fuzzy environment,
it has paid attention to the structure of more than one stage, in
which the source of inefficiency can be well identified and also
in the studying of the structures of the two-stage models in
intuitionistic fuzzy environment, the relationship between
overall efficiency and the efficiency of the lower stages is less
exposed to errors, and the optimal value of the intermediate
variables is well determined.

Finally, in the proposed model of Ameri et al. [53], a self-
assessment model of NDEA in intuitionistic fuzzy environment
has been developed to measure the efficiency of the parallel
system, at the time interval when some inputs and outputs are
intuitionistic fuzzy in nature. While in the proposed model of
the present study, due to all intuitionistic fuzzy data, the var-
iables of the model including inputs and outputs and inter-
mediates and weights can be evaluated in uncontrollable
conditions.

In the end, the proposed model was used to solve a nu-
merical example with 12 DMUs, containing 3 inputs in the first
stage, 2 intermediate products, and 3 outputs in the second
stage, using the Lingo software. Future studies are suggested to
design multiplicative versions of two-stage DEA models with
TIFNs.
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