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Laban movement analysis (LMA) is a systematic framework for describing all forms of human movement and has been widely
applied across animation, biomedicine, dance, and kinesiology. LMA (especially Effort/Shape) emphasizes how internal feelings
and intentions govern the patterning of movement throughout the whole body. As we argue, a complex understanding of intention
via LMA is necessary for human-computer interaction to become embodied in ways that resemble interaction in the physical world.
We thus introduce a novel, flexible Bayesian fusion approach for identifying LMA Shape qualities from raw motion capture data
in real time. The method uses a dynamic Bayesian network (DBN) to fuse movement features across the body and across time and
as we discuss can be readily adapted for low-cost video. It has delivered excellent performance in preliminary studies comprising
improvisatory movements. Our approach has been incorporated in Response, a mixed-reality environment where users interact via
natural, full-body human movement and enhance their bodily-kinesthetic awareness through immersive sound and light feedback,
with applications to kinesiology training, Parkinson’s patient rehabilitation, interactive dance, and many other areas.
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1. Introduction

Recently, much attention has been given to making human-
computer interaction (HCI) more “natural;” that is, more
similar to everyday human interaction situated in the phys-
ical world [1]. In particular, there is increased emphasis on
multimodal interaction; that is, responding via multisensory
feedback to speech, facial expression, bodily gesture, pen
movement, and so forth [2–4]. However, few of these devel-
opments (if any) address embodiment, an essential attribute
of everyday human interaction [5–10]. Embodiment directly
challenges the traditional (Cartesian dualist) paradigm
which posits that humans interact with the environment via
separate and sequential stages known as perception (forming
a mental model of the environment based on sensory input),
cognition (planning bodily actions based on this mental
model), and action (executing these actions). The Cartesian
view considers mind and body as separate, interfacing only
through the “mental model” constructed during perception.
By contrast, embodiment posits that perception, cognition,

and action are situated in the context of everyday activity
and are in fact closely intertwined. That is, mind and body
continuously interact and cannot be separated in the context
of any given activity.

Consider, for instance, the situation where one is thirsty
and reaches for a glass of water. The Cartesian paradigm
suggests that one initially perceives and constructs a mental
model of the glass, and subsequently plans actions based
on this model: (1) reach out, (2) open the hand, (3) grasp
the glass, and (4) bring it up to the mouth. Only after
the model is constructed and the corresponding actions
are planned does one actually pick up the glass. However,
embodied cognition suggests a much more integrated role
for cognition. Motivated by an overall activity schema (grasp
the glass), one (a) perceives the relation between glass and
hand, (b) plans to bring the hand closer to the glass and
changes the hand configuration to fit the circumference of
the glass, and (c) executes this plan, which in turn alters
the perceived relationship between glass and hand. The
role of cognition is reduced from planning complex action
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sequences to planning simple adjustments that bring the
perceived activity closer to the desired goal or schema.

An analogy can be made to the difference between closed
loop and open loop control systems as shown in Figure 1. The
goal of a controller (such as a thermostat) is to supply the nec-
essary input(s) to achieve the desired output(s) (Figure 1(a)),
for example, provide the appropriate heating and cooling
inputs to maintain a room at 75◦F. This task can be greatly
simplified when the error between actual and desired outputs
is used to control the input to the heating/cooling system as
shown in the closed loop configuration of Figure 1(c). If it
is too hot the system will turn on the air conditioner; if it
is too cool the system will activate the furnace. This rule is
much simpler than guessing the sequence of heating/cooling
cycles that will keep the temperature at 75◦. Moreover, it
is well known that feedback is necessary to minimize the
total squared output tracking error for a fixed energy input,
according to the solution of the linear quadratic regulator
(LQR) problem [11]. That is, feedback obtains not only a
simpler controller but also one that is optimal in terms of
a generally accepted measure of performance. Analogously,
cognition in an embodied interaction framework (as shown
in Figure 1(d)) is likely not only to be less complex, but also
more effective than cognition in a framework where mind-
body separation is enforced. For instance, if the environment
undergoes a sudden change (such as the glass tipping over
as one tries to grasp it), one can make the necessary
adjustments without having to revise the entire action plan.
Furthermore, recent neurological evidence has also emerged
to support the theory that human motor control largely does
follow a servomechanical (i.e., closed-loop) configuration
[12, 13].

Unfortunately, traditional HCI (by this we mean the
mouse-keyboard-screen or desktop computing paradigm)
is quite limited in terms of the range of user actions
the interface can understand. These limitations can affect
embodied interaction as follows. Instead of users working
out their intentions to act in the process of perceiving and
acting, they must translate these intentions into emblematic
actions—mouse clicks and key presses - prior to acting upon
them. This translation process involves cognitive planning in
a sense that is divorced from perception and action, breaking
the embodied interaction loop. Moreover, a number of
researchers have focused on the dynamic, emergent nature
of interaction context (i.e., the shared conceptual framework
that enables user and system to meaningfully interpret each
other’s actions; cf. [8, 14–16]) as a fundamental consequence
of embodied interaction [5, 8, 10]. However, if the user is
forced to communicate through specific, emblematic actions,
context is by definition fixed by the system, as the user must
focus on conforming his/her actions to what he/she knows
the system can understand.

Hence, to foster embodied interaction, we need interfaces
that can develop a complex, meaningful understanding of
intention—both kinesthetic and emotional—as it emerges
through natural human movement. It has been well under-
stood in the movement science literature that intention in
human movement has a full-body basis; that is, intention is
rooted not in the movements of individual limbs and joints,

but in the way these movements are patterned and connected
across the whole body [17–20]. In the past two decades,
a number of mixed-reality systems have been developed
which incorporate full-body movement sensing technolo-
gies. These systems have been widely applied in diverse
areas including exploratory data analysis [21], rehabilitation
[22–24], arts and culture [25, 26], gaming [27–29], and
education [22, 30, 31]. Movement sensing embedded in
these systems largely consists of the following types: 1)
recognition of specific, emblematic gestures or static poses
[22, 26, 32–34], or 2) extraction of low-level kinematic
features (body positions and joint angles) [27, 28, 35].
Unfortunately, these sensing methodologies fall short of
supporting embodied interaction unless augmented with a
higher-level analysis of intention. Systems that respond only
to emblematic gestures or poses retain the aforementioned
problems associated with translation, cognitive planning,
and system-centered context. Systems that focus only on
low-level kinematic features (a system that uses the left
elbow height to control the pitch of a sound, the right
shoulder joint angle to control its amplitude, etc.) still fail
to account for how movement is patterned and connected
across the body. Consequently, we must design interfaces
based on full-body movement sensing which address the role
of intention in the patterning and connection of full-body
movement.

To this end, we adopt the framework of Laban movement
analysis (LMA), a system developed by Rudolf Laban in the
1920s for understanding and codifying all forms of human
movement in an intention-based framework [19, 20]. LMA
has not only served as a notational system for expressive
movement in dance, it has been widely applied over the
past 80 years in kinesiology, developmental psychology,
CGI animation, and many other areas. While LMA has
some limitations especially in its ability to describe the
specific neurological processes underlying motor control, it
is nevertheless still finding new applications even in clinical
areas such as improving function and expression in patients
with Parkinson’s disease [36], to better understand social
interactions in children with autism [37], to investigate the
neuronal development of reach-to-grasp behaviors [38], and
to design animated characters with more expressive and
believable movement characteristics [39, 40]. LMA is broadly
divided among the following categories: Body, Space, Effort,
and Shape. Analysis of Body primarily involves determining
body part usage and phrasing (unitary, simultaneous, succes-
sive, sequential), but also looks at how the body patterns itself
in movement (head-tail, upper-lower, body-half, etc.). Space
organizes and clarifies the body and its actions by establish-
ing a clear pathway or goal for movement. It concentrates on
the size, approach to and use of one’s kinesphere, or personal
space as well as defines a clear spatial matrix around the
body. Effort primarily addresses the expressive content or
style of one’s movement. Effort qualities manifest themselves
through space (not to be confused with the Space category),
time, flow, and weight and usually appear in combinations
called states or drives. Shape, in general, elicits the form, or
forming of the body. One subcomponent of Shape, Shape
qualities, concerns itself with how the body changes its shape
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Figure 1: Analogy between closed loop control and embodied interaction.

Sagittal plane
Coronal plane

Horizontal
plane

Figure 2: Body-centered coordinate system showing the different
body planes.

in a particular direction. Figure 2, adapted from [41], shows
a body-centered coordinate system with horizontal, sagittal,
and coronal planes. Rising/sinking fall perpendicular to the
horizontal plane; retreating/advancing fall perpendicular to
the coronal plane, and enclosing/spreading describe motion
about the sagittal plane as well as reveal the general folding
and unfolding of the body. All movement are comprised
of one, two or three Shape qualities depending on the
complexity of the movement itself; however one quality
usually dominates and can be said to characterize the
movement.

1.1. System Goals. Currently, we have focused most of our
efforts on Shape quality (SQ) extraction. While it may not
seem so to a human observer, doing computational SQ
analysis is quite difficult because there is no single, consistent
way one can express a particular quality. One may advance,
for instance, by walking toward something, pointing, or
by craning one’s neck forward in a slight and subtle way.
Nevertheless, different SQs do imply different tendencies in
the movement of individual joints and limbs within the
context established by the body-centered coordinate system
shown in Figure 2. For instance, if someone is rising, it is
more likely that their torso will rise than sink. Similarly, SQs
may imply nonlocal tendencies, such as an upward shift of
the body’s enter of mass with respect to the horizontal plane.
We hence treat SQ inference as a large-scale information
fusion problem, in which many different tendencies combine
to give a holistic picture of the overall movement. Our
method is extensible; if new sources of information enter,
they can be readily incorporated to improve the accuracy of
our SQ inference, without having to redesign the method
or collect large amounts of data. New information sources
can include new sensing modalities, for instance, hand-held
tangible interface objects [42] or pressure-sensitive floors
[43], as well as higher-level contextual information such as a
person’s tendency to emphasize one axis (e.g., rising/sinking)
in the context of a particular activity. Similarly, if an
information source no longer becomes reliable (due to a
sensor fault), the system can just ignore the features that
depend on this information. Performance will be slightly
lessened since there is less information available, but the
result with our method will not be catastrophic.

To date, there has been little overall work on compu-
tational SQ analysis let alone the kind of extensible, fault-
tolerant method we propose. Probably the most extensive,
detailed modeling of SQ can be found in the EMOTE system
[44], and subsequent efforts [45, 46]. EMOTE introduces
computational models for both Shape and Effort, but for
movement synthesis (for character animation) rather than
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analysis. It remains unclear how EMOTE can be adapted
for analysis. Neural network models have been applied for
Effort analysis [45–47], and it may be possible to redevelop
these models for Shape, although we are presently unaware
of such an attempt. However, these neural network-based
approaches can only make “hard decisions” regarding the
presence or absence of a particular movement quality. This
is inadequate for embodied interaction frameworks where
continuous changes in the nature of the movement must be
coupled to continuous changes in the media feedback. We
solve this issue by adopting a Bayesian approach yielding at
each time instant, a posterior distribution over all qualities
that indicates for each quality the degree of certainty or
strength that the quality is present in the movement. Hence
the fact of a quality becoming more certain can be easily
detected as the posterior concentrates more and more
over that quality. Also, the methods proposed in [45–47]
seem completely “data-driven,” and therefore cannot be
readily extended to incorporate new contextual information
or sensing modalities without a costly retraining process
involving new data sources.

Our method utilizes a dynamic Bayesian network (DBN)
to jointly decide the dominant SQ based on raw marker
location data from a motion capture system. We output
a posterior distribution over dominant SQ/motion seg-
ment hypotheses given all sense-data observations from the
motion capture system. If information sources are correctly
modeled via appropriate conditional probability distribu-
tions, marginalizing and then maximizing this posterior with
respect to the dominant SQ hypothesis will yield error-
optimal decisions [48–50]. However, the raw SQ posterior
reveals much about the salience or ambiguity of the qualities
expressed in the movement, which would be lost if the
system simply makes a decision. That is, if one perfectly
isolates a particular SQ in one’s movement, the posterior
will concentrate completely on that SQ. On the other hand,
if one’s movement is more ambiguous with respect to SQ,
this ambiguity will be reflected in a posterior that is spread
over multiple SQs. The Response environment, a mixed-
reality system aimed at fostering bodily-kinesthetic aware-
ness through multisensory (audio/visual feedback) which
incorporates our SQ inference engine and makes extensive
use of the dominant SQ posterior, as the concentration of
this posterior implicitly reflects a degree of dominance [51].

The remainder of this article is organized as follows.
Section 2.1 gives an overview and block diagram of our
proposed SQ extraction method encompassing feature selec-
tion, probabilistic modeling of feature dynamics, feature
fusion via whole-body context to infer the dominant SQ
and a description of the Response environment. Section 2.2
discusses feature selection and computations, Section 2.3
discusses temporal dynamics modeling of individual fea-
tures, Section 2.4 presents the full-body fusion model, and
Section 2.5 describes the computation of dominant SQ
posteriors from raw feature data using this model. Section 3
presents a preliminary study involving a range of movement
examples, from highly stylized movements to movements
which are more complex and unstructured. The performance
of our SQ inference (when the dominant SQ posterior

is thresholded according to the error-optimal maximum a
posteriori (MAP) rule) is quite promising, and has been
successfully embedded in the Response environment [51] as
previously discussed.

2. Proposed Method

2.1. System Overview. The overall method including marker-
based optical motion capture, probabilistic motion analysis
and multimodal feedback provided by the Response environ-
ment for interaction is diagrammed in Figure 3. Raw data
observations consist of 3D position data from 34 labeled
markers, which are soft, IR-reflective spheres attached at
various positions to one’s body via Velcro straps (Figures 4
and 5). Marker positions and labelings are updated every
10 milliseconds using an eight-camera IR motion capture
system supported by custom software (EvART) developed by
Motion Analysis Corporation [52]. In practice the system
sometimes has difficulty tracking all of the markers, so
occasionally markers will be reported as missing or the
labeling of one marker will be switched with that of another.
From this marker set we first compute the body-centered
coordinate system consisting of the navel origin and the
orientations of the horizontal, coronal, and sagittal planes
(Figure 6). Next, we compute a set of features, called subindi-
cators, which describe the movements of individual body
sections as well as global body movement characteristics
with respect to this coordinate system. Subindicator features
are designed so that consistent positive/negative changes
are highly indicative of one pair of SQs at least for that
particular body section (e.g., the right arm is rising/sinking,
the torso is advancing/retreating, etc.) Finally, we apply
a novel dynamic Bayesian network (DBN) which models
(a) the segmental continuity of subindicator features given
subindicator (individual body-section) SQ hypotheses, and
(b) the temporal dynamics of subindicator SQ hypotheses
given the dominant SQ hypothesis. The full-body fusion
arises implicitly in the latter part of the DBN, as described
in Section 2.3. The output of the computational SQ analysis
is a posterior probability distribution of the dominant SQ
which drives the interactions provided by the Response
environment. Response leverages the system’s capacity for
embodied interaction in the following sense: rather than
attempting to create very complex movement-feedback map-
pings, these mappings develop organically through certain
natural affinities between feedback and movement.

The Response environment consists of two submodules,
which we call pulsar and glisson. The pulsar submodule uses
SQ analysis and a measure of overall activity [51] to alter
parameters of a bank of pulsar synthesis generators [53]. Pul-
sar synthesis is a method of sound synthesis based upon the
generation of trains of sonic particles. We map the posterior
probability of the current SQ hypothesis to various parame-
ters. Advancing/retreating and spreading/enclosing control the
range of the fundamental frequency of overlapping pulsarets,
with advancing/retreating controlling the lower bound and
spreading/enclosing the higher bound of a uniform random
frequency generator. Rising/sinking affect the duty cycle of
the pulsar generators, causing wide modulations in formant
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Figure 4: Marker set schematic showing front and back sides of the body.

frequencies. Activity level is also mapped directly to overall
amplitude of the bank of pulsar generators and the intensity
of specific color of lights (blue). Additionally, the sound
feedback is spatialized so as to be located in surrounding
speakers where the activity is being sensed. The glisson
submodule uses a bank of glisson particle generators [53].
Glissons are short grains of sound that have a frequency
trajectory (or glissando) with very short time frames of the
grain. Depending on grain length, the affect can be anywhere
from clicks to chirps to large masses of shifting sounds. In
this case the glissons are shorter (20–90 milliseconds). The
trajectory of the glissons is mapped to the rising/sinking
probability of the SQ analysis. Rising movement causes
individual glissons to rise in frequency and sinking has the
opposite affect. Advancing increases the durations of the

glissons while retreating lowers them. In the submodule
white light is mapped to the activity of the user. These
two submodules, experienced in alternation, encourage the
participants to focus on the experience of movement, rather
than on how the system works, and to explore new creative
possibilities through their movement. We now proceed to
describe in detail the computation of the body-centered
coordinate system and the subindicator features in the next
section.

2.2. Feature Extraction. Our goal is to extract features
from raw marker position data for which changes in these
features are highly indicative of the SQs (rising/sinking,
advancing/retreating, enclosing/spreading). As a first step we
obtain the body-centered coordinate system, specifically the
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Figure 5: Image of a user interacting in the Response environment,
which incorporates our SQ analysis framework.
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orientations of the horizontal, coronal, and sagittal planes

shown in Figure 2. Let us define three vectors: �Dup points

upward, perpendicular to the horizontal plane; �Dlat points

left to right, perpendicular to the sagittal plane; �Dfr, the
front direction, points back to front, perpendicular to the
coronal plane. These directional vectors are illustrated in

Figure 6. The up direction (�Dup) is provided by the motion
capture system, and points straight up (perpendicular to the
floor). We choose the y axis of the motion capture coordinate

system as the up directon, that is, �Dup = (0, 1, 0).

The lateral direction (�Dlat) is defined with the tail in
the left shoulder, and points in the direction of the right
shoulder. If Mls is the marker position of the left shoulder,
and Mrs is the marker position of the right shoulder, then
�Dlat = (Mrs −Mls)/‖Mrs −Mls‖.

Finally, the front direction (�Dfr) is determined by the
person’s attitude toward the surrounding space, and is
calculated from his/her movement. The front direction is
necessary in determining the extent to which the person is
advancing or retreating. Specifically, movement in the front
direction is interpreted as advancing, and movement against
it is interpreted as retreating. Rather than using a front
direction that is fixed, we allow the person to establish (and
change) the front direction through his/her movement.

In simple circumstances, for example, if the person’s
entire body is facing a specific direction for a substantial
length of time, the front direction can be determined from
the facing direction of the pelvis. In more complicated
situations, the front direction can stay the same even though
the pelvis is rotating. An example is the advancing of a discus
thrower. In this case, the athlete’s attitude toward the space
is such that he or she is advancing toward a specific point
in space, where the discus will be launched forward. Even
though the entire body is spinning, the front direction stays
the same.

The front direction is first initialized to the facing

direction of the pelvis in the horizontal plane, �Dpel (which is
a unit vector calculated from the positions of the markers at
the left waist, right waist, and the cervical). From that point
on, we calculate the front direction as a weighted mean of
the previous front direction and the current facing direction
of the pelvis.

In particular, let Mp and M′
p be the positions of the

pelvis at the current and previous frame, respectively (these
are approximated by taking the mean of markers placed at
the left and right sides of the waist). The horizontal pelvis
movement across these two frames is then given by ΔMp =
(Mp −M′

p) · (1, 0, 1). Then, we compute �Dfr = c · �D′fr + (1−
c) · (ΔMp/|ΔMp|), where �D′fr is the previous front direction
and c is given by

c =

⎧
⎪⎨

⎪⎩

min
{

1, sfore
(
ΔMp · �Dpel

)}
, ΔMp · �Dpel ≥ 0,

min
{

1,−sback
(
ΔMp · �Dpel

)}
, ΔMp · �Dpel < 0.

(1)

The constants sfore and sback specify how much movement of
the pelvis either forward or backward (with respect to itself)
influences the front direction. In our experiments, we used
sfore = 4 sback, that is, forward pelvis motion was considered
4 times as indicative of the front direction than backward
pelvis motion. The exact values depend on the frame rate.

Using these coordinate vectors, we obtain the following
features.
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Figure 7: Single time slice of the DAG corresponding to the overall
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(i) Mean marker height describes the global body posi-

tion along �Dup. Specifically, we compute the mean of

all marker positions and project this mean onto �Dup.
A positive change in mean marker height indicates
rising, while a negative change indicates sinking.

(ii) Right/left elbow height is the projection of the corre-

sponding elbow marker onto �Dup. Changes in either
feature indicate rising/sinking, since people often do
so with their upper body which includes the arms.
Up/down arm movements are usually coordinated
with similar movements of the elbow.

(iii) Accumulated frontward shift is the running sum of the
change in mean marker position as projected onto
�Dfr. A positive change in accumulated frontward shift
indicates advancing, while a negative change indicates
retreating.

(iv) Lateral marker variance is the magnitude variance

of all marker positions as projected onto �Dlat (per-

pendicular to �Dfr). That is, we first project all

marker positions onto �Dlat, compute their covari-
ance matrix, and take the trace of this matrix. A
positive change in lateral marker variance indicates
enclosing/spreading, while a negative change indicates
advancing/retreating.

To reduce the effect of noise in the marker positions,
as well as marker mislabeling and occlusion, each feature is
partially denoised using a second-order Savitzky-Golay filter
[54] over a window of 0.2 seconds (20 frames at 100 fps).
For each frame t, we denote the feature vector as Y 1:5

t

where the individual feature correspondences are as follows:
Y 1
t —mean marker height, Y 2

t —right elbow height, Y 3
t —left

elbow height, Y 4
t —accumulated frontward shift, Y 5

t —lateral
marker variance. Given these feature vectors, we specify how
we model the feature dynamics and how it is influenced by
the dominant SQ probabilistically in the following section.

2.3. Probabilistic Model. Let the dominant SQ hypothesis at
frame t be Lt, and

Lt ∈ {Ri, Si,Ad,Re, Sp,En,Ne} (2)

corresponding, respectively, to rising, sinking, advancing,
retreating, spreading, enclosing, and neutral.

We model the influence of Lt on raw feature observations
Yi
t , i ∈ 1 : 5 using a DBN for which a single time slice of

the corresponding directed acyclic graph (DAG) is shown in
Figure 7. We describe intermediate variables as follows.

(i) Mt ∈ {0, 1} provides an overall segmentation of the
full-body gesture. Where Mt = 1, the user begins a
new gesture; where Mt = 0, the user is continuing
to perform the same gesture. It is possible, but not
necessary, that the dominant SQ changes when Mt =
1. For instance, a person can be rising with his/her
torso and head, and during this motion decide also
to lift up his/her left arm. When the arm first begins
to lift Mt = 1; however, the dominant SQ does not
change.

(ii) The subindicator Ri
t, for i ∈ 1 : 5, encodes the

extent to which the inherent feature corresponding
to Yi

t is increasing, decreasing, or neutral. (The
inherent feature is hidden; each Yi

t is at best a
noisy observation of the feature). We encode Ri

t ∈
{−1, 0, 1}, where Ri

t = 1 corresponds to increasing,
Ri
t = −1 to decreasing, and Ri

t = 0 to neutral (neither
increasing nor decreasing to any significant degree.)
For instance, R2

t = 1 indicates that the right elbow
is rising. The dominant SQ Lt induces tendencies on
each of the subindicators. From the definition of Mt,
we prohibit Ri

t from changing unless Mt = 1.

(iii) Sit, the subindicator state, is a vector containing the
inherent feature Xi

t , of which Yi
t equals Xi

t corrupted
by noise, plus additional, auxiliary variables neces-
sary to describe the influence of Mt and Ri

t on Xi
t as

a first-order Markov dependence, P(Sit | Sit−1,Ri
t,Mt).

Further details are given in Section 2.4.

To summarize, the joint distribution corresponding to
the DAG in Figure 7 admits the following factorization:

P
(
M1:T ,L1:T ,R1:K

1:T , S1:K
1:T ,Y 1:K

1:T

)

= P
(
M1
)
P
(
L1 |M1

)

×
K∏

i=1

P
(
Ri

1 | L1,M1
)
P
(
Si1 | Ri

1,M1
)
P
(
Yi

1 | Si1
)

×
T∏

t=2

P
(
Mt |Mt−1

)
P
(
Lt | Lt−1,Mt

)

×
K∏

i=1

P
(
Ri
t | Ri

t−1,Lt,Mt
)
P
(
Sit | Sit−1,Ri

t,Mt
)
P
(
Yi
t | Sit

)
.

(3)

In the following section, we give explicit descriptions of the
dependences in (3).

2.4. Distributional Specifications. We first describe the inher-
ent subindicator feature dynamics as encoded via P(Sit |
Sit−1,Ri

t,Mt), coupled with the observation dependence
P(Yi

t | Sit). As previously discussed, St contains Xi
t , the



8 Advances in Human-Computer Interaction

inherent subindicator feature, for which Yi
t is a “noisy”

version:

Yi
t ∼ N

(
Xi
t , σ

2
Yi

)
. (4)

However, Sit contains additional information necessary to
model the influence of Ri

t and Mt on its dynamics using a
first-order Markov dependence. That is,

Sit = vec
{
Vi

0,t,V
i
t ,X

i
t

}
, (5)

where

(i) Vi
t is the inherent feature velocity; that is, rate of

change in Xi
t ;

(ii) Vi
0,t > 0 is a constant, nominal feature speed associated

with the current gesture. Gestures can be slow or fast;
during the current gesture, Vi

t varies smoothly (Vi
t ≈

Vi
t−1) while Vi

t ≈ Vi
0,t if Ri

t = 1, Vi
t ≈ −Vi

0,t if Ri
t =

−1, and Vi
t ≈ 0 if Ri

t = 0. The nominal speed itself
can vary, albeit slowly, throughout the gesture.

The full dependence, P(Sit | Sit−1,Ri
t,Mt), factors according to

the expanded, single-feature DAG as shown in Figure 8; that
is,

P
(
Sit | Sit−1,Ri

t,Mt
)=P(Vi

0,t | Vi
0,t−1,Mt

)
P
(
Vi
t | Vi

t−1,Vi
0,t,R

i
t

)

× P
(
Xi
t | Xi

t−1,Vi
t

)
,

(6)

where P(Xi
t | Xi

t−1,Vi
t ) concentrates deterministically on

Xi
t = Xi

t−1 + Vi
t . In specifying P(Vi

t | Vi
t−1,Vi

0,t,R
i
t), we must

simultaneously satisfy competing modeling assumptions
regarding the proximity of Vi

t to Vi
t−1 as well as to a suitable

function of Vi
0,t. These assumptions can be resolved in the

form of a conditional Ornstein-Uhlenbeck (OU) process:

P
(
Vi
t | Vi

t−1,Vi
0,t,R

i
t

) = N
(
αVi

t−1 + (1− α)δit ,βσ
2
Vi

)
.

(7)

In (7) β
Δ= (1− α)/(1 + α), and

δit
Δ=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vi
0,t , Ri

t = 1,

0, Ri
t = 0,

−Vi
0,t , Ri

t = −1.

(8)

Here α controls the degree which Vi
t ≈ Vi

t−1 and σVi , the
variance of the process about δit , controls the assumption
Vi
t ≈ δit . Since the OU process is mean-reverting [55], its use

in modeling the trajectory Vi
t helps greatly in ensuring that

small, rapid fluctuations in the subindicator features due to
involuntary motions are registered as neutral, Ri

t = 0, rather
than as rapid oscillations in the subindicators themselves. For
example, someone performing wave-like motion using their
arms is probably neither rising nor sinking, at least as far as
intention is concerned. In this way, the OU process modeling
goes a long way toward modeling the user’s intention, as
consistent with the overall LMA philosophy.

Mt−1 Mt

Lt−1 Lt

Ri
t−1 Ri

t

Vi
0,t−1 Vi

0,t

V i
t−1 Vi

t

Xi
t−1 Xi

t
Sit

Y i
t

Figure 8: Expanded DAG for single feature displaying the factor-
ization of P(Sit | Sit−1,Ri

t ,Mt) over the components of Sit .

The nominal feature speed Vi
0,t is always positive and,

if the corresponding subindicator is active (i.e., Ri
t /= 0), is

expected to drift slowly during a gesture, and reset upon
the onset of a new gesture. Furthermore, concerning an
analogy between gesture speed and musical tempo, we expect
the drift in Vi

0,t to be proportional to its value. Similar
generative models for tempo variation are well known [50,
56, 57], among others. When the subindicator is inactive
(Ri

t = 0), we note the notion of feature speed becomes
meaningless and furthermore, via (6)–(8), Vi

0,t does not
directly influence other observations or states. Hence we
model Vi

0,t as always resetting to anticipate the onset of a
new gesture. In summary, we model P(Vi

0,t | Vi
0,t−1,Mt,Ri

t)
as follows:

log Vi
0,t ∼

⎧
⎨

⎩

N
(

log Vi
0,t−1, σ2

Vi
0

)
, Mt = 0, Ri

t /= 0,

N
(

log Vi
00, ε−1

)
, Mt = 1 or Ri

t = 0,
(9)

where ε
 1.
To obtain the remaining distributions in (3), we specify

that the dominant Shape quality and each subindicator
change only the onset of a new gesture; that is, if Mt = 0, then
Lt = Lt−1 and Ri

t = Ri
t−1 with probability 1. When Mt = 1,

Lt may change, but does not have to. A new gesture need not
be caused by a change in dominant SQ. Let us first consider
the modeling of P(Lt | Lt−1,Mt = 1) in more detail. We
model this dependence as a mixture of two distributions; one
encoding the tendency that Lt remains consistent, the other,
P0(Lt) specifying the stationary distribution after change:

P
(
Lt | Lt−1,Mt = 1

) = ρLδ{Lt=Lt−1} +
(
1− ρL

)
P0
(
Lt
)
.

(10)

Indeed, as long as ρL < 1, a stationary distribution for Lt
exists and equals P0(Lt). Lacking additional information, we
model P0(Lt) as uniform.

Likewise, we model P(Ri
t | Ri

t−1,Lt,Mt = 1) = P0(Ri
t |

Lt), where P0(Ri
t | Lt) is the corresponding stationary
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Inference: retreating
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Inference: sinking
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Inference: spreading
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Figure 9: Image sequence of “Menu 1” (dancer 1) movement data showing the ground truth and inference results of the dominant Shape
quality expressed.
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Table 1: Probabilistic constraints of subindicator states given the dominant Shape quality for specifying P0(Ri
t | Lt).

Feature Lt = Ri Lt = Si Lt = Ad

R1
t ,R2

t ,R3
t p− 
 1, p+ � p− p+ 
 1, p− � p+ p− 
 1, p+ 
 1

R4
t p− 
 1, p+ 
 1 p+ 
 1, p− 
 1 p− 
 1, p+ � p−

R5
t p− 
 1, p+ 
 1 p+ 
 1, p− 
 1 p− 
 1, p+ 
 1

Feature Lt = Re Lt = Sp Lt = En

R1
t ,R2

t ,R3
t p− 
 1, p+ 
 1 p− 
 1, p+ 
 1 p− 
 1, p+ 
 1

R4
t p+ 
 1, p− � p+ p− 
 1, p+ 
 1 p− 
 1, p+ 
 1

R5
t p+ 
 1, p− 
 1 p− 
 1, p+ � p− p+ 
 1, p− � p+

Feature Lt = Ne

R1
t ,R2

t ,R3
t p− 
 1, p+ 
 1

R4
t p− 
 1, p+ 
 1

R5
t p− 
 1, p+ 
 1

Table 2: Design of specifications for P0(Ri
t | Lt).

Feature Lt = Ri Lt = Si Lt = Ad

R1
t ,R2

t ,R3
t p−0.15, p+ = 0.75 p+ = 0.15, p− = 0.75 p− = 0.1, p+ = 0.1

R4
t p− = 0.1, p+ = 0.1 p− = 0.1, p+ = 0.1 p−0.01, p+ = 0.98

R5
t p− = 0.1, p+ = 0.1 p+ = 0.1, p− = 0.1 p− = 0.1, p+ = 0.1

Feature Lt = Re Lt = Sp Lt = En

R1
t ,R2

t ,R3
t p− = 0.1, p+ = 0.1 p− = 0.1, p+ = 0.1 p− = 0.1, p+ = 0.1

R4
t p+ = 0.01, p− = 0.98 p− = 0.1, p+ = 0.1 p− = 0.1, p+ = 0.1

R5
t p− = 0.1, p+ = 0.1 p− = 0.01, p+ = 0.98 p+ = 0.01, p− = 0.98

Feature Lt = Ne

R1
t ,R2

t ,R3
t p− = 0.01, p+ = 0.01

R4
t p− = 0.01, p+ = 0.01

R5
t p− = 0.01, p+ = 0.01

distribution for Ri
t assuming Lt is constant. Essentially,

P0(Ri
t | Lt) specifies how the subindicator features are

influenced by the presence or the absence of a dominant
SQ; that is, this distribution encodes the full-body context
discussed in Section 1. For example, suppose Lt = Ri; that
is, the dominant Shape quality is rising. Now, we do not
expect the three associated subindicators; namely, R1

t , R2
t , and

R3
t to always be positive, as this would mean whenever a

person rises, he will always lift his arms. Rather, we expect
merely that (a) it is unlikely that either R1

t , R2
t , or R3

t will
be negative; and (b) it is much more likely that each will be
positive than negative. Regarding the subindicators generally
associated with other qualities; R4

t , R5
t , it will be improbable

that either is positive or negative. A full set of constraints
on P0(Ri

t | Lt) is shown in Table 1, where p+ is shorthand
for P(Ri

t = 1 | Lt), and p− represents P(Ri
t = −1 |

Lt). The complete specification of P0(Ri
t | Lt) is given

via Table 2.
Finally, regarding P(Mt | Mt−1), we currently encode

only the expectation that boundary events are sparse; that
is, Mt is modeled as Poisson [58] with P(Mt = 1) = p,
effectively severing the dependence of Mt on Mt−1. However,
much human movement exhibits a rich temporal structure,
for instance, rhythmic dance movements set to music. Hence
we can use P(Mt | Mt−1) to encode this temporal structure,

perhaps by also augmenting Mt to include additional states
which encode the elapsed duration since the most recent
boundary event. For instance, the temporal expectancy
framework of [59] can be directly applied in this setting, and
we plan to incorporate it in future work.

2.5. Inference Methodology. To decide the dominant Shape
quality at time t, given observations Y 1:K

1:t , we first compute
the filtered posterior P(Lt | Y1:t) and choose Lt which max-
imizes this posterior. It is well known that this choice of Lt
yields the minimum-error decision [48]. However, some hid-

den variables, for instance,Mt,Lt, andR(1:K)
t , are discrete, and

others, for instance, V0,t and Vt are continuous with first-
order Markov dependences which depend on the discrete
layer. The overall dynamic Bayesian network is in the form of
a nonlinear, non-Gaussian switching state space model. Exact
filtering in switching state-space models is exponential-
time [60] and thus cannot be implemented in real time.
Assuming conditional, linear Gaussian dependences at the
continuous layer which we still do not have, a number of
approximate filtering strategies: interacting multiple model
(IMM) [61], second-order generalized pseudo-Bayes (GPB2)
[61], and/or Rao-Blackwellized particle filter (RBPF) [62]
become tractable. In our present model there are a large
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Figure 10: Segmentation performance on “Menu 1” (dancer 1) movement data showing the fusion of different features to infer the dominant
Shape quality.

number of discrete states (#Lt × #Mt × #
∏5

i=1[#Ri
t] = 3402)

and thus only the RBPF, with 1000 particles over discrete
states, functions appropriately for real-time inference. The
nonlinearity and non-Gaussianity of the continuous state
dynamics are handled with the RBPF framework by replacing
the Kalman time update with the appropriate version of the
unscented transform [63]. As the results in Section 3 show,
our algorithm yields quite acceptable performance at 100 fps,
with some latency due to the real-time nature of the decision
process.

3. Experimental Results and Discussion

In order to test the capabilities of our dominant SQ inference
we tested its performance on data collected from three
dancers utilizing improvisation. The main reason to use
trained dancers and focus on dance movements is that
dancers’ enhanced movement expertise and experience with
choreography makes it much easier for certified Laban
movement analysts to obtain the ground truth. In the context
of dance, improvisation can be described as free movement
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Figure 11: Image sequence of “Menu 3” (dancer 1) movement data showing the ground truth and inference results of the dominant Shape
quality expressed between frames 1–350.

that is spontaneously created in the moment but often within
certain guidelines. For the purposes of data collection and
validation of our analyses, trained dancers performed a series
of improvisatory movements following a set sequence. We
call these sequences improvisational menus. In our case these
menus consist of sequences of dominant SQs. For example, a
menu might be (rising → spreading → retreating → sinking),
wherein the menu outlines the overall sequence of SQs, but

gives no indication as to how or for what duration they
should occur. This allows the dancer to explore how differ-
ently she can perform the same set of SQs through multiple
repetitions of the menu. For our experimental analysis, each
dancer performed four improvisational menus, of which two
were simple menus (menus 1 and 2) and two were complex
(menus 3 and 4). During the simple menus, the dancer
attempted to perform movements expressing the individual
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Figure 12: Dominant Shape quality segmentation performance on frames 1–350 of “Menu 3” (dancer 1) movement data shows that even
though the person is advancing with the arms rising, our method correctly infers the dominant Shape quality as advancing.

Table 3: Dancer 1 segmentation results.

Data % Recall % Precision Detection delay

Menu 1 100.0 85.7 0.1566 seconds

Menu 2 100.0 87.5 0.0733 seconds

Menu 3 100.0 70.0 0.2833 seconds

Menu 4 85.7 75.0 0.1916 seconds

Shape qualities listed on the menu without expressing other,
less dominant Shape qualities. For the complex menus, the
dancer focused her/his intent on articulating the listed Shape
qualities as the most dominant, but allowed for other, less
dominant Shape qualities to also be present. Segmentation
of the ground truth was done by a certified Laban movement
Analyst (Jodi James) watching the movement data offline.

Table 4: Dancer 2 segmentation results.

Data % Recall % Precision Detection delay

Menu 1 100.0 85.7 0.0688 seconds

Menu 2 100.0 100.0 0.1433 seconds

Menu 3 83.33 72.72 0.2342 seconds

Menu 4 87.5 77.0 0.2071 seconds

Table 5: Dancer 3 segmentation results.

Data % Recall % Precision Detection delay

Menu 1 100.0 100.0 0.1840 seconds

Menu 2 100.0 85.7 0.1216 seconds

Menu 3 83.33 75.0 0.2383 seconds

Menu 4 100 83.33 0.1250 seconds
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Table 6: Confusion matrix.

Lt Ri Si Ad Re Sp En Ne Total % Accuracy

Ri 1698 0 0 0 43 0 0 1741 97.5

Si 0 1167 103 0 0 0 9 1279 91.2

Ad 11 148 2634 0 6 0 0 2799 94.1

Re 0 20 9 4527 17 46 0 4619 98.0

Sp 279 0 0 0 1389 0 0 1668 83.2

En 0 160 0 0 0 1446 23 1629 88.7

Tables 3, 4, and 5 show the segmentation performance
of our method on all four menus for each of the dancers.
“% Recall” computes the percentage of times our method
detected a segment of a Shape quality present in the ground
truth. “% Precision” computes the ratio of number of
segments that were correctly classified to the total number of
segments that were detected. ’Detection delay’ measures the
average delay for our method to correctly detect the onset
of a segment, by computing time difference between ground
truth and the inference results.

We observe that our method performs excellently on
menus 1 and 2 across all the dancers where the movement
complexity is fairly simple, with very high average recall
(100.0%) and precision (90.76%) rates. In the case of
complex menus, namely menus 3 and 4, we observe an
overall decrease in performance (89.97% recall and 75.5%
precision). Having minimal detection delay is crucial in
developing fully embodied multimedia interactions. We
observe that our method performed reasonably well in all
four menus for all the dancers, having low average detection
delays (0.1689 seconds) and even the worst performance was
0.2833 seconds for menu 4 movement performed by dancer
1 which is still acceptable for providing real-time feedback in
some situations.

However, there is a noticeable loss of performance on
the complex menus. A possible reason for the decrease in
precision and recall rates and increase in detection delay
is that the dancer becomes more free to incorporate other
less dominant SQs in his/her movement. This becomes
particularly problematic in the case of enclosing/spreading.
Rising, sinking, advancing, and retreating all relate to specific
spatial directions (forward, backward, up, and down), which
in turn helps us determine the dominant SQ comparatively
easy. However, spreading and enclosing have a tendency to
be directionally ambiguous because they are often more
about folding or unfolding the body rather than moving
the body along the horizontal axis. In this case spreading
and enclosing were more difficult to detect because the
dancer would usually associate these with other Shape
qualities in the vertical or sagittal plane. For example, we
observed that our method confuses spreading and rising with
one another because the dancer would usually incorporate
some amount of rising when she/he is spreading. The same
affinitive relationship was also true for enclosing and sinking.
The confusion matrix presented in Table 6 supports these
hypotheses.

The confusion matrix shows the frame level dominant
SQ estimation results comprising of all the movement menus

of all the dancers. As discussed earlier, we observe very
high estimation accuracy for rising, sinking, advancing, and
retreating and a reduction in accuracy for spreading and
enclosing. We also observe that majority of the errors in
estimating spreading and enclosing were attributed to rising
and sinking respectively. Hence in these circumstances it is
particularly hard to identify the correct SQ as the person
moving can intend to express a particular SQ but this can be
difficult to analyze accurately from an outsider’s perspective.
Nevertheless, an overall average accuracy of 92.1% indicates
that our dominant SQ inference is generally effective.

Figure 9 shows the image sequence and Figure 10 shows
the subindicator and dominant SQ segmentation results
on menu 1 data of dancer 1. In Figures 11 and 12, a
specific example comprising the first 350 frames from menu
3 performed by dancer 1 is detailed. In this example we
can see the strength of our fused subindicator approach
which analyzes full body movements to infer the dominant
SQ. In this particular movement sequence we observe that
the dancer starts in a neutral state and begins to advance
(Figure 12(c)) with her whole body while each of her arms
begin versus rising (Figures 12(a) and 12(b)) at different
instances of time. Our model was able to correctly segment
the individual features of right elbow height and left elbow
height as rising (Figures 12(a) and 12(b)) and the frontward
marker placement as advancing (Figure 12(c)). In spite of
the differences in feature level segmentation our model
was able to correctly infer the dominant SQ as advancing
(Figure 12(d)) even though both the arms were rising.
This fusion of tendencies which sometime compete and
other times reinforce each other across the whole body is
extremely critical as in everyday human movement there is
no prescribed way to express a given SQ.

4. Conclusions and Future Work

In this paper, we have described a novel method for
Shape quality (SQ) inference as an integral part of the
Laban movement analysis (LMA) framework. Our method
performs quite well on preliminary studies using both
simple and complex movement sequences, with, on average
94.9% recall, 83.13% precision, and 0.1689 seconds detection
delay. As we established in Section 1, the LMA framework
is essential toward developing a complex understanding
of natural human movement at the level of intention.
This understanding, in turn, is essential toward affording
human-computer interactions that are embodied, similar to
everyday human interactions situated in the physical world.
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In embodied interaction, context is not fixed by the system
but emerges dynamically through interaction.

Recently, we have begun to embed this real-time SQ anal-
ysis in a number of immersive multisensory environments,
in which dominant SQ posteriors are tied directly to specific
elements or parameters of an audiovisual feedback stream,
such as the Response environment (Section 2.1) where the
user can leverage his/her movement invention and creative
play to build a personalized repertoire of creative expression.
Additionally, Response demonstrates potential far beyond
that of a movement-based creative tool. Techniques from
this environment, particularly the embedded SQ analysis,
can be applied as a training tool in sports for performance
improvement or injury prevention, a rehabilitation tool for
Parkinson’s disease, and so forth. These domains are particu-
larly well-suited to the techniques we have described because
they require a general, yet detailed, real-time computational
representation of movement, specifically movement that is
meaningful to the user. Moreover, as in Response, they involve
situations where the goal of the system is two-fold: (1) to
allow users to focus on their own movements and (2) to
encourage/discourage particular types of movements on the
part of the user.

One critical challenge for further development is remov-
ing the dependence of our method on expensive, non-
portable motion capture technology, and developing a video-
based system based on a low-cost multiview framework.
Recent work [64, 65] has shown much promise in terms of
full-body kinematics recovery from video and we are rapidly
expanding upon and improving this work. By applying
skeleton building techniques, we can extract virtual marker
positions and labelings from raw kinematic data by extending
techniques presented in [66, 67]. Since obtaining these posi-
tions and labelings from 34 markers may still prove a quite
challenging problem, we note that the marker set may be
very much reduced especially if the body-centric coordinate
system can be derived from raw multiview observations.
While some issues, particularly the issue of a reduced marker
set, remain unresolved, initial efforts toward developing
a low-cost, portable multivideo framework appear quite
promising.
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