Hindawi Publishing Corporation

Advances in Human-Computer Interaction
Volume 2009, Article ID 619405, 18 pages
doi:10.1155/2009/619405

Research Article

Means of Question-Answer Interaction for
Collaborative Development Activity

Petr Sosnin

Department of Computer Engineering, Faculty of Information Systems and Technologies, Ulyanovsk State Technical University,

Severny Venetc 32, 432027 Ulyanovsk, Russia

Correspondence should be addressed to Petr Sosnin, sosnin@ulstu.ru

Received 27 May 2008; Revised 23 October 2008; Accepted 14 January 2009

Recommended by Guadalupe Mufioz

The key problem of successful developing of the software intensive system (SIS) is adequate conceptual interactions of stakeholders
at the early stages of designing. Nowadays the success of development is extremely low. It can be increased with using
artificial intelligence (AI) means including models of reasoning supported by the human-computer interaction in collaborative
development activity. In this paper, a number of question-answer means for modeling reasoning are suggested. Such kind of
means is defined and implemented in order to get effects of integrating the collective reasoning for their positive influence on
the intellectual activity of designers. Question-answer means are arranged as a specialized processor opening the possibility to
question-answer programming of the tasks on the conceptual stage of designing. Suggested and investigated means can be used

for solving any complicated task.

Copyright © 2009 Petr Sosnin. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Nowadays the most problematic area of computer applica-
tions is “development of software intensive systems”, within
the frame of which the collaborative works of developers
and other stakeholders are being fulfilled in corporate
networks. “A software intensive system is a system where
software represents a significant segment in any of the following
points: system functionality, system cost, system development
risk, development time. Examples are numerous: an ECU
(Electronic Control Unit) in a modern car, processing engine
for digital or mobile TV” [1].

The significant number of SIS developments (about 65
percent) either is being stopped, or is exceeding planned time
and/or finance, or reach the end in the poorer version [2].
Investigation results of the successfulness problem (which
are regularly published by Standish Group [3]) are presented
in Figure 1. These results show that developers have not
received very important means for successful developing of
the SIS.

The usage of collaborative development environments
(CDEs) is estimated as a promising way for increasing the

level of a success in the named subject area. Such type
of environments was defined by Booch and Brown in [4]
where the place and role of communication means for the
collaborative work were underlined and generally specified.
Details of CDEs and their current state are presented in [4]
and the most part of details is connected with communicative
interactions of stakeholders in real time solving the tasks
which are common for them.

It is possible to use a set of typical specifications of the
CDE as a template for comparing the different technologies
for the development of the SIS and for finding the ways
for their evolving. In our opinion, one of such ways is
“a real-time integrating the intellectual resources” which
can help the developers in solving the complicated tasks.
The intellectual potential of any developer is limited and
developer often needs the help for the work with appointed
tasks from useful intellectual sources. The base of such help
is the reasoning of colleagues.

This article concerns the problem solving and decision
making of the complicated tasks the work with which is
being fulfilled in the CDE-system supporting the question-
answer modeling of collective reasoning. The CDE-system is

60

50

40 +——
30 - — — —
20 o Tl Tl T
kbl
0 : : : : : :

1994 1996 1998 2000 2002 2004 2006

Success
B Failure
Partially

FIGURE 1: Statistics of successfulness of the developing the SIS.

implemented as processor in corporate network which gives
the possibility for question-answer programming of human-
computer interaction with design objects and the design
process.

2. Integration of Intellectual Activities

Many different kinds of complexity measures of tasks are
used in the system engineering. For example, one can
measure the complexity of the task by the number of
subordinated tasks.

This version of measure is adequate for the development
of the SIS where developers must solve a very big number
of typical tasks. Over five hundred different typical tasks
subordinated to the main project task can be used by
developers only on the conceptual stage of developing the SIS
with the help of the rational unified process [5]. Including
such tasks into the design process decreases the complexity
of the main project task Z*; but the low degree of a success
in designing the SIS shows that similar project tasks can be
insufficient for design with the warranted success. The useful
means for solving the design tasks and coordinating such
processes are needed.

When the designer meets a difficult task he needs to
remember that possibilities of human intelligence are limited
and the additional intellectual support can help him. So there
are bases to agree that in a complex situation for designers
they need instrumental means which can give them a real-
time access to all appropriate intellectual resources (and not
only to intellectual capabilities of colleagues) of the corporate
network.

This allows affirming that the integration of intellectual
resources is needed for working with some complex design
tasks. It is reasonable to choose useful means for the
integration from a set of relevant Al means and include
them into the instrument of designing the SIS. First of all
the relevance must be estimated in the context of intellectual
capabilities such as “consciousness” and “understanding”
used for controlling the consciousness process.

Advances in Human-Computer Interaction

When we choose or build relevant AI means we need
to remember that the basic form of consciousness work
revealing is the reasoning and the dialogue (the “question-
answer” process in the brain structure) is a nature of the
reasoning.

One way for modeling collective (collaborative) “con-
sciousness” is to create the question-answer model (QA-
model) of collaborative reasoning which is reflecting the
consciousness process. However, for feedback the joint QA-
model in any of its current state must be open for the
interactive “visual pressure” on the brain of any member of
a collective “consciousness” if it is useful for solving tasks
(Figure 2).

The scheme in Figure 2 shows that collective reasoning
R(t) of the subject group G({Sbx}) in the frame of task
Z transforms to the QA-model accessible to any member
Sby of the group through operations under reasoning, its
QA-model and questions {Q(#)} and answers {A(t)} as
elements of this model. In such interaction the individual
consciousness will be combined with the interactive “visual
pressure” of the QA-model of collaborative reasoning (col-
laborative “consciousness”). The QA-model of the collective
consciousness can be used not only for the interaction with
the individual consciousness but also for creating the model
of the collective understanding which must be useful for
checking the intellectual activity.

It is necessary to notice that in creation of QA-models
and their usage the specific understanding of a question
will be used in this article. The essence of the question-
answer activity is determined by a so-called “question”.
The “question” is a natural-artificial phenomenon appearing
in attempts by a person to apply the own experience.
In concrete active situation the “question” appears as a
mismatch between the experience, which is necessary for the
reaction and the existing experience of the person.

Determining “questions” as natural phenomena of a
certain type it is necessary to specificity how such phe-
nomena are found out, identified and described (coded).
Any representation of the “question” in concrete language is
its language model which fulfils required functions within
the framework of reasoning. Language forms of reasoning
(texts and speech), used by a person (or a team) during
activity are capable to serve as information sources for
constructions of sign models of “questions”. The “questions”
leave obvious and implicit “traces” in texts and speech and
such “traces” can help to discover questions and define their
attributes.

It is useful to find the “question” as a natural-artificial
phenomenon appearing in specific conditions, to identify,
to code and to use it according to its functionality. Any
“question” as a definite mismatch in experience will activate
the process as a result of which the definite “answer” will
be constructed. The “answers” to “questions” develop an
experience and can enrich the semantics of used language.

In accordance with understanding the “question” and
“answer” the names “question” and “answer” will be used
in what follows when speaking about phenomenon. Such
names without quotes will be used in accordance with the
context.

Advances in Human-Computer Interaction

Sby

Z -

S({Qi(1), Ai(1)})

[|
-
-
-
-

Operations {O™}

F1GURE 2: Scheme of question-answer base for interaction.

3. Related Works

The problem of rational reasoning in the development
process of the SIS is well known in this subject area. This
problem has been investigated for more than 10 years in
the Software Engineering Institute (SEI) of Carnegie Mellon
University [6]. However, the question-answer approach is
not used and the problem of “a real-time integration of
intellectual efforts” is not indicated in interests of the SEI to
the schemes of reasoning and their formalizing.

Artificial intelligence means are not used for supporting
reasoning of developers in such well-known technology
as Rational Unified Process (RUP) and in other similar
technologies, for example, in Microsoft Solution Framework
and Eclipse.

It is very interesting because there are many types of
reasoning which are investigated and modeled in AlI. For
example, the Programs of the European Conferences on
Al (ECAI) include about 20 topics connected with model-
ing reasoning (analogical reasoning, case-based reasoning,
common-sense reasoning, reasoning about actions, etc.).

We have the answer to the question “Why Al means is not
used in technologies for developing the SIS?”

Adequate Al means which can increase the successfulness
of designing the SIS are absent till now because problem-
solving and decision-making based on the real-time inte-
gration of intellectual resources are investigated in Al only
partially (different kinds of models for reasoning which are
useful in definite classes of design situations, first of all case-
based reasoning models).

We are convinced that investigation of question-answer
reasoning is a perspective way for finding the AI means which
can give the positive results helping to solve complicated
tasks and not only in designing the SIS [7].

In the number of relative works using “questions and
answers” (or QA), for example, we can mention reasoning
in the “inquiry cycle” [8] for working with requirements,
“inquiry wheel” [9] for scientific decisions and “inquiry
map” [10] for education. Similar ideas are used in the
special question-answer system which supports development
of the SIS [11]. The typical schemes of reasoning for the SIS

development are presented in [6], while in [12] reasoning
is presented on seven levels of its application together with
the used knowledge, and in [13] model-based reasoning is
presented as useful means for software engineering.
However, in all publications referred to above, the issue
[14] and the special report [15] the task of real time
integration of the intellectual resources in processes of
problem-solving and decision-making is not mentioned.

4. Question-Answer Models

In developing the SIS for each task of any degree of
complexity the concrete developer is appointed for decision.
Developer colleagues are entered to the solving process in
that case when the intellectual help is required for the
developer. Externally the general intellectual activity of the
developer and its colleagues is observed in the form of their
reasoning which can be registered by the useful way.

We suggest using the QA-model (mentioned before) for
simulating collaborative reasoning in any state of the decision
process for operative including such kind of models into the
intellectual activity of the developer appointed to the task.
The QA-model which reflects collaborative reasoning in the
frame of the definite task Z(t) we will name as the QA-
model of this task (or shortly QA(Z(?))). The QA-model of
the task is a model of collaborative reasoning (and integrated
consciousness) in the real time process of solving the task.

The QA-model is a systematized representation of rea-
soning used during the solution of the task Z () and kept in
the special QA-database. Any QA-model is a set of interactive
objects such as “question”, “answer” and “task” with the
certain attributes and operations.

Therefore specifications of the QA-models will be pre-
sented from the interactive system viewpoint or another
words as specifications of a specialized software intensive
system SIS, Such position gives the possibility to use the
experience of the SIS to the SIS?" first of all the experience
of the architectural description. We defined and investigated
the QA-model of the task which is architecturally presented
in Figure 3.

The set of typical tasks of RUP

JL

| Intellectual-organizing

|
Communicative view . .
Experience Motive-object
|
Event
Task view 7] Theoretical
Ontology .
. . Training
Logical-linguistic
Activity view -
T Normative
Diagramming
Documenting

Problem-oriented

igs

Working examples of QA-models

FIGURE 3: Architectural description of QA-model.

Question-answer models, as well as any other models,
are created “for extraction of useful answers to the questions
enclosed in the model”. Any QA-model is adjusted to solving
the corresponding task. In general case the QA-model must
support the useful answering process for solving the main
task of conceptual designing the SIS. Therefore the typical
structure and content of the QA-model were being chosen
and defined for general case of the task the role of which
tulfills the set of typical RUP-tasks used by designers on the
conceptual stage of the RUP-application. Such decision is
being explained that the RUP is the richest source of typical
tasks the utility of which is being confirmed by practice.
Conceptual means of the RUP help to build and express the
conceptual solution of any task in development of the SIS.

The typical QA-model is used as a template and as a
complex of means for creating the example of the QA-model
for any task in designing the SIS. The typical QA-model (or
in other words the specialized SIS?) is constructed as the
CDE-system which supports the collective work with tasks
in the frames of following architectural views.

The logical-linguistic view presents QA(Z(t)) within
frames of logic and linguistics of questions and answers. The
visual representation of the view (Figure 4) includes a system
of QA-protocols corresponding to the task tree of Z(t). Each
QA-protocol is a tree of questions and answers (QA-tree)
which presents the reasoning used in the decision process
of the corresponding task. Any question or answer in any
QA-protocol is a result of translating the definite volume of
natural reasoning about “question” or “answer”. In general
case any task Z can include subordinate tasks.

The logical part of the view describes the hierarchical
tree of questions and answers. Each “question” or “answer” is
being modeled as an interactive object with the unique name

Advances in Human-Computer Interaction

QA-protocols of the

Main QA-protocol subordinated tasks

Q
A — ¥
- Qy Apy
T Q, Ap
Qi A
" Qz 1 Az 1m
T Qs Ay
— Qxn Ay, QA-protocols of the
I Qan Ay service tasks
—l_ Q, Ap

FIGURE 4: System of QA-protocols.

and rich visual presentation. The QA-tree as a whole consists
of the main QA-tree (corresponding to the task Z(t)) and a
set of subordinated QA-trees for subordinated tasks.

The linguistic part of the view includes a system of
texts presented as the informational content of questions
and answers. The text of each unit of the view is a result
of the QA-formalization which is applied to the definite
volume of reasoning at the natural language. The technique
of formalization is presented below in Section 7. Such result
can be interpreted and implemented as a translation of
reasoning from the natural language to the QA-language.

Dynamics of the view reflects the history of reasoning
registered by step-by-step as the history of each unit of the
view. Therefore the logical-linguistic view was named as the
“QA-protocol”

The QA protocol as a base of the logical-linguistic view
has a number of useful interpretations such as

(1) it reflects the definite volume of the design process
as a data of “the research experiment” representing
“the primary measuring information” about design
process and about the used control facilities;

(2) the content of the protocol reflects a real reasoning,
which can be investigated to increase the knowledge
about a “phenomenon of reasoning and questions”;

(3) each of registered questions or answers admits its
interpretation as an event which is essential for rea-
soning and design process, that allows understanding
the protocol as “a network of events” ordered in time;

(4) the protocol is a data structure (QA-structure) with
its practically useful set of operations. Such inter-
pretation of the QA structure corresponds to the
experience of Computer Science in the area of data
structuring for adequate presentation of reasoning.

The task view opens the model QA(Z(t)) as an interactive
task tree (Figure 5) including the interactive model of Z(t)
with models of all subordinated tasks. “The task” is a type of
“the question” and, therefore, it is subordinated to the used
understanding of “questions”. However, the interactive object

Advances in Human-Computer Interaction

Group of the service tasks

K.0. Group of the service
ZK.1 tasks

N
=

Q
]
=}
=1
lae]
=}
=
-
j=n
o
13
o
o]
<
=.
O
o
—+
o
12
2
@«

FIGURE 5: Fragment of the task tree for Z = Z K: K-index
name, symbol “0” indicates service tasks, other names indicate the
problem-oriented tasks.

which presents the task in SIS? is opened for the interaction
through the special set of commands one of which is “To
open task as its QA-model”. In general case the task tree
is a tree of all project tasks combined in the task Z* of
designing the SIS. The task is a based unit for structuring the
process of designing and for question-answer modeling (QA-
modeling). In such process a problem-oriented and service
types of tasks are differentiated. As shown in Figure 5 the
service project tasks can be used for solving the problem-
oriented tasks.

The example of the visual integration for the task view
and the logic-linguistic view is shown as the real screenshot
in Figure 6 where any label of the task or the question or
the answer can be used for the interactive access to the
other parts of the chosen interactive object. The example
also visualizes the structure of the QA-protocol connected
with the chosen task in the task tree. Here is shown that the
picture can be attached to any unit of the task tree and the
QA-protocol.

The ontological view indicates all concepts used in
QA(Z(t)). It is acceptable as an interactive list of concepts
with references to the project ontology which is being
constructed and used during the life cycle of the SIS. The
inclusion of the ontological view into the QA-model helps
to the developer to express and to check the definite volume
of the own understanding on the level of used notions. The
special subsystem is included to the SIS? for supporting the
creation and usage of the “ontology of the project” in real
time.

The theory view presents the system of QA-protocols as a
theory of the content-evolutionary type. It is being accessible
after transforming of the current state of QA-protocols to the
text form (DOC or HTML). The theory view is constructed
from systematically combined text units in the step by step
process of collaborative designing. It helps the designer to
“transfer” operatively from the QA-structure of reasoning to
its textual form reflecting the evolution of reasoning from the
causal point of view.

The intelligence-organizing view gives an interactive access
to the organizational structure of designers and other
stakeholders involved in the solution process of Z(t). It

can help to find interactive answers not only about any
person involved to the solution process but about the person
contribution to the project also.

The communicative view opens all communicative rela-
tions used between solvers of the task Z(t). A special set of
service tasks (special e-mail, meeting, brainstorming, estima-
tion, etc.) is opened (in the QA-processor) for including the
necessary communication into the solution process

The experience view presents a list of all models of
experience used in the solution of the task and units of
experience which have been built during this process. The
special open library of experience units (models) is included
in the CDE-system used for the development of the SIS.

The motive-aim view registers and demonstrates visually
a semantic net of motives and aims with task specifications
the implementing of which supports motives and aims. It
implements the principle according to which for each motive
or aim it is necessary to indicate how it is materialized in the
life cycle of the SIS.

The event view is an interactive net for the access to
“questions” and “answers” each of which is presented (with
the help of the needed attributes and their visualizing) as
event in the designing.

The activity view registers “questions” and “answers” of
any types as objects of activity. This view has two versions
one of which is a Gant diagram and the second is a PERT-
diagram.

The problem-oriented view is presented as a number
of interactive semantic schemes describing the important
aspects of the task solving. Each scheme is visualized as the
useful (for designing) graphic picture. The special graphic
processor is included to the SIS? for supporting the creation
and usage of the “block and line” diagrams.

The diagramming view demonstrates a set of the nor-
mative diagrams (UML-diagrams or others “block and
line” diagrams) each of which presents the declarative or
procedural aspect of the task solving. Each of the diagram
is built with the help of the QA-model for the corresponding
service task subordinated to Z(t).

The documenting view opens the process and results of
the solving task through the normative set of documents for
the used technology.

The normative view presents an interactive list of stan-
dards and frameworks used during the task solving.

The training view combines all QA-means of the named
views, which are useful for the training purposes. Such
possibility helps newcomers of the stakeholder group or
designers to study the project units.

Representation of the QA-model and interaction with it
as with the specialized automated system SIS?* based on a
set of presented architectural views requires answering the
question about systematization of all views. The following
interconnected components are used for such aim:

(i) declarative-visual integration, within the frame of
which all artifacts of the QA-model are presented and
interactively visualized;

(ii) procedural integration as the technique system for
QA-modeling.

File Edit View VM Team ACE Windows Help

uffe 8op COE8)

53 BIKA (kKnnenTekoe mecTo)

Advances in Human-Computer Interaction

£ WIQANET With Data - Wivare Workstaion ACE Esifon |

|G Visualzaton | | g WebWIQA - Svyatow

BonpocHoomerHeinporckon | | Banpe

p npoTokon

- %

AOCTYTHbIE AAGTHHBI

Gafin Mpaska Aofiaenme aodepmior JofaeTe pOACTESHHYIO AONOnHKTENEHO

¥
¥
¥

E P Necvcreva on
7 1Paspatorkaterton
% 21, [1a9 KoHCTRUKTHENOr X Tseh & NP
= 7 3 Pazpatiorka ofiaiouero kypca

% 3.1 Derosrise norsman

% 3.2 Teopua yoroe pednexcos
% 3.3 llenesan Teoput MoTBaLM
7 3.4 TIp0-CTERCTE IS CTHOIEHYA MDE,
7 35 IIpAbHO-CTBQCTEE LI NOTEHLIAN, CBA
% 35 Meroeiu cpeacrea anepaTuemoro opa

-
% 3.7 Borpocho-oreerhei npoueccop NetwWiOA . =

-
-
-

—

Task tree_ .-~

2 2.1 470 MOHAMBETCA N0 QM FpYATS NG
2 U470 MOHAMBETEA MO MATUEAEH TRUTEL
‘2.2 Mlom MeTvEatpsei pyeI pOKTUpOELLL

Other
QA-protocol

QA-protocol

€ 2.7 Kaxolt ka0 & MpoeEC MpoexTHpoBars.
10 2.8 KaKoft Bk1AQ B ReSYNLTaT MPOSKTHROEEH,

24 201 KOHETPUKTUEHOE K HONEHHE B PE3yNLT.
4 29 4ro nomamseTes nog MoTUBAU RO SE
281 B KaUBCTEE MOTUBALHOHHE-LENEBO M.
) 21070 Gyaer vomus & Konnee HeTon
€2 2.1 Y10 GugeT ExomTe & Kormnere HeToga

€3 211.1.1 B s 2aK0NaETCA METOLAK $op.
) 211.1.2 B 404 3aKANGETCA METOHKS PP
) 211.1.38 uénn 3akouseTn MeToguka aman
£ 211.1.1 Pasparars cucreny KpuTepme .

£ 211.1.2 PaspaboraTs HHCTpyerTanbrise cp.

Picture

>

VHDOPMALOHHS HCTOUHARH
ironora
Oprartsauionan cCTpyTypa

Nowcucrena aura
Mouroseii cepsuc
Faio Croeaps
Penakron KL
Peaakrop wuarpann
man 04 emriag

U afinomsi npoeros

Plug-ins

il

Texcreawmue | eproous Browerns Knoseooe crosa

£ () 21270 e Evome & KomnERC CpSncr,
) 213470 6yaeT BV B KoNNERE cpEACT.
51 €19 14 U nevasvaera oo o

»

OpreTpykrype!

|
|
’ ;

\ Text expression (can be edited)

[T venoesceasen vervesuor-uenesen riaaenes cocromua rpoera ST e s
CRENYLIIE HETOLKH METONKE GORMAROESHUR SHEMCTEKH HOTVEQS W Uenet), MeToy
BOPMAPOBAHHE NPOTOTNGE SA1a4, METOAUKS SHANA3A NPOAUKUHOHHEIX MeTavion e s&1ad

r\ Person responsibility,

intelligent-organizing view -

1
{3 WIQANET With Dat...

R < B

FIGURE 6: Relation between logic-linguistic view and task view.

Declarative-visual integration is responsible for coding,
structuring, ordering, storage, and delivery by inquiries
of those artifacts which are parts of the QA-model. The
function of the integration of such type we will assign to the
question-answer database of the SIS project. Such solution
allows saving all QA-models at the file-server accessible
for any workplace of the corporate network. It opens the
possibility to include in architecture of the SIS?* two styles—
repository and client-server styles. Visualization of artifacts
is another problem for the decision of which it is rational
to use architectural style Model-View-Controller (MVC)
widespread in practice of the development of the SIS [16].
Architectural style MVC is the style oriented specially on the
human-computer interaction.

Procedural integration is being implemented in the
form of a question-answer programming in according to
which creation of any QA-model and interaction with it are
tulfilled as a special type of programming in an instrumental
environment of a processor type. Such type of programming
will be presented in what follows.

5. Question-Answer Means

The QA-model of the task Z(t) with its system of views
are defined as the problem-oriented base of the software
intensive system SIS?* designated for supporting the design
of the SIS. In the general case the task Z(t) is a task
Z*(t) solving of which is conceptual designing the SIS.
Therefore the SIS?* must be built as a complex of QA-means
designated for conceptual designing any SIS.

The system of QA-means named as QA-processor Work-
ing In Question-Answers (WIQA) has been implemented
in several versions. Developments of two last versions were

based on architectural views of the QA-model and usage of
repository, MVC, client-server and interpreter architectural
styles. Moreover in developing the versions have been used
object-oriented, component-oriented and service-oriented
architectural paradigms. One of the last versions named as
NetWIQA has been programmed on Delphi 6.0 and the
second version (named as WIQA.Net) has been created on
C# at the platform of Microsoft.NET 2.0.

The system WIQA.Net has been developed for its usage
as the kernel of the product line each unit of which is an
application based on this kernel. The product line includes
applications “conceptual design”, “system of documenting”,
“decision-making system,” and “training system” adjusted
for their usage in the corporate network. The NetWIQA was
used as a reach source of assets for developing the kernel [17].
Server possibilities of WIQA.Net are opened for thin clients
in the corporate network and for Web-clients via the Web-
shell programmed with using means of ASPNET.

The component structure of WIQA.Net is implemented
as the open system of plug-ins supported by the implementa-
tion of all architectural views of the QA-model. It is generally
(without means reflected and supported web access to the
QA-means) presented in Figure 7.

All components are allocated on following tiers:

(1) The database tier is implemented with use of the
technology ADO.NET. It is used as a repository of all data.

(2) The server plug-ins tier encapsulates all function for
interaction with the database. A number of plug-ins in this
tier is specialized. The tier is formed dynamically during
starting the server with using the technology of a dynamic
reflection of types which is supported by a platform.NET.
Interfaces of the tier (server plug-ins) contain the functions
intended for direct adding, updating and removing of data.

Advances in Human-Computer Interaction

N
[QA-database ADO.NET 3
J

Server plug-ins:

QA-plug-in

Server

7

NET Remouting

)

Connnector

Client

’ Border of deployment

F1GUre 7: Component structure of the WIQA.Net.

These functions are called only by a client tier (client plug-
ins).

(3) The server tier is implemented using the technol-
ogy.NET remouting, that allows addressing the server from
the remote client workplace. When any client workplace is
starting the server carries out registration of the client, giving
out to the client a unique key which is used for checking
the access rights to various functions of system. The server
registers also starting of any component of a client plug-
ins tier. The server is conducting also logging the most
important events of system (i.e., formation of magazine of
events).

(4) The connector tier (an intermediate tier). The usage
of the technology .NET Remouting demands the certainty
for all functions of the remote object for access to it. The
connector hides the implementation of the server from the
client. Therefore the interface of the server is being stored in
the connector.

(5) The client tier is an application with which begins
the work of the user on the client workplace. This tier is
responsible for the program encapsulation of the work with
the client plug-ins tier and also for encapsulation of the
remote interaction with a server. In the case of an allocation
of the server and the client on one computer, through a
configuration file it is possible to disconnect the usage of
the technology .NET remouting. It will raise the speed of
the work of the program. The client is also responsible
for the reception of the name and the password of the
user.

(6) The client plug-ins tier consists of two parts. One part
supports the active interaction with the user and other part

is adjusted on the processing of the certain events in the
system.

The first part gives the access for the user to the
functionalities of the implemented architectural views. Each
plug-in of this tier contains a unique key which gives the
possibility to distinguish plug-ins of the tier for controlling
the access of the user to the appointed plug-ins only. The
QA-plug-in of this tier provides the access to commands for
the work with the logic-linguistic view (with QA-protocols).
Each plug-in of this part of the tier supports the interaction
with objects of the corresponding architectural view. The
second part of the tier supports the automatic work with a
definite set of events during QA-modeling. It is provided by
the units programmed as agents.

(7) The tier of continuous developing is activated as a real-
time access for the developer of additional plug-in (or agent)
from the client workplace to the .Net 2.0 means in context of
the current state of the QA-processor. Such additional units
are shown in Figure 7 by chain lines.

Only QA-plug-ins for the work with QA-protocols have
names in Figure 7. Other plug-ins for the work with other
interactive units of QA-models are presented as classes
of plug-ins. System of means included to the WIQA.Net
supports the (collaborative) solution of any task in concep-
tual designing the SIS. Such possibility is stipulated by the
potential of the QA-model which is defined on the base of
analogy with the RUP tasks. It is necessary to notice that
WIQA.Net can be qualified not only as CDE-system for
conceptual designing the SIS but also as a processor for the
creation (and execution) of QA-programs for complicated
tasks.

Web-access in WIQA.Net is arranged as the one-page
site (asp.net) with dynamic additional loading the data,
executed on the technology AJAX . At initial loading the
user registers the URL address of a resource on which site
is placed. It is unique GET-request at work with the system.
The further reception and sending of data is carried out by
means of asynchronous POST-requests which are carried out
by methods of a client part of libraries Microsoft ASPNET
AJAX extensions and Ext JavaScript.

In Figure 8 one of the screenshots of the Web-shell is
presented. This version of the shell (named as EduWIQA)
is the Web-shell of WIQA.Net adjusted to the educational
problem.

The screenshot demonstrates the current state of the
visualization for a number of answer-units chosen for
interaction from the QA-model. These units are located on
the screen by user and change each other in front according
to the chosen tempo. In the QA-processor there are several
versions for the dynamic allocation of visualized units on the
monitor screen.

6. Question-Answer Modeling

Question-answer models, as well as any other models, are
created “for extraction of answers to the questions enclosed
in the model”. Moreover, the model is a very important
form of representation of questions, answers on which are
generated during interaction with the model.

£ WebWIQA - Svyatov - VMware Workstation ACE Edition

Advances in Human-Computer Interaction

File Edit View VM Team ACE Windows Help

PRI D Gab Dae 0EE

BanpocHo-oTeeTHbI
npousccop NetWIQA

& Vou do not have Vware Tools installed.

cE@mur

F1GURE 8: Web-view of visualization for QA-model.

The essence of QA-modeling is an interaction of stake-
holders with artifacts included to the QA-model in their
current state. For such interaction the developer can use the
special set of commands (QA-commands), their sequences
and a set of plug-ins combining with QA-commands. Such
work is similar to programming (QA-programming) on the
base of means of the special processor (QA-processor) the
role of which fulfils the SIS?*,

In order to get the definite positive effect from the
concrete QA-model of the definite task the developer will
need to program the definite volume of the developer
interaction with this model and execute the created QA-
program.

There is a number of expected positive effects for each of
which the QA-program (or a set of alternative QA-programs)
must be rationally built. It has given the possibility to create
a library of typical QA-programs accessible to the developer
in real time.

The main subset of positive effects of QA-modeling is
connected with real time integrating of intellectual resources
and this subset includes:

(i) controlling and testing the reasoning of the developer
with the help of “integrated reasoning” and “inte-
grated understanding” included into the QA-models;

(ii) correcting the understanding of designer with the
help of comparing it with “integrated understand-
in g»;

(iii) combining the models of collective experience with
individual experience for increasing the intellectual

potential of the designer on the definite working
place;

(iv) including individual experience of the developer in
accordance with the request on the other working
places in the corporate network.

Design process

FiGUre 9: QA-model as a source of answers.

Any developer can get any programmed positive effect
with the help of QA-modeling as “answer” on ques-
tion actually or potentially included in the QA-model
(Figure 9).

As it is shown in this scheme any view is the source
of answers accessible for the developer as results of the
developer interactions with the QA-model. At the same time
the potentialof the QA-model is not limited by the questions
planned at defining and creating the QA-model. Another
source of useful effects of QA-modeling is an additional
combinatorial “visual pressure” of questions and answers
which is caused by influence on brain processes of their
contact with componentsof QA-models. There are different
forms for building answers with the help of QA-modeling,
not only linguistic forms. But in any case the specificity
of QA-modeling is defined by the inclusion of additional
interacting with “question-answer objects” into dynamics
of the integrated consciousness and understanding (into
natural intellectual activity).

The developer achieves the positive interaction in the
work with problem-oriented tasks and service tasks (includ-
ing a subset of technological tasks) which are being defined
and solved in the designing process with the help of QA-
modeling.

Advances in Human-Computer Interaction

L. X

Technological tasks Z T

Models
QAz")

2

Models QA(Z")

Models QA(Z©)

Conceptual models

FiGURE 10: Relations between tasks.

All problem-oriented tasks Z” = {ZF} are derived from
the analysis of the subject area of the SIS, from requirements
to the SIS and from the design process. Any task ZP is a
question qualified by stakeholders as a task-question answer
to which can be found only through the decision process.

Any service task Z$ has its typical QA-model which
is extracted from the special library. Such pattern (QA-
procedure) helps to build the model QA(Z®) for the
definite conceptual artifact. Service tasks are defined and
implemented for creating documents and visual diagrams,
for supporting the typical schemes of communicating and
training.

The work with questions, answers and other conceptual
artifacts is executed with the help of technological tasks
zt ={zI'} solving each of which uses a scenario form. The
solving of the definite technological task is an executing of
the corresponding technique programmed for the definite
application of the QA-processor.

The main application of the QA-processor is a “Con-
ceptual designing” the process of which is based on work-
flows “Interactions with Experience” [7]. Each workflow is
implemented with the help of definite technological tasks.
Nowadays about 70 technological tasks have been developed.

They are accessible to designers through the special shell of
a client workstation. Technological tasks are used for the
conceptual decision of all problem-oriented tasks Z” and
other service tasks Z€. Relations between tasks ZT, ZF and
Z€ are schematically shown in Figure 10.

It is possible for developers to work at two lines of
activity. The line 1 is a line of strict executing of QA-method
of designing with the help of the technological tasks only.
The line 2 is a line of actions on the base of QA-commands
and plug-ins of the QA-processor. The developer can switch
between lines if it can give more effective result.

7. Question-Answer Programming

The potential opportunity to create useful samples of
interactive objects such types as “problem”, “question”
and “answer” and existence of means (QA-processor) for
their combination and linkage has led to the decision to
implement the creation of such objects, their assembling and
using in the form of programming.

For such decision there are sufficient bases which include

the following arguments:

10

(1) the named objects are implemented in the QA-
processor as a set of specialized types of data
with corresponding operations, and all these means
support the QA-coding of reasoning used for the
problem-solving;

(2) the decision of the task Z presented as a system
S({Mi}) of conceptual models {Mi}, which has been
built on the basis of the necessary reasoning R(Z), is
one of the conceptual solving the task Z;

(3) QA-coding of reasoning R(Z), aimed at construction
of QA-model of task Z, leads to QA-codes QA(R(Z))
which can be transformed to the system of models
S(M) and such work is supported in the QA-
processor (diagramming and documenting views).

The decision of task Z materialized in the form of
QA(R(Z)), is open for its useful application in the environ-
ment of the QA-processor, including reuses.

All of named arguments allow qualifying the construc-
tion QA(R(Z)) as the program, as the QA-program. The
introduction of such type of programming allows separat-
ing the creation of QA-models from their usage in QA-
modeling.

Interpretation of QA(R(Z)) like program can be
extended naturally in the case of the task which has subtasks.
In this case the corresponding QA-program should be built
for each subtask and its QA-code should be opened for the
call from the main task Z and its subtasks, including the
recursive calls.

Such possibilities (typical for traditional programming)
are supported by the QA-processor. Moreover, the QA-
processor supports the work with the library of QA-
programs.

Introduction of a special kind of programming leads to
questions about the formal definition of language for QA-
programming, transformations of QA-programs and their
execution.

Answering such questions it is necessary to take into
account that QA-programs of tasks are classified as specific
kinds of programs not only because of specificity of types of
data but the execution of each of them is possible also in any
state of its creating.

The QA-processor supports the work with QA-programs
written on the QA-language with grammar which uses the
following BNF-rules:

(QA-program) ::= (Heading) (QA-code) |

| (QA-program)(Heading) (QA-code).
(Heading)) ::= (Name) (Statement of a problem).
(QA-code) ::= (QA-group) | (QA-code) (QA-group).
(QA-group) ::= (Question) | (Answer) |

| (QA-group) (Question) | {(QA-group)
(Answer).

(Question) ::= (Problem) | (Task) | {Inquiry).
(Question) ::= (Text) | (Interactive object).
(Task) ::= (Subtask) | (Task) (Subtask).

Advances in Human-Computer Interaction

(Answer) ::= (Project) | (Decision) |
(Idea) | (Hypothesis) | {The answer to Inquiry) |
| (Specification) | (Motive) | (Purpose).
(Answer) ::= (Text) | (Interactive object).
(Object) ::= (“Project”) | (“Task”) |
| (“Answer”) | (“QA-group”) |
(Function from object).

(“Task”) ::= (QA-model).

It is necessary to notice, that the grammar description
can be used as the definition of the QA-program. A number
of versions is used for execution of QA-programs each of
which is being fulfilled as one of the following forms of QA-
modeling:

(1) the real-time interaction of the person solving the
task Z (or similar inquiries of any other persons) with
any fragment of the QA-program in any state of its
readiness;

(2) the interaction with the program QA(R(Z)) con-
trolled by a technique chosen from the library of
techniques where each of them is materialized in the
form of the QA-program;

(3) the human-computer execution of the technique
chosen from the library mentioned above.

In any version of interaction its acts are caused by activity
context which is subordinated to the basic purpose—to solve
the task Z. For achievement of such purpose the subject
solving the task interacts with its QA-model allowing him
to use (in construction of the decision) combination with
objects of the types “task”, “question” and “answer”, selecting
suitable objects and connecting them in “the conceptual
decision of the task Z”.

The addressee of effects of interaction with the QA-
program is the person interpreting its codes and using results
of interpretation in the following basic purposes:

(i) to understand the object (on the monitor screen)
with which the person interacts and to use the effect
of understanding;

(ii) to use the result of interaction in the communicative
purposes for promoting the decision of the task to the
final result;

(iii) to analyze object of interaction;
(iv) to use effects of interaction for estimation;

(v) to promote “forward” the decision of task Z, first of
all due to decision-making.

The QA-processor is implemented so, that its interfaces
promote the real time work to the named purposes. So,
for example, the subsystem of dynamic visualization of
question-answer units is included to the QA-processor in
order to support the process of understanding. The set of
visualized units is being selected by inquiry of the user.
There is a special subsystem in QA-processor which supports

Advances in Human-Computer Interaction

the preliminary preparation of the visualizing information
from the QA-database. Any prepared block of questions and
answers can be visualized in suitable tempo by switching
special windows on the screen or using effects of the 25th
card. Such version of interaction performs also the role of
the interactive “visual pressure” of the QA-model on the
intellectual activity of the designer.

Let’s present one more technique of the support which is
included in the QA-processor for promoting the creation the
QA-program (and promoting the decision of task Z also).

The essence of the technique consists in extraction the
potential set of questions {Qj} from the current state of
program QA(R(Z(t))) for the subsequent creation of answers
{Ax}. Step by step the technique promotes the creation of
program QA(R(Z(t))) from the initial state of the program
QA(R(Z(t))) to the final result.

This technique has been developed for the solution of
tasks in conceptual designing the SIS but it can be applied
to the decision of any (complex) task.

The execution of the technique begins with an initial
state of the program QA(R(Z(t))) for which the generalized
statement of task Z has been formulated with the usage
of the sample consisting of three clauses. The first clause
reflects the main purpose of the task. It opens the access to
the questioner about structure and content of the typical
Use-Case diagram [16] which should be adjusted to the
specificity of the task. The second clause defines the dynamic
behavior corresponding to the Use-Case diagram for the task.
It provides construction of the basic diagram of business-
objects of UML. The third clause defines technology of
implementation of a system under design. Information
of this block is applied in conceptual design as context
information.

Analysis of text Ty of the general statement of a task
and its translation to PROLOG-like language are used for
extraction of questions. More detail it is based on step by step
registering of questions and answers in QA-program (the
visual presentation of which is QA-protocol) in accordance
with following points of the technique.

(1) The set of questions {Qi} is extracted from the text
Ty and coded by adequate texts T(Qi) for each Q;.

(2) Actions of the item (1) are executed for each text
T(Qi), therefore the set of questions {Qij} and their
codes {T(Qij)} is being formed also. Actions of
item (2) are being used to control the correctness of
question codes.

(3) The subset of questions {Q;} which will be used for
the next step of stepwise refinement, is being chosen
from the united set {Qi} U {Qi;}. Other questions of
the set {Qi} U {Qi;} are being recorded for their usage
in the subsequent steps of QA-programming.

(4) Set of answers {Ax} and their codes {T(Ax)} is being
formed and registered in the current state of the QA-
program.

(5) Each text T(A) is being processed as the text Tj.

(6) The cycle (1)—(5) is being repeated until the solution
process comes to the end.

11

In working with QA-programs, it is necessary to dis-
criminate their declarative parts (question-answer blocks),
the procedural components (techniques of interaction with
blocks, each of which is visualized in a question-answer
form) and interpretation (execution of QA-programs).

Interpretation is used in two versions, one of which
operates the interaction with the model during the solution
of tasks, and another provides dynamic visualization of
question-answer blocks for their influence on the intellectual
activity of the designer. Dynamic visualization of question-
answer blocks by inquiry of the designer is the base form of
the developer real-time access to the integrated intellectual
resources.

It is possible to use two versions of QA-programming.
The first version is similar to event-driven programming
when the state of the QA-model is interpreted as the
description of the situation used for the next steps of
designing. If any question or answer of the QA-model is
under constructing then such unit is the object of the
potential work. Analyzing the state of the QA-model (more
truly “event view” of the model), we can choose its more
priority question or answer for continuing or finishing the
work with such interactive object (“activity view” of the QA-
model).

In any state of any question or answer the developer
can activate the useful interaction with the chosen object
using accessible QA-commands, plug-ins or techniques. Such
actions are similar to the work of the QA-processor as “an
interpreter”.

The second version is used for simulating the technique
steps in the QA-form where “questions” are used for coding
steps of the technique and “answers” are used for registering
facts of executing steps of the technique. Any step of the
technique as a definite volume of the work is being presented
as “question” for which is needed to build “the answer”.

The QA-processor suggests to the designer many dif-
ferent types of the QA-commands, plug-ins and techniques
used in designing with the help of QA-modeling. Any
designer has the possibility for using a set of normative QA-
techniques for designing, decision-making, communicating,
documenting and training.

A set of especially important actions (operations, com-
mands, plug-ins mechanisms, techniques) of the QA proces-
sor includes:

(1) for questions: detection of obvious questions (on
their indicators), predication (through translation on
Prolog-like language), identification (on patterns),
concrete definition (for types), assignment of mean-
ings to attributes (as to the phenomenon of event
type), argumentation of question;

(2) for answers: creation, assignment of a type, change
of a type, registration of a condition, editing of the
contents, assignment of meanings to attributes (as to
the phenomenon of event type), argumentation;

(3) for QA groups: transformation to the node, expan-
sion into the QA-structure, transformation to the
event net, visualization of a network, analysis of

12

QA-environment of collaborative activity

Tl o]

Initial state of QA-program

Subsequent states

FIGURE 11: Form of existing of the programmed task.

a condition, choice of a direction of development,
scrolling of dynamics (on inquiries);

(4) for texts: creation, transformation, grammar analysis,
semantic analysis, transformation to the semantic
graph, supporting of a phenomenon of attention.

Any program and QA-program also is a model of the
programmed task. The introduction of QA-programming
allows separating the creation of QA-models from their
usage. The relation between QA-model and QA-program is
presented in Figure 11. Any QA-model of the corresponding
task Z; is being created and existed as an interactive complex
combining the chosen artifacts of appropriate views. The
needed views are included to the model of Z; in accordance
with the task type.

The role of the initial state of the QA-program fulfils the
typical QA-procedure if it is existed. The execution of the
QA-program performs in the form of QA-modeling.

8. Question-Answer Designing

First of all QA-modeling is used for solving the design
tasks. Moreover this kind of modeling helps to build the
conceptual solution for any task during the design process of
the SIS. We suggest rational method of conceptual solution
for the system of design tasks being executed in the corporate
network.

In the most general case the application of the method
begins with the first step of question-answer modeling the
initial statement (Figure 12) of a development task Z* (). In
special cases of the method application the initial statement
of a task is included in a task tree of the design technology
with which it will be fulfilled.

The essence of the method consists in the following.

(1) The system of tasks of conceptual designing is being
formed and solved according to the method of
stepwise refinement.

(2) The initial state of the stepwise refinement is being
defined with the system of normative tasks of “life

Advances in Human-Computer Interaction

cycle the SIS” which is included the main project task
Z*. The basic version of normative tasks corresponds
to standard ISO/IEC 12207.

(3) Implementation of the method begins with the
formulation of the main task statement in the form,
allowing start constructing of the prime conceptual
models.

(4) Detailed elaboration in the system of tasks join not
only the project tasks connected with specificity the
SIS but also service tasks, each of which is aimed at
creation of the corresponding conceptual diagram or
document. The strategy of the collective work with
project and service tasks is presented in Figure 13.

(5) For each service task its question-answer model is
created on the base of the definite question-answer
pattern from the special library.

(6) During conceptual solution of any task, included in
the task tree of the SIS project, additional tasks can
be discovered and included into the system of tasks.

(7) General conceptual solution integrates all conceptual
decision of all task included in a task tree of the
project.

(8) Conceptual solution is estimated as the completed
solution if its state is enough for the successful work
at the subsequent development stages of the SIS.
The degree of sufficiency is obviously and implicitly
checked. Useful changes are added to the more
adequate conceptual representation of the SIS.

As a forementioned, above general conceptual decision
integrates all conceptual decision of all tasks included in
a task tree of the project. So, conceptual solution of the
project tasks is defined as the system of conceptual diagrams
with their descriptions on the notion languages the content
of which are sufficient for successful programming of the
solution of the task. Which conceptual diagrams are included
into the solution depends on the technology used for
developing the SIS.

Potentials of QA-means are sufficient for conceptual
designing the SIS. The success and quality of the QA-
designing essentially depend on that which complex of
technological tasks and service tasks is combined in the
technology used by designers.

All tasks of named types are open for their QA-
programming. For creating the technology, it is necessary to
choose the appropriate conceptual artifacts and techniques
for transforming them (with the help of editing only) to the
QA-forms and loading such forms in the library of the QA-
templates. After that designers can activate the execution of
the method for QA-designing.

In Algorithm 1, the fragment of the QA-program for
one of the service tasks is presented. This is a task helps
the designer to create the Use-Case diagram. The fragment
reflects the initial state of the program where answers
expound to the designer their meaning. These answers are
necessary to fill by the definite content.

Advances in Human-Computer Interaction

13

Z].r(tm)

ZI1k(t,)

1
Initial statement ‘l’ ||

Result of decision = conceptual

of Z*(tg) f -
Decision process

.

. project

Library of models {QA (M)}

Library of models {Mf}

F1GURE 12: Scheme of method.

Z *
Z
! Zy
; Ziy
i
Zlm
Z,
T
LU Zn
______ Znp
——————— ZZn
I
I
Zp
L “n
Zpa
______ Zn

FIGUrg 13: Task’s tree of the development process (strategy of a
collective activity).

The method has received the name “question-answer
method for conceptual decision of the project tasks” In the
name of this method the attribute “conceptual” indicates that
base actions of the decision process are “conceptual actions”
of stakeholders, first of all question-answer reasoning used in
the design work. Such conceptual actions are needed to build
an adequate conceptual representation of the SIS.

The application of the method supposes that any its
technique can be interrupted in any time. The special
subsystem for controlling the interruptions of techniques is
included in the QA-processor.

9. Question-Answer Decision-Making

QA-programming of the technological tasks and service tasks
will be demonstrated on the examples of decision-making
(DM).

There are many different types of the DM methods.
Choosing methods suitable for designing the SIS we need
to take into account the specificity of such kind of activity.
Therefore for certainty we are being limited below the inter-
active decision-making, decision-making in group, decision-
making by experts, and also analysis models of situation
and alternatives. In all these methods the human-computer
interaction is important (as in conceptual designing also).

In order to use the possibilities of the QA-processor the
typical task must be defined for each DM method suitable
for designing the SIS. Moreover, each typical task must be
presented as the corresponding technique of the DM coded
in the form of the QA-program.

QA-programming of the chosen DM tasks showed that
decision-making by the technique of expert system has
specificity in implementing and executing. At first we present
the general version of QA-programming and then QA-
programming for the expert DM task. For example, the QA-
code of the technique for the Plus-Minus-Interesting analysis
(or PMI-analysis) [18] is presented in Algorithm 2.

The answers in the template are absent till its using.
After loading this template in the task tree it will receive
the status of “the QA-model” for the new subordinated PMI
task and for each question of this model the answer will be
opened. When the point of technique of the PMI task has
been executed the symbol “x” is added to the answers for
questions which have been fulfilled as points of technique.

Usage of value “*” in answers gives the possibility for
breaking the technique in any position and returning to the
next point of the technique in suitable time. Moreover it gives

14

Advances in Human-Computer Interaction

Q2. Actors?

2.1 Primary Actors?

Q2.2. Interested persons?

Q2.4. Assistants?
A2.4. Persons who are used by the system.

A3.1. The name of the first precedent.

of precedent (the concrete script)?

A2. The external persons and systems cooperating with the system being designed.

A2.1. Persons and systems who and which will initiate interaction, will use functions of system for the
decision of the task and will receive valuable result (useful effect) from this interaction.

A2.2. Persons and systems, whose interests consider, protect and satisfy in system being designed.
Q2.3. External events initiating any processes in the system being designed.

Q2.5. Why the given actor cooperates with the system?

A2.5. Under own initiative or how the intermediary, the representative of another.
Q3. Precedents—variants of use of the system by actors?

Q3.1. What task is solved by the actor with help of the system?

Q3.2. What is the higher system for which the system is being designed?

Q3.3. Participants (besides the Primary Actor—the initiator)?

Q3.3.1. Interested persons, whose interests are mentioned with the given precedent?

Q3.3.2. The assistants participating in realization of precedent?

Q3.4. Frequency rate of association between the actor and precedent?

Q3.4.1. How many “copies” of the actor (concrete subjects) can (simultaneously) take part in realization

Q3.4.2. How many copies of precedent can (simultaneously) be realized by one actor (the concrete subject)?

ALGORITHM 1: Fragment of QA-program for creation of Use-Case.

Question-Answer Template File

“The scheme of PMI management”

Q1. Specifying a problem of decision-making?

Q2. Creating a subtask of decision-making (PMI)?

Q3. Creating a subtask of documenting of decision-making?
Q4. Loading a pattern of method PMI?

Q5. Identifying of problems and the purposes in a pattern?
Q6. Forming the list and an estimation of pluses?

Q7. Forming the list and an estimation of minuses?

Q8. Forming the list and an estimation of interests?

Q9. Loading of the module of gathering and calculation
of estimations?

Q10. Calculation of the general estimation?

Q11. Analyzing result and decision-making?

QI2. Creation documents

QJ.1. What is the first plus from the decision?

AJ.1. XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX.

QJ.1.1. What importance of the first plus (+1 till +10)?
AJ.1.1. +6.

QJ.2. What is the second plus from the decision?

AJ.2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYY-

QJ.2.1. What importance of the second plus?

AJ.2.1. +8.

QK.1. What is the first minus of decision (—1 till —10)?
AK.1. -5.

ALGorITHM 3: Fragment of the estimation results.

TaBLE 1: Table structure for PMI technique.

ArgoriTHM 2: QA-model of the technique.

the possibility for tracing the way of executing the technique
with any executable structure.

Definite documents are used in the DM tasks and in
presented PMI task also. For working with documents the
QA-processor allows using the special class of service tasks.
Each task of such class also uses the QA-template and the
corresponding QA-model. Such possibility is reflected in
Figure 3 as “Documenting view.”

For the PMI task its base document has the table
structure (see Table 1).

The document table structure is being transformed to the
corresponding QA-protocol the potential fragment of which
is presented in Algorithm 3.

Positive
Plus Value

Negative
Value

Interesting
Value

Minus Interest

Externally simple structure of the two QA-models hides
the rich possibilities of their (useful for designing) trans-
forming, processing, and visualizing which are caused by the
system of their architectural views. Moreover the PMI task
and the corresponding task of its documenting are included
into the task tree of designing the SIS and all tasks of this
tree have similar QA-models and are controlled by unified
rules.

Different kinds of relations between tasks are used in the
task tree of designing the SIS. Relations being possible for
the DM tasks are presented in Figure 14 where tasks of the
definite type are marked by labels.

Advances in Human-Computer Interaction

! _ZP —project task
ZiDMfthe DM task

IiZ]lJ —task of documenting

7 DM K o
k Z,,—communication task

FIGURE 14: Fragment of the task tree reflecting the relations between
tasks for decision making.

In accordance with circumstances the developer can open
for solving:

(i) the DM task ZPM subordinated to the project task Z*;

(ii) the task of documenting ZJ-D subordinated to the DM
task ZPM;

(iii) the communication task ZX subordinated to the DM
task ZPM;

(iv) the task of documenting Zé) subordinated other task
of documenting Z0;

(v) the communication task ZX subordinated to the task
of documenting Z™.

Let us notice that communicative tasks in the WIQA.Net
support “communicative view” by the specialized e-mail,
meeting, estimation and argumentation forms of the inter-
action between its users. In the ES its communicative tasks
are used for supporting the substantiation and estimation
functions.

The developer can include to the any point of the task tree
any task of any type if it is necessary for him. The necessity of
decision-making can be requested in any time of designing
the SIS. If so, the appropriate method of decision-making as
a special task will be loaded in the task tree of designing the
SIS.

If it is be useful for the developer he can include to the
needed point of the task tree the suitable communication
task supported by the QA-processor (special e-mail, the
task of collective estimating, the task of argumentation or
the brainstorming task). Estimations into the DM tasks are
fulfilled with the help of the communication tasks. For all
tasks of communication the QA-templates are created and
loaded in the common library of QA-templates. A set of
communication tasks supports “communicative view” of the
QA-model.

Presented approach to QA-programming the PMI tech-
nique was used for QA-programming a set of decision-
making techniques which includes force-field analysis,
paired-comparison analysis, impact analysis, GRID analysis,
and SWOT analysis. All typical QA-programs of named
techniques are combined and included to the special section

15

ZE Text [—| Keys of the statement of Z E H

Q,...7 —

zE A, Kays.

Q.1 Base of
— 4 A,Yes. ES
L ZE M
: Zn Ay Yes
| Keys of the subordinated precedents | —
I ZZ\E]

F1Gure 15: The work with keys of choice.

of the library with QA-templates. All QA-models of the
corresponding documents are included to this library also.
For working with the DM tasks in the frame of designing the
SIS the special plug-in of the QA-processor was developed.

10. Expert Decision-Making

Into the complex of QA-means for decision-making the
“expert system” (ES) is included. Such system is implemented
on the base of the plug-ins of the QA-processor for support-
ing “experience view” of any QA-model.

“The knowledge base” of the ES gives the possibility to
keep precedents of two types - declarative and procedural
precedents each of which includes production rule combined
with the QA-model of this rule. The fact of storage together
with precedent of its QA-model opens additional (to known)
means for checking the adequacy of precedent and specifi-
cation of its version for using the precedent in a situation
of a choice. Such QA-model can be interpreted as a DM
task positive solution of which confirms the relevance of
the corresponding precedent. Moreover, a set of keys can be
appointed to the result of solving the DM task for potential
working with precedents composing other precedents.

For this purpose with any potential precedent (entering
into a number of precedents selected on a set of keys of
for situation of choice for the task ZF), it is necessary
to connect subordinated task of choice ZF. Process of the
decision of task ZF consists in confirmation or not for
answers A,, on questions Q,, of its model QA (ZF). After
positive confirmation of all answers the normative key for
this precedent is being added to the set of keys of the expert
task ZF.

In scheme presented in Figure 15 the inclusion of the
subordinated tasks connected with the analysis of relevance
of precedents, is reflected.

For working with the expert DM tasks in the WIQA.net
following sequence of action can be used.

(1) The statement of the project task (e.g., task ZF in
Figure 15) is transformed to the list of keys for
accessing the knowledge base.

(2) The list of keys is used for interacting with the expert
system and forming the list of potentially relevant
precedents.

16

I’ ___________ I

s | Substantiation |

|
R e L owiedge |
ZEchi £) Working ! Interpreter Gl
18 0 area 1 boo________1 1 base
[N =B k ¢ o

[B A PR !

! ! i Forming the :

T | knowledge base !

Question-answer environment

F1GURE 16: Immersing the ES to SIS,

(3) The expert DM task (e.g., task Z£) is created for each
potentially relevant precedent and this task is loaded
in the task tree.

(4) If the task ZF has a compound type its subordinated
task are loaded in the task tree also.

The work with the uploaded task starts with subor-
dinated tasks (if they are defined). If the solution of the
subordinated task (e.g., task Z£) confirms relevancy then
keys of this task (answer Al) are included to the common
list of keys. Changing the list of keys is a cause for the
next access to the knowledge base. The process of the expert
decision-making is being finished when all loaded DM tasks
are solved.

The general rules of working with the expert DM task
after its loading to the task tree of designing the SIS
is fulfilled as working with the others tasks in this tree.
The expert DM task can be interrupted in any time with
returning to the solution process in suitable time. The useful
service or technological task (any the DM task even) can be
subordinated to the expert DM task.

One of traditional components of decision-making with
the help of the expert systems is estimation of reliability in
the form of answers on questions about attributes used for
a choice of precedents, and about each of precedents as a
whole. One of approaches to estimations of reliability is the
estimation by expert or the estimation by a group of experts.
For the estimation, accessible through “communicative view”
of QA-models, it is enough to include the next task of
estimation to the chosen “point” of a task tree.

Another questions which must be solved within the
frame of expert systems, is the question about a substantia-
tion of accepted decisions. To the main task for generating
the substantiations it is possible to include a subtask of
argumentation the typical version of which is included to the
set of service tasks.

Adaptation of the expert DM-task to its decision in the
SIS leads to “problem-oriented view” of the QA-model
presented in Figure 16. This “block and line” view is chosen
specially, so that it is corresponded to the typical scheme of
the Expert System.

In Figure 16 the structure of the ES is presented against
background of the QA-model to emphasize functional
character of immersing the ES to the SIS?*. Factually all
functions of the ES are being programmed (are being QA-
programmed) with using means of the processor WIQA.Net.

Advances in Human-Computer Interaction

Z10. Precedent 10.

Q1. System is not uploading?

Al. Yes.

Q2. Is a sound signal about disrepair?

A2. Yes.

Q3. Sound signal corresponds to the s s s % *?
A3. Yes.

Q4. What is a reason of the disrepair?

R4. Processor is broken.

ALGORITHM 4: QA-program of confirmation.

710.1. Precedent 46

Q1. What is a reason of the disrepair?

Al. The skew of the adapter plate

Q2. How it can be repaired?

A2. At the switched off computer take out the adapter
from the slot and then insert adapter in the slot.

ALGORITHM 5: QA-program of reaction.

The fact of uniform programming and reprogramming
the base functions of the ES is the sufficient basis to recognize
the version of the SISY* adapted to the expert DM-tasks as a
new kind of expert systems.

Moreover, each of the functions of the ES is being
activated in accordance with the plan (or situationally) with
using the uniform interface of the QA-model. In other words,
through the interface of the QA-model the user can get access
to any component of the ES shown in Figure 16, including
the interface of the ES. It can be understood that the interface
is distributed within structure of the ES.

The high level of QA-programming the task ZF is
beingimplemented as its describing through subordinated
tasks till the required depth. One group of subordinated tasks
includes service tasks which support the decision-making
process. Other subordinated tasks {Z,E } are similar to the
task ZF because they reflect the work with subordinated
precedents. The typical set of such subordinated tasks include
“documenting task”, “adjusting task”, “confirmation task’,
“communicative task” and “reacting task”

Adjusting tasks support the searching, testing and adopt-
ing the appropriate precedents. QA-programs of adjusting
tasks reflect the logical part of “activity reflexes”. Executions
of such QA-programs help to adjust the chosen precedents to
their using for decision-making the task of ZE-type.

QA-programming of the confirmation task and reacting
task will be demonstrated for the ES which helps the user in
the work with the disrepair of the computer. In the developed
ES its knowledge base includes the following precedent “If
(system is not being uploaded) and (there is a sound signal
about disrepair) and (the form of sound signal is s>) then
(processor is broken)”.

For confirmation the user must confirm the set of
questions presented in Algorithm 4.

In the knowledge base there are twelve subordinated
precedents which correspond to the confirmation. One of

Advances in Human-Computer Interaction

Base of ES
—
Agent 1
WIQA.Net

User

FIGURE 17: System for expert monitoring.

the potential reactions for the confirmed condition (reacting
task) is presented as QA-program in Algorithm 5.

Described means were used for solving the task of “expert
monitoring of vessel surrounding” also. The general scheme
of the developed system is presented in Figure 17.

Each vessel in the task is presented as an agent. All agents
live in the common subject area which is materialized in QA-
base as the working area of the ES. States of the working area
reflects dynamically the movement of vessels which must be
subordinated to normative rules described in a guide [19]
and coded in the knowledge base (experience view).

Any agent predicts the own trajectory and location on the
definite time ahead. Such information from agents is used for
building the predictable state of the working area. This state
is accessible to the user of the ES and to agents. Any state is
checked in the frame of “the collision avoidance rules”. Each
action of any agent is registered in its QA-protocol which is
interpreted as a QA-program of the specialized type (similar
“black box™).

In the described ES the cartography subsystem and
means of the agent representation have been included addi-
tionally to the base means of WIQA.Net. The radar station
and its imitator are used as base sources of cartography data
about the vessel surrounding.

11. Conclusion

This paper presents the system of means for question-
answer interaction in collaborative development activity.
The content of such activity is connected with conceptual
designing the SIS the successfulness of which is extremely
low. In order to increase it the Al means can be used and first
of all means for using the integration of intellectual resources
for solving the complex tasks must be experienced.

For such aim the system of QA-means similar to the
CDE-system is suggested. This system (named WIQA) is
investigated and implemented as the QA-processor in a
number of versions. The QA-processor supports creating the
QA-programs for the system of design tasks and their useful
investigation as special kind of conceptual models.

17

The QA-programming is a technique of conceptual
solving the task. This technique helps the designer to build
the decision of tasks from the units of such types as
“question” and “answer with the help of actions with the
experience and/or their models. The QA-programming gives
the possibility to program the human-computer interaction
in real time with task being solved. Step by step the designer
or their group creates new “points” of interaction on the
visualized model of the task promoting the solution of the
task to the final result.

The QA-program of any task is its conceptual decision
representing the combination of “questions” and “answers”
which are created and/or selected (and are adapted if
necessary) in acts of interaction with accessible experience
and/or accessible models of experience according to the
specificity of the task.

The QA-model of the task is a conceptual model the
functions of which are being performed by the QA-program
in its useful investigation in forms of QA-modeling.

The method of conceptual decision is developed for QA-
programming the main task of the conceptual design. Means
of the method are organized as a set of workflows called
“interaction with experience”. Such means can be open for
stakeholders in Internet through the defended Web-access.

Methods and means offered, investigated and imple-
mented by the author open some new possibilities for real
time integrating the intellectual activities of designers. The
number of positive effects also includes: effective monitor-
ing of a QA-process; analysis of opportunities of parallel
coordination of work in the design team (with the purpose
of distribution of work between designers); demonstration
(at a suitable speed) of solution events (at the certain time
interval of automated design); demonstration of the current
condition of automated design (at the certain time); training
the typical decisions (CAD samples) and developing design
skills; as well as personification of events for subsequent
definition of authorship and contribution of members of the
design team.

Proposed means have confirmed the practical usefulness
in development of a number of the SIS, including “auto-
mated system for planning of cargo transportation”, “expert
monitoring of vessel surrounding,” and “automated system
for management of distance education”.

References

[1] “Software intensive systems in the future,” Final Report,
IDATE, Montpellier, France, January 2006, http://www
.itea2.org/attachments/150/ITEA_SIS_in__the_future__Final_
Report.pdf.

[2] R. N. Charette, “Why software fails,” IEEE Spectrum, vol. 42,
no. 9, pp. 36-43, 2005.

[3] The Standish Group, http://www.standishgroup.com.

[4] G. Booch and A. W. Brown, “Collaborative Develop-
ment Environments,” http://www.booch.com/architecture/
blog/artifacts/CDE.pdf.

[5] P. Kroll and Ph. Kruchten, The Rational Unified Process Made
Easy: A Practitioner’s Guide to the RUP, Addison-Wesley,
Reading, Mass, USA, 2003.

18

(6]

L. Bass, J. Ivers, M. Klein, and P. Merson, “Reasoning
frameworks,” Tech. Rep. CMU/SEI-2005-TR-007, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
Pa, USA, July 2005.

P. Sosnin, “Question-answer means for collaborative develop-
ment of software intensive systems,” in Complex Systems Con-
current Engineering, Part 3, pp. 151-158, Springer, London,
UK, 2007.

C. Potts, K. Takahashi, and A. I. Ant6n, “Inquiry-based
requirements analysis,” IEEE Software, vol. 11, no. 2, pp. 21—
32, 1994.

R. Reiff, W. Harwood, and T. Phillipson, “A scientific method
based upon research scientists’ conceptions of scientific
inquiry,” in Proceedings of the Annual International Conference
of the Association for the Education of Teachers in Science, pp.
546-556, Charlotte, NC, USA, January 2002.

D. J. Rosen, “How to Make Inquiry Maps,” 2008, http://
alri.org/pubs/im3.html..

S. Henninger, “Tool support for experience-based software
development methodologies,” Advances in Computers, vol. 59,
pp. 29-82, 2003.

C. Rich and Y. A. Feldman, “Seven layers of knowledge repre-
sentation and reasoning in support of software development,”
IEEE Transactions on Software Engineering, vol. 18, no. 6, pp.
451-469, 1992.

M. H. Lee, “Model-based reasoning: a principled approach for
software engineering,” Software—Concepts and Tools, vol. 19,
no. 4, pp. 179-189, 2000.

J. Burger, C. Cardie, V. Chaudhri, et al., “Issues, tasks
and program structures to roadmap research in question &
answering (Q&A),” Tech. Rep., NIST, Gaithersburg, Md, USA,
2001.

L. Hirschman and R. Gaizauskas, “Natural language question
answering: the view from here,” Natural Language Engineering,
vol. 7, no. 4, pp. 275-300, 2001.

D. Leffingwell and D. Widrig, Managing Software Require-
ments: A Unified Approach, Addison-Wesley, Reading, Mass,
USA, 1999.

P. Sosnin, “Question-answer processor for cooperative work
in human-computer environment,” in Proceedings of the 2nd
International IEEE Conference on Intelligent Systems (IS °04),
vol. 2, pp. 452-456, Varna, Bulgaria, June 2004.

Mind Tools, “Decision Making Techniques and Deci-
sion Making Skills,” http://www.mindtools.com/pages/main/
newMN_TED.htm.

A. N. Cockcroft and J. N. E. Lameijer, A Guide to the Collision
Avoidance Rules, Elsevier, Amsterdam, The Netherlands, 2003.

Advances in Human-Computer Interaction

Advances in : ~ = Journal of

o . Industrial Engineerin
INultimedia e

Applied
Computational
Intelligence and Soft
- ; ey Lomputing—
H H nternational Journal of ! - "
The Scientific D gureter . ey B P —
World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Jourr
Computer Networks
and Communications Advances in

Artificial
Intelligence

i ‘ Advances in
Biomedical Imaging Artificial
¥ 9, =M Neural Systems

#

International Journal of
Computer Games
Technology

Intel ional J na
Reconfigurable
Computing

e . Computational i
t Ad S ~ Journal of
Journal of uman-Computer Intelligence and e, Electrical and Computer
Robotics Interaction Neuroscience Engineering

