
Research Article
Interaction Tasks and Controls for Public Display Applications

Jorge C. S. Cardoso1 and Rui José2

1 CITAR/School of Arts, Portuguese Catholic University, 4169-005 Porto, Portugal
2 Algoritmi Centre, University of Minho, 4800-058 Guimarães, Portugal

Correspondence should be addressed to Jorge C. S. Cardoso; jorgecardoso@ieee.org

Received 2 November 2013; Revised 18 February 2014; Accepted 18 March 2014; Published 10 April 2014

Academic Editor: Thomas Mandl

Copyright © 2014 J. C. S. Cardoso and R. José. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Public displays are becoming increasingly interactive and a broad range of interaction mechanisms can now be used to create
multiple forms of interaction. However, the lack of interaction abstractions forces each developer to create specific approaches for
dealing with interaction, preventing users from building consistent expectations on how to interact across different display systems.
There is a clear analogywith the early days of the graphical user interface, when a similar problemwas addressedwith the emergence
of high-level interaction abstractions that provided consistent interaction experiences to users and shielded developers from low-
level details.This work takes a first step in that same direction by uncovering interaction abstractions thatmay lead to the emergence
of interaction controls for applications in public displays. We identify a new set of interaction tasks focused on the specificities of
public displays; we characterise interaction controls that may enable those interaction tasks to be integrated into applications; we
create a mapping between the high-level abstractions provided by the interaction tasks and the concrete interaction mechanisms
that can be implemented by those displays. Together, these contributions constitute a step towards the emergence of programming
toolkits with widgets that developers could incorporate into their public display applications.

1. Introduction

Public digital displays are becoming increasingly ubiquitous
artefacts in the technological landscape of urban spaces.
Many of those displays are also becoming more interactive,
enabling various forms of user engagement, such as play-
ing games, submitting photos, or downloading content. In
general, interaction is clearly recognized as a key feature for
public displays in both the research literature and commercial
systems, and a very broad range of interaction techniques
have been proposed to create all sorts of interactive display
systems. Still, even if creating a particular interactive solution
is not in itself a major technical challenge, the approaches
used are essentially ad hoc solutions that are specific to one
particular system and interaction experience. The problem is
that there are no abstractions for incorporating interactivity
into public display applications that may help interaction
support become a commodity in public displays. As sum-
marized by Bellucci et al. [1], “At present, there are no
accepted standards, paradigms, or design principles for remote
interaction with large, pervasive displays.”

The fundamental reason why this happens is because
display systems are still based on proprietary technology and
displays networks are operated as multiple isolated islands,
each with its own concepts and technologies. We envision
public displays to progressively move away from a world
of closed display networks to scenarios in which large-scale
networks of pervasive public displays and associated sensors
are open to applications and content from many sources [2].
In these scenarios, displays would become a communication
medium ready to be appropriated by users for their very
diverse communication goals. Third-party application devel-
opers would be able to create interactive display applications
that would run across the many and diverse displays of
the network and interaction would necessarily become an
integral part of the whole system.

However, the current lack of interaction abstractions rep-
resents a major obstacle to this vision and to the widespread
adoption of interactive features in public displays, for both
application developers and users. For developers, this means
that they all have to develop their own approach for dealing
with a particular interaction objective using a particular

Hindawi Publishing Corporation
Advances in Human-Computer Interaction
Volume 2014, Article ID 371867, 17 pages
http://dx.doi.org/10.1155/2014/371867



2 Advances in Human-Computer Interaction

interaction mechanism, leading to extra development effort
outside of the core application functionality. In addition, each
developer replicates this effort, potentially originating poor
designs and wasted effort. For users, the lack of well-known
interaction abstractions is also a problem, as they need to deal
with inconsistent interactionmodels across different displays.
Without familiar abstractions people are not able to use their
previous experiences to develop expectations and practices
regarding interaction with new public displays.

There is a clear analogy between these problems and the
early days of the graphical user interface, when desktop com-
puter programmers had to make a similar effort to support
their interaction with users.The problem was addressed with
the emergence of reusable high-level interaction abstractions
that provided consistent interaction experiences to users and
shielded application developers from low-level interaction
details, as in the XToolkit [3]. Nowadays, when developing
desktop applications, developers can focus on the interaction
features of their applications and abstract away from low-level
issues, such as receiving mouse pointer events, recognizing
a click on a specific button or changing the visual state
of a button that has just been clicked. These low-level
input events are encapsulated by user interface widgets that
provide developers with high-level interaction abstractions,
thus facilitating the task of creating an application. From the
usability perspective, widgets also enforce consistency of the
interface, allowing users to learn to interpret their affordances
in away that enables themmore easily to tackle new interfaces
and programs by building on their previous experience.

This type of abstractions may now also provide an impor-
tant inspiration for addressing the similar problem being
faced by public displays, where the transition to a new era of
generalized interaction support will also require a step up in
the abstraction scale. As described by Mackinlay et al. [4] “to
achieve a systematic framework for input devices, toolkits need
to be supported by technical abstractions about the nature of the
task an input device is performing.” The proliferation of input
devices and techniques for public displays reached a point at
which it is both possible and fundamental to systematize the
knowledge thatmay support the design of interaction toolkits
for public display systems and ultimately enable interaction to
become a common element of any display application in open
display networks.

Our objective is to take a first step in that direction
by uncovering interaction abstractions that may lead to the
emergence of interaction controls for applications in public
displays. Given the broad diversity of public display systems
and interactions models, any solid contribution in this area
needs to be anchored on a clear identification of the main
assumptions being made about the nature of the displays
and the interactions they aim to support. In our work, we
assume an interaction context in which large shared displays
are being used as the execution environment for multiple
applications, each with potentially various concurrent users
that interact with them through various interaction modal-
ities, for example, Bluetooth, SMS, or visual codes. We also
assume that interactions are based on a shared model of
appropriation in which no single user can be expected to
fully appropriate themain public display at anymoment.This

considerably reduces the applicability of our work to displays
where individual appropriation is normally assumed, such as
those based on touch or gesture-based interfaces.

To reach our goal, we have made an extensive review
of 52 publications about interactive public display systems
and coded the description of their interaction features. The
codes generated from that process were then aggregated into
major interaction tasks, a concept borrowed from Foley et
al. [5], each with its own properties and possible values for
those properties. We then matched these interaction tasks
against the concrete interactionmechanisms identified in the
literature, plotting the various implementations found on the
literature in a spatial layout of a design space that extends
previous work by Ballagas et al. [6]. Finally, we explored
different combination of properties and values associated
with the interaction tasks and outlined a set of concrete
interaction controls that can provide a starting point for
the development of interaction toolkits for interactive public
display applications.

The novel contributions of this work are a new set of
interaction tasks focused on the specificities of public display
interaction, a characterization of interaction controls that
may enable those interaction tasks to be integrated into appli-
cations for public displays and a mapping between the high-
level abstractions provided by the interaction tasks that have
been identified and the concrete interaction mechanisms
that can be supported by public displays. Together these
contributions constitute a step towards the emergence of pro-
gramming toolkits with interaction controls that developers
could incorporate into their public display applications.

2. Abstracting Interaction

As a first step in our research, we have made a more in
depth analysis of the concept of interaction abstraction and
particularly to what extent the approaches from the desktop
domain could be applied to this new domain of public
displays.

2.1. Revisiting Desktop Abstractions. In the early days of
graphical user interfaces, application developers were facing a
similar problem as the one currently posed by public displays,
as there was not a consistent way to integrate interaction
features—actions interpreted in the context of the application’s
semantic domain, provided by the application to a user—
into the applications.This was addressed with the emergence
of various conceptual frameworks for interaction, such as
pointer based graphical interaction.

Mackinlay et al. [4] proposed a design space of input
devices, using a human-machine communication approach.
In their design space, they consider the human, the input
device, and the application: the human action is mapped into
parameters of an application via mappings inherent in the
device. “Simple input devices are described in terms of semantic
mappings from the transducers of physical properties into the
parameters of the applications.” A device is described as a six-
tuple composed of a manipulation operator, input domain of
possible values, a current state, an output domain, and addi-
tional device properties. This six-tuple can be represented



Advances in Human-Computer Interaction 3

diagrammatically, and this graphical representation of the
design space has been used extensively to characterize and
compare different input devices.

Foley et al. [5], produced a taxonomy which organizes
interaction techniques around the interaction tasks they are
capable of performing. The interaction tasks represent high-
level abstractions that essentially define the kind of information
that applications receive in result of a user performing the task.
They form the building blocks from which more complex
interactions, and in turn complete interaction dialogues, can
be assembled. They are user-oriented, in that they are the
primitive action units performed by a user. Foley’s tasks were
based on the work byDeecker and Penny [7] which identified
six common input information types for desktop graphical
user interfaces: position, orient, select, path, quantify, and text
entry. Foley also identified various interaction techniques that
can be used for a given task and discussed the merit of each
technique in relation to the interaction task. In this work,
we use the concept of interaction task as defined by Foley to
analyse interaction with public displays.

Myers [8] proposed interactor objects as a model for
handling input from the mouse and keyboard. An interactor
can be thought of as an intermediary abstraction between
Foley’s taxonomy and concrete graphical user interface (GUI)
widgets. Interactors support the graphical subtasks, but
abstract the concrete graphics system, hide the input han-
dling details of the window manager, and provide multiple
behaviours, such as different types of graphical feedback
that can be attached to user interface objects. Myers defined
six interactors: menu-interactor, move-grow-interactor, new-
point-interactor, angle-interactor, text-interactor, and trace-
interactor. The same interactor can be used to implement
various concrete GUI widgets.

This type of research led to the now widely used concept
of user interface widget (also known as “interaction objects,”
“controls,” or simply “widget”): an abstraction that hides the
low-level details of the interaction with the operator, trans-
forming the low-level events performed by the operator into
higher level events—Bass and Coutaz [9]. Widgets provide
support for the three main stages of the human action cycle
[10]: goal formation, execution, and evaluation. Their graph-
ical representations and feedback support mainly the goal
formation and evaluation stages. Widgets have a graphical
representation that application developers use to compose the
graphical user interface (GUI) of the application, supporting
users in the goal formation stage by providing graphical
representations to the interaction features of an application.
Widgets also support the evaluation stage by providing
immediate graphical feedback about their state. For example,
a textbox widget echoes the typed characters to show what
users have already written and shows a blinking text cursor to
indicate that it can accept more input.The internal behaviour
of a widget supports the execution stage and insulates appli-
cations from low-level input events transforming them into
high-level interaction events. For example, an application that
needs users to input a text string does not need to handle
individual key presses; it can use a textbox widget that does
this low-level handling and passes back to the application
the complete text string. In widget toolkits, interaction

events are usually defined as asynchronous function calls
made by the interaction software system to the application.
The kind of information carried by the interaction event
defines what interaction task is being accomplished. From an
informational perspective, multiple types of widgets could be
used to accomplish a desired task. For example, to allow users
to input a number, programmers often have at their disposal
several types of data entry widgets—number type-in boxes,
sliders, and spinners—that can restrict the type of accepted
data and provide different interaction events (a type-in box
usually triggers an event only after the number is entered,
while a slider fires a sequence of events with intermediate
values as the user drags the slider). Even though our work is
strongly inspired by thewidgetmetaphor, in this paper we use
the more general term control to designate the same kind of
abstraction.This is becausewidgets have a strong connotation
with a particular graphics and interaction paradigm that may
not be appropriate for public displays.

There are also model-based user interface development
languages and tools that provide support and useful abstrac-
tions for various phases of the software development cycle.
For example, the MARIA language [11] is a model-based user
interface description language targeted at applications for
ubiquitous environments. Interactive public display applica-
tions, however, are not yet mature enough for the emergence
and use of model-based tools. By characterizing the inter-
action tasks and controls that are suitable for public display
interaction, our work may help to consolidate the level of
abstraction needed to successfully usemodel-based tools and
languages.

2.2. Interaction in Public Displays. While it seems reasonable
to apply successful lessons from the desktop world, there are
significant differences that need to be accounted for when
considering the adaptation of those principles to the specifics
of the interaction environment around public displays. Using
the concept of “ecosystem of displays” introduced by Ter-
renghi et al. [12], we could generally describe the public dis-
play environment as perch/chain sized ecosystems for many-
many interaction, composed of displays of various sizes (from
handheld devices to medium/large wall mounted displays)
and where “many people can interact with the same public
screens simultaneously” [12]. Although there can be many
kinds of social interaction in these spaces, we are focusing
essentially on many-many interactions where there is not a
single person or small group that “owns” the information of
a display. Instead, the aim is to create a shared information
space where everyone can have the same opportunities
to interact and where the different displays offer different
views to the information or different possibilities to interact
with it. The different sized displays afford different types of
interaction but they can function in an integrated way in the
ecosystem, offering different synergies and opportunities [13].
For example, touch-sensitive surfaces in the tables of a bar or
the personal devices of people in that same bar may all be
used as privileged input devices to a public display system for
sharing content on a larger vertical public display. Multiple
users may generally share these public display systems at the



4 Advances in Human-Computer Interaction

same time, even if in a noncoordinated way, interacting with
the various features of the system, using different interaction
mechanisms, both remotely (e.g., using a mobile device) and
at close distance (e.g., touching the public display itself).

Unlike desktop systems, which usually rely on a very
small set of input devices—most often just a keyboard and
mouse—public display interaction can take advantage of very
different interactionmechanisms. For example, Ballagas et al.
[14] have proposed twomechanisms thatmake use of camera-
phones to interact with public displays: the sweep technique,
where the camera-phone is used as a mouse with the optical
flow determining the amount and direction of movement
from sequential images taken by the phone’s camera and
the point and shoot technique, where an overlay of visual
codes on the public display is used to allow the phone to
determine the absolute coordinates of the point the camera is
pointing at. Bluetooth naming [15, 16] has also been used as
an interaction mechanism by providing a simple command
language that users can use in the names of their Bluetooth
devices, which are continually scanned and evaluated by
the display system. Bluetooth file exchanges between users’
devices and the display system has also been explored,
for example, by Cheverst et al. [17] in the Hermes Photo
display system. Dearman and Truong [18] have proposed a
DTMF (dual-tone multifrequency signalling) based solution
for interacting with public displays where users can control
applications by connecting their phone to the display system
via Bluetooth and pressing keys on the mobile phone that are
mapped to different actions on the application. Many other
input mechanisms such as SMS/MMS [19], email and instant
messaging [20], Twitter [19], RFID tags [21], gestures [22],
and face detection [23], to name a few, have been explored
for public display interaction. The UBI-Oulu infrastructure
is a relevant example of a multiapplication network of public
displays that offers a wide range of services via various
interaction modalities [24], including a 57



capacitive touch
screen, two overhead cameras, an NFC/RFID reader, and
Bluetooth. A number of web-based interactive applications
can be accessed through an application menu and used
through a combination of the interaction modalities.

The breadth of mobile interaction mechanisms has
alreadymotivated research that tries to systematize the cumu-
lative knowledge around mobile techniques for interaction.
Building on Foley’s interaction tasks, Ballagas et al. [6]
developed a design space for comparing how differentmobile
device based input techniques could support a given interac-
tion task.The input techniques were compared along various
dimensions such as the number of physical dimensions (1d,
2d, 3d), the interaction style supported, the type of feedback
provided, and whether the technique provides absolute or
relative values. As stated by the authors, their design space
is “an important tool for helping designers [. . .] select the most
appropriate input technique for their interaction scenarios.”
The work by Ballagas et al. [6] provides a valuable design
space for reasoning about the multiple types of interaction
with public displays using mobile devices. We thus used this
as a starting point for our own work and extended it in two
ways: by considering not just the smart-phone, but also other

interaction devices and by considering the existence of new
interaction tasks, beyond the ones defined by Foley et al.,
which may give a broader and more specific view of the
interaction space with public displays.

3. Interaction Tasks for Public Displays

To uncover interactive tasks for public displays, we made
a comprehensive study of existing publications around the
topic of interactive public displays. This approach aimed to
go beyond specific interaction techniques and allow common
interaction patterns to emerge from the assumptions and
approaches applied across a broad range of interactive display
systems. Our research followed an approach based on the
grounded theory methodology [25], borrowing many of its
phases: open, selective, and theoretical coding;memoing; and
sorting.

We started with an initial set of 12 papers and did a first
phase of open coding, in which we produced our first set of
codes corresponding to specific attributes of the respective
interactions.We then analysed these codes to aggregate some
of them and remove others that were deemed not relevant
from the interaction point of view. This much smaller set
of relevant codes was used as the starting point in a second
coding phase, where we coded 40 additional papers. These
additional papers were selected from standard academic
services (ACM Digital Library, IEEE Xplore Digital Library,
Google Scholar) based on keyword searches for interactive
public displays. We further refined the paper selection task
to guarantee a balanced combination of various interac-
tion mechanisms, various application domains, and various
types of displays. This paper selection process was iterative
and simultaneous to the coding procedure. Following upon
GroundTheory principles, we continued to select new papers
until the coding was saturated. Simultaneously, we started
a third theoretical coding phase, identifying relationships
between the existing codes and producing new codes to
reflect these relationships. In this phase, we started organizing
the existing codes into categories of interactions, along with
their properties and concrete values associated with those
properties. We adopted the definitions of categories and
properties fromGlaser and Strauss [25]: “A category stands by
itself as a conceptual element of a theory. A property, in turn, is
a conceptual aspect or element of a category.”

To identify and distinguish categories, we analysed the
interaction features that were being described, based on the
underlying types of information that had to be exchanged
between the user and the display system. These second
and third phases were highly iterative and intermixed: we
recoded previously coded papers more than once to make
sure their codingwas up-to-datewith the latest categories and
properties. For example, if we identified a new property while
coding a paper, we would go back to previous publications
andmake sure we coded that property, in case we hadmissed
it originally. The complete process originated a total of 87
codes that referenced 448 text segments in the 52 papers [26].

Memoing, that is, writing ideas associatedwith codes, was
also an important part of the methodology and this went in



Advances in Human-Computer Interaction 5

Table 1: Interaction tasks, properties, and values.

Task Property Values
Select Type of selection [Action, option]
Data entry Bounds [Unbounded, bounded]

Upload Media type [Text, image, video, audio, etc.]
Media location type [Personal device, public location]

Download

Media type [Text, image, video, audio, etc.]
Media location type [Display system, public location]

Target device [Smartphone, email, USB stick, print]
Target user [Self, other]

Signal presence Location disclosure [Automatic, manual]
Location verification [Verified, unverified]

Dynamic manipulation Type of manipulation [Cursor, joystick, keyboard, skeleton/silhouette]

parallel with all the coding phases. We used memos to start
relating our codes together and forming a structured view (of
categories, properties, and values) of all the interaction tasks
that were emerging. We also used memos to note possible
missing properties and values that we needed to search in
additional publications to make sure our categories were
saturated. The memos associated with the categories became
the first raw descriptions of our interaction tasks in the final
description and analysis, after we sorted them to chain the
ideas that emerged during the coding phases and turn them
into a more logical narrative.

The categories that resulted from the coding process
correspond to the interaction tasks that define the general
information that the application needs to specify and the
information that the application receives in the interaction
events. The interaction tasks have properties that can take
different concrete values and restrict the information or the
behaviour associated with the task. These properties and
values of the interaction tasks are mapped directly from the
properties and values that resulted from the coding process.
For example, the passage “CoCollage users who are connected
to the web site in the café may also send messages directly to
CoCollage via a textbox near the upper right of any page” is
describing an interaction feature that allows users to send a
text message to the display. In the third coding phase, this
feature was coded with “data entry” (category), “bounds”
(property), and “text” (value).

The result of this analysis is the list of 6 interaction tasks
summarised in Table 1. As previously defined in Section 2.1,
these interaction tasks should be seen as representing the
main types of information exchange that may occur between
the system and a user as part of an interactive event. They
are essentially low-level tasks that focus on interaction itself
and are not meant to represent high-level user goals, as
is normally the case in the context of task analysis and
modelling.

We will now describe in more detail each of those inter-
action tasks, characterizing them in terms of the respective
information exchange, the associated properties, and the
possible values for those properties. Whenever appropriate,
we will illustrate these properties with specific examples from
the surveyed display systems.

3.1. Select. The select task is equivalent to the select task of
Foley et al. [5], allowing users to trigger actions or select
options in an application. It requires applications to specify
the complete set of options or actions they wish to provide to
users. The interaction event triggered by the display system
will include the action or option identification, so that the
application can determine which one was selected.

3.1.1. Type of Selection. The type of selection property refers
to what users are selecting: an action to be triggered imme-
diately by the application or an object from a list of possible
objects. Using the terminology of Cooper et al. [27], in action
selection users input a verb (what action the application
should perform), and the noun (the object on which to
act) is usually implicit. In object selection, users input a
noun and later a verb (or the verb is implicit). These two
types of selection are traditionally represented graphically
in very different forms; for example, on desktop systems
programmers usually have at their disposal different sets of
widgets for triggering actions (menus, toolbars, buttons) and
for selecting objects (list boxes, dropdowns).

In regard to triggering actions, Vogel and Balakrishnan
[22] in the Interactive Public Ambient Displays system
provide an example using hand gestures: “Two complimentary
hand postures are used to hide and show the display of a user’s
own proxy bar. The hide action is performed with a palm
away posture consisting of an open hand pointing up with
palm facing the display [. . .], analogous to the commonly seen
“stop” gesture used for traffic signalling in real life.” QR codes
are also a common alternative to provide users with a visual
representation for an action, whether in a live public display
or printed on paper. In the Mobile Service Toolkit/Mobile
Service Explorer (MST/MSE) [28], for example, users could
scan a visual code to have access to various actions: “Sally
can click on the tag using her MSE-enabled phone to establish
a Bluetooth connection with the service. As soon as the
phone connects with the service, her phone displays a message
containing the current queuing time and asks whether she’d
like to join the queue.” Another example is the Bluetone
system [18], where users can use their phone’s keypad to issue
commands: “[. . .] a user is able to watch a particular YouTube
video, but also has the added ability of controlling audio/video



6 Advances in Human-Computer Interaction

playback. The user presses ‘5’ on their mobile phone to pause
the video [. . .].”

Selecting an object or item from a set of related items is
also a frequently used feature, as the following examples show.
The e-Campus system [16] provided a Bluetooth naming
based interactionmechanism for selecting a song to play: “By
subsequently changing their device name to ‘\ec juke<song id>’
the selected music track will be added to the queue of songs
to be played.” In this case users explicitly enter the action to
be performed (i.e., “juke”) and the item on which the action
should take place (i.e., the song id). More often, the action is
implicit and users just need to select the item to be acted on
from a list presented by the public display, as in this Plasma
Poster [29] example, which used a touch-screen interface: “. . .
this was the last item posted to the Plasma Poster Network,
and the display cycle is about to begin again. Readers can
select any thumbnail to be displayed by pressing it.” SMS is also
frequently used for this purpose, as in LocaModa’s Polls [19]
application were users would vote by selecting a choice from
a list presented by the display.

3.2. Data Entry. The data entry task allows users to input
simple data (text or numeric data) into a public display.
Applications need to specify which type of data they wish
to receive (text, numeric, dates, etc.) and possible bounds
or patterns on the values they can accept. The interaction
event that the application receives carries the user-submitted
data. The data entry task is equivalent to the combination of
the “quantify” and “text entry” tasks defined by Foley et al.
[5]. In their classification of desktop applications’ controls,
Cooper et al. [27] combine quantify and text entry controls
into a single category of “data entry.” In our analysis, we also
chose to combine them because if we abstract the interaction
paradigm and consider the information exchange between
user and application, quantifying and entering text are essen-
tially the same: users input values into the application.

3.2.1. Bounds. The bounds property of the data entry task
refers to whether the application accepts free text from the
user or whether it imposes some predefined format to the
data. For example, integer number within a limit or text that
corresponds to a valid email address. This is an important
property to consider because it imposes restrictions on
the possible interaction mechanisms that can be used. For
example, there is no easy way to guarantee that a value
entered via an SMS message, Bluetooth naming, email, or
other text-based interaction mechanisms conforms to the
format accepted by the display system, before the user sends
it. Special care should be taken if these mechanisms are used
for bounded data entry as they can result in user frustration
if the display system rejects the input.

Unbounded text entry corresponds to Foley’s text entry
task, in which users are allowed to submit a string of text
that does not need to conform to any specific rule. Text entry
can be used to send messages, comments, and keywords,
to the public display. In CoCollage [30], for example, users
could send messages to the display by entering text in the
display systems’ web page. Entering search terms is also a

common use of text entry feature in public displays. Davies
et al. [16], for example, provided a Flickr search application
in their e-Campus system: “Users can access photos on Flickr
by changing their [Bluetooth] device name to ‘ec flickr <search
term>’. For example ‘ec flickr oranges’ would cause photos
retrieved using the search term ‘oranges’ to be displayed.” SMS
is also frequently used to allow user input. LocaModa’s Jumbli
application [19], for example, allows users to play aword game
by texting their words. Touch interfaces can also be used for
these interactions, supporting the traditional desktop entry
controls such as sliders and dials but also text-entry via
onscreen keyboards as in the Digifieds [31] system.

Bounded data entry restricts the type, pattern, and range
of the values that are entered. For example, in Visual Code
Widgets, Rohs [32] described how visual widgets could be
used with a camera phone: “Unlike free-form input widgets,
which provide ‘unbounded’ input, sliders are ‘bounded’ data
entry widgets. The slider can be moved across a certain range,
the selected value being proportional to the current slider
position. [. . .] there are horizontal and vertical sliders. Input
can either be continuous or discrete.” Rating is another example
of a bounded entry control, which usually allows users to
enter a 1–5 value for an item. In CWall [33] users could rate
the content items presented by the public display by touching
an icon near the item. Bluetone [18] also allowed users to
input bounded numeric values, in this case, using the mobile
phone’s keyboard.

3.3. Upload Media. The upload task allows applications to
receive media files sent by users. Applications should be able
to specify the type of media they are interested in, but other
parameters such as themaximumfile size ormaximummedia
duration (for video and audio) could also be of interest. The
interaction event received just needs to specify theURL of the
uploaded file.

3.3.1. Media Type. The media type property of the upload
task indicates the type of media file being uploaded: image,
video, audio, html, andmany other types of office documents.
In JoeBlogg [34], for example, images were used to create
an artistic composition on the public display. In other cases,
images were used as free-hand comments to existing content,
creating a discussion thread, as in the Digital Graffiti project
[35]. Audio and video are also often used media types.
In the Dynamo system [36] for example, students could
upload a variety of media files into the surface, including
video and music files: “During the two-week deployment, the
use of Dynamo varied considerably: students displayed and
exchanged photos, video and music, which they had created
themselves or brought in from home [. . .].”

3.3.2. Media Location Type. Themedia location type property
of the upload task refers to the original location of the media.
In many cases, the public display system accepts content
that is stored in a personal device such as a mobile phone
or even a USB pen drive. In these cases content is sent
directly to the public display by attaching the pen drive
or by transferring the file via Bluetooth OBEX or via a



Advances in Human-Computer Interaction 7

custommobile application. In theHermes PhotoDisplay [17],
for example, users could transfer photos from their mobile
phones to the display usingOBEX: “This version of theHermes
Photo Display also enables a user to [. . .] use hermobile phone’s
built-in ‘picture’ application in order to send a picture to the
photo display over Bluetooth [. . .].” In JoeBlogg, users would
send personal pictures stored in their mobile phones via
MMS. In Dynamo, users would simply attach their USB pen
drives to the display to copy the media files into a shared
space. Email has also been explored in the PlasmaPosters [29]
display system: “Posted content can be images andmovies (sent
in email as attachments), formatted text and URLs.”

In other cases, however, users do not actually have a copy
of the content in a personal device, but know the respective
address. In these cases, the display receives a reference to
the content, instead of the content itself. WebWall [37], for
example, accepted URLs of media files to play in the public
display: “[. . .] there are other service classes that are better
defined first over the Web-client: Video and picture galleries
(service class Gallery) can be used to display multimedia
content by composing URLs of the media to display [. . .]”.

3.4. Download Media. The download task allows users to
receive a content item from the display and store it in a
personal device or account for later viewing or reference.
The interaction event received by the application can simply
be an acknowledgement that the file was, or is about to be,
downloaded.

3.4.1. Media Type. The media type property is analogous to
the media type property of the upload task.

Just as in upload task, various media types may be
provided by a display system and made available for users
to download. The Hermes Photo Display [17], for example,
allows users to “[. . .] use the interface on the Photo Display to
select a picture and then receive this picture onto her phone via
Bluetooth.” Videos are also a common media type that users
may want to download. In ContentCascade [38], for example:
“The display is playing trailers of upcomingmovies. Bob sees the
Shrekmovie and decides ‘I like that!’ andwants to download the
movie clip. He pulls out his Bluetooth enabled cell phone [. . .].”

3.4.2. Media Location Type. Themedia location type property
is analogous to its counterpart in the upload task: content to
be downloaded can either be already publicly available and
the display system just provides the address on the web or it
can be content stored internally at the display system that is
transferred to the user. For example, in ContentCascade users
could also receive URLs in their mobile device, instead of the
video itself. In Hermes Photo Display, however, the photos
were stored internally in the display system and downloading
involved establishing a Bluetooth connection between the
display and user’s mobile device to transfer the photo.

3.4.3. Target Device. The target device property refers to
where the downloaded content is transferred as a result of the
interactions. Downloaded media can be received in a variety
of destination devices or personal accounts, using various

communication protocols. Content can be downloaded to
a personal mobile device, for example, using SMS as in
LocaModa’s Community Board application [19]. OBEX is
another protocol that can be used for receiving media files
as in the Hermes Photo Display. There are also examples
of display systems that use custom mobile applications and
communication protocols for receiving files on the mobile
device. Touch and interact [39], for example, consists of a
public display and a mobile application in which “[. . .] the
user interacts with a picture board by touching the picture with
the phone and in response, the picture moves from the dynamic
display to the phone.” Users can also receive files in a USB pen
drive, as in the Dynamo [36] system or download to their
mobile device by scanning a QR code as in Digifieds. Mobile
devices, however, are not the only possibility for receiving
media files. A popular approach is to allow users to receive
the content in their email. In the Digital Graffiti project [35]
for Plasma Posters, for example: “Later, Jane is passing by
the Plasma Poster and sees all the annotations that have been
posted over her original content. She is amused to discover her
post has caused so much response and debate and forwards the
recommended URL to her home email so she can read it later.”
Finally, a less common but also possible solution for specific
media types it to allow users to print the content. Also in the
PlasmaPosters [29] project, users could print a displayed item
directly from the public display.

3.4.4. Target Person. The target person property refers to
whether the content is transferred to the interacting user or
to another person. Often, users want to download content
for themselves in order to get an offline copy of the content
or as a reference to view later. However, there are also cases
where a user wants to download a content item and forward
it to someone else. In this case, users are effectively sharing
content from the display. Plasma Posters, for example, allows
content to be forwarded to others: “Items can be forwarded to
others, or to oneself for reading later at a personal computer.”
The same could be done with Digifieds, which allowed users
to send content via email: “Digifieds can also be taken away
[. . .] by sending them to an email address, [. . .].”

3.5. Signal Presence. The signal presence task allows the
application to be notified about events regarding the presence
of users in the vicinity. Although all interactions with a
display system can be used to determine the presence of users
(if a button was pressed in a touch screen, it means that there
was someone there), in this section, we are considering only
those interactions specifically designed for determining the
presence of users.

3.5.1. Location Disclosure. The location disclosure property
refers to whether the user manually sets his presence, or
whether the presence is sensed automatically by the display
system. The manual form corresponds to a check-in interac-
tion where users decide when they would like to announce
their presence to the public display.

Check-in can be accomplished through a number of
different ways, for example, using hardware that reads a



8 Advances in Human-Computer Interaction

personal identity card or a personal mobile device. Magnetic
card readers, RFID readers, or even Bluetooth detection can
be used to accomplish this type of check-in. Russell and
Gossweiler [40], for example, used personal cards that users
could swipe on a card reader in the BlueBoard display to
access their personal data (in this case, the feature worked as
a login because it allowed access to personal information, but
it could also be used for check-in): “The net effect is that a
user can ‘log in’ by simply swiping their badge at the display,
getting rapid access to their content.” Check-in can also be
accomplished solely through software, for example, through
a mobile application or web page. CoCollage [30] provides
a check-in feature to its users through a button on a web
page. The automatic sensing of users around the display can
itself be subdivided into three forms according to the level
of information sensed: presence detection, characterization,
and identification. Presence detection corresponds to an
on/off detection where the display either detects someone
(but not who or how many) in its vicinity or detects no one.
This can be used to trigger a change in the display’s mode
from an ambient mode to a more interactive mode, as in
the Aware Community Portals [23]: “[. . .] a weather map
triggered by the user walking by versus a news article shown
when the user lingers to browse.” Presence characterization
corresponds to a more rich detection, where the display
is able to sense more information about the people in the
vicinity, such as how many, their position, where they are
gazing, and the estimated age. CWall [33] used computer
vision techniques to infer if people were standing in front of
the display and looking at it. In presence identification, the
display is able to identify users and, possibly associating per-
sonal information. This can be used to provide personalized
content on a public display as in the Proactive Displays [21]:
“When attendees are near a proactive display, content from
their profiles can be shown.”

3.5.2. LocationVerification. The location verification property
indicates whether the system can verify that the user is really
where he says he is. In the automatic presence sensing, the
system can have stronger guarantees that users or at least their
devices are in the vicinity of the display. Sensors are assumed
to be located near the display, and they usually have a limited
detection range. The same happens in the manual presence
sensing that makes use of personal cards or other physical
items that are detected by a card reader or other sensor near
the display system. Even if the check-in is accomplished via
software, the user’s location can still be verified. CoCollage,
for example, uses the local Wi-Fi network to verify the user’s
location: “The presence of users is established via an explicit
‘check-in’ through the use of [. . .] a web page that is enabled only
when the user’s computer is connected to the wireless Internet
router in the café.”

In many cases, however, the user’s location is not verified
by the system. Most location based social networks such as
Foursquare, Google Latitude, and Facebook Places provide
mobile applications that allow to check-in in any place,
without any system verification about the real location of the
user. This is something that is normally accepted by people

as part of the semantics of presence through these check-in
procedures. Some public display systems take advantage of
these existing location based networks. LocaModa’s Check-
in application [19], for example, “leverages widely adopted
location based applications such as Facebook Places and
Foursquare to display relevant venue Check-In activity on
venue digital displays.”The Instant Places [41] display network
provides its own mobile client with similar check-in seman-
tics: “Explicit session activation can be accomplished through a
check-in mechanism available in our instant place mobile app.”

3.6. Dynamic Manipulation. The dynamic manipulation task
corresponds to continuous interactions where users manipu-
late graphical objects in the application’s interface. Dynamic
manipulation represents tasks in which it is fundamental
to provide a direct-manipulation style, particularly, “rapid,
incremental, reversible operations whose impact on the
object of interest is immediately visible” as described by
Shneiderman [42]. In this task, the application receives a
continuous, timely, flow of information, which it can then
map to various graphical objects.

Although the dynamic manipulation task requires a
direct manipulation interaction style, not all interactions in
a direct manipulation style represent dynamic manipulation
tasks. For example, the activation of a button, even if using
some cursor-like interaction is still a selection task, as the
application would only be interested in receiving an action
selection event.

3.6.1. Type of Manipulation. The type of manipulation prop-
erty refers to the type of action performed by the user and
the information received by the application. We defined
four values for this property: cursor, joystick, keyboard, and
skeleton/silhouette input. Although their names may suggest
physical devices, these types of input may be generated
by highly diverse mechanisms (e.g., joystick input can be
generated by a physical joystick, but also by specially arranged
keyboard keys and even by a virtual multitouch joystick).

Cursor events carry information about the position and
velocity of multiple cursors on a 2D or 3D environment and
can be used for mouse, multitouch, or even 3D interactions.
For example, Dynamo [36] allows users to “carve” rectangular
regions on the display to appropriate them for individual
use. This is done by simply “drawing” a rectangle using the
mouse: “Carves can be created by a mouse drag gesture to
create privately owned areas in which only the user and their
chosen members can interact.” In CityWall [43], users used
multitouch gestures to move, scale, and rotate photos.

Joystick events carry information about the angle and
state of joystick/gamepad buttons. In Point and Shoot [14]
users could use their camera phone as a mouse or joystick
and select rotate and move jigsaw puzzle pieces: “The phone
display is used to aim at a puzzle piece on a large display. [. . .]
Pressing the joystick indicates selection and a visual code grid
flashes on the large display to compute the target coordinates
[. . .].” In the Vodafone Cube [44], users could dial a phone
number and control various games, including a car racing
game, using the phone’s keyboard as a joystick.



Advances in Human-Computer Interaction 9

Table 2: Mapping between interaction tasks and touch-screen based interaction mechanisms.

Interaction
mechanism

Interaction task
Select Entry Upload Download Presence Dyn. Manip.

Touch screen

DDC: Plasma Posters;
Hermes Photo
Display; OutCast;
Blueboard; Jukola;
AgentSalon; Digifieds;
Spalendar; iSchool;
FizzyVis; Semipublic
displays; CWall;
UBI-hotspot; Vista

DCC: Plasma
Posters;
Digifieds;
Spalendar;
CWall

DDC: Plasma
Posters; iSchool;
CWall

DDC:
UBI-hotspot

DCC: Plasma
Posters; Blueboard;
FizzyVis; CityWall;
Semipublic
displays

Touch screen +
Bluetooth OBEX

IDC: Hermes
Photo Display

IDC: Hermes
Photo Display

Touch screen +
mobile application IDC: Digifieds IDC: Digifieds

Touch screen +
printer

DDC: Plasma
Posters

Keyboard events carry information about a succession of
key presses in a physical or emulated keyboard. InMST/MSE
[28], for example, the mobile client supported keyboard
input: “transmits all keypress events from the phone’s keypad
back to the MST server in real time.” Remote Commander
[45] is another example where keyboard input was important:
“This allows [. . .] the PalmPilot [. . .] input to emulate the PC’s
keyboard input. The important point is that this works with all
existing PC applications, without requiring any modifications
to the applications themselves.” It should be noted that key-
board events do not necessarily mean that the application is
interested in receiving text data (a keyboard could be used to
play music, e.g.).

Skeleton/silhouette events carry information about the
position of the user’s body joints and/or about the user’s
silhouette. This type of input has recently gained wide
exposure due to the Kinect depth camera controller, but it can
also be accomplished with other sensor technologies such as
body suits, stereo cameras, or motion capture systems. This
kind of input has been mostly explored in artistic interactive
projects, but it has also been applied successfully in public
display systems. Müller et al. [46] in project Looking Glass,
used a Kinect to extract user’s silhouettes and provide a
gaming experience in a public display of a shop window, by
allowing users to wave their arms to push balls on the display.

4. A Design Space of Interaction Controls for
Public Displays

Based on the interaction tasks described in the previous
section, it is possible to frame a new design space for interac-
tion with public displays around those tasks. In this section,
we analyse how the interaction tasks could be mapped to
interactionmechanisms and what interaction controls can be
derived from them.

4.1. Mapping between Interaction Tasks andMechanisms. The
first step in our analysis is to explore the relationship between

interaction mechanisms and the set of interaction tasks. This
mapping provides a comprehensive view of how different
mechanisms can be used to support given interaction tasks
and also of how the various interactions tasks are represented
in the various concrete system implementation from the
research literature.

To facilitate the mapping, we created a spatial layout
that shows how the different interaction tasks can be imple-
mented with various interaction mechanisms. This mapping
is inspired by the spatial layout from Ballagas et al. [6], but
we omitted the attributes dimensionality and relative versus
absolute, which were not relevant for our analysis, and we
added a new interaction distance attribute. The resulting
layout, depicted in Tables 2, 3, 4, and 5, represents how
the interactive displays from the literature are distributed
between the interaction tasks and the mechanisms that sup-
port those tasks.Wehave plotted each interactionmechanism
that appeared in the surveyed interaction public display
systems.

The reference to each interactive display system is com-
plemented with a classification of the interaction along three
secondary dimensions: interaction style, feedback, and inter-
action distance.The interaction style can be direct or indirect:
“in direct interactions, the input actions are physically coupled
with the user-perceivable entity being manipulated, appearing
as if there was no mediation, translation, or adaptation
between input and output. In indirect interactions, user activity
and feedback occur in disjoint spaces (e.g., using a mouse
to control an on-screen cursor)”—Ballagas et al. [6]. Feed-
back can be continuous or discrete: “continuous interactions
describe a closed-loop feedback, where the user continuously
gets informed of the interaction progress as the subtask is
being performed. Discrete interactions describe an open-loop
feedback, where the user is only informed of the interaction
progress after the subtask is complete”—Ballagas et al. [6].
For the purpose of this analysis, we are only considering
shared feedback shown on the public display itself and not
the individual feedback that may be generated on the mobile



10 Advances in Human-Computer Interaction

Table 3: Mapping between interaction tasks and interaction mechanisms based on personal mobile devices.

Interaction
mechanism

Interaction task
Select Entry Upload Download Presence Dyn. Manip.

Bluetooth
detection IDR: BluScreen

Bluetooth
naming IDR: e-Campus

IDR: e-Campus;
Instant Places;
Bluemusic

IDR: Instant Places

Custom mobile
personal device

IDR: Pendle
ICR: VisionWand ICR: VisionWand IDR: Pendle; AgentSalon ICR: VisionWand

DTMF ICR: Vodafone
Cube

DTMF +
Bluetooth
mobile phone

IDR: Bluetone ICR: Bluetone ICR: Bluetone

MMS IDR: JoeBlogg

Mobile
application

DDR: Jukola
DCR: C-Blink
IDR: Mobilenin

IDR: Digital
Graffiti; Hello.Wall;
CWall; Mobile
Service Toolkit

DDR: C-Blink
IDR: Digital
Graffiti; CWall

DDR: C-Blink
IDR: Hello.Wall;
Mobile Service
Toolkit

IDR: Hello.Wall; Mobile
Service Toolkit

ICR: Digital
Graffiti; Remote
Commander;
Mobile Service
Toolkit

Mobile
application +
Bluetooth
mobile phone

IDR: Publix
IDR: Content-
Cascade;
Publix

IDR: Publix ICR: Publix

Mobile
application +
camera phone

ICR: Sweep DCR: Sweep
ICR: Jeon et al.

Mobile
application +
camera phone +
visual codes

DDR: Point &
Shoot
IDR: Visual code
widgets; Mobile
Service Toolkit

IDR: Visual code
widgets DDR: Digifieds ICR: Jeon et al.

Mobile
application +
NFC phone +
NFC display

DDC: Touch &
Interact; Hello.Wall
DDR: Hello.Wall

DDC: Touch
and Interact

DDC: Touch
and Interact IDC: Touch and Interact DCC: Touch and

Interact

Personal id card

DDC: Blueboard;
UBI-hotspot
IDR: CoCollage;
Proactive displays;
GroupCast

SMS IDR: LocaModa IDR: WebWall;
LocaModa IDR: LocaModa

device, for example, whichmay be considerablymore flexible.
In the interaction distance we distinguish between close-
up and remote interaction. Close-up interaction requires
users to touch the display with their body (often fingers
and hands) or with a hand-held device, whereas in remote
interaction users can interact at a distance. This dimension
has implications on the physical placement of the public
display (close-up interaction require displays that are at arms
reach) or on which interaction mechanisms are suitable for
an already deployed public display. Each entry in the table
is labelled with an ordered set of letters corresponding to
the possible values for the three dimensions: Direct/Indirect,
Continuous/Discrete, and Close-up/Remote.

We now use Tables 2 through 5 to analyze how four com-
mon categories of interaction mechanisms—touch-screen
based public displays, interaction via mobile devices, device-
free interaction, and desktop-like interaction—can be used
to support the various interaction tasks, using concrete
examples from the design space.

4.1.1. Interaction Based on Touch-Screens. Touch-screens can
be used without the need for any other device so they are
a good solution for walk-up-and-use, close-up interaction
displays, provided that they can be placed in a location that
allows users to directly touch it. Touch-screens can be used



Advances in Human-Computer Interaction 11

Table 4: Mapping between interaction tasks and device-free interaction mechanisms.

Interaction
mechanism

Interaction task
Select Entry Upload Download Presence Dyn. Manip.

Camera IDR: Aware
Community Portals

ICR: Beye and
Meier

IDR: Aware
Community Portals;
ReflectiveSigns;
CWall; CWall;
UBI-hotspot;
SmartKiosk

Camera (Kinect) DCR: MAID IDR: Code Space DCR: Looking Glass;
Code Space; MAID

Camera
(MoCap system)

IDR: Interactive
Public Ambient
Displays; Spalendar

ICR: Spalendar;
Spalendar

IDR: Interactive
Public Ambient
Displays; Spalendar

DCR: Spalendar
ICR: Interactive
Public Ambient
Displays; Spalendar

Electromagnetic
sensor (gestures) ICR: Gesture Frame ICR: Gesture Frame

Sound (finger click) IDR: Gesture Frame

Table 5: Mapping between interaction tasks and desktop-like mechanisms.

Interaction
mechanism

Interaction task
Select Entry Upload Download Presence Dyn. Manip.

Desktop
application

ICR: Notification
Collage

ICR: Notification
Collage

ICR: Notification
Collage

ICR: Notification
Collage

Email IDR: WebGlance IDR: Locamoda;
WebGlance

IDR: Plasma
Posters; CWall IDR: Digifieds

Instant
messaging IDR: WebGlance IDR: WebGlance

Mouse and
keyboard

ICR: Dynamo;
Opinionizer

ICR: Dynamo;
Opinionizer ICR: Dynamo

Mouse and
keyboard +
USB stick

ICR: Dynamo ICR: Dynamo

Web
application ICR: CoCollage IDR: CoCollage IDR: CoCollage;

WebWall; Digifieds IDR: Digifieds IDR: CoCollage

to support most of the interaction tasks for public displays.
Select, entry, and dynamic manipulation tasks are obviously
well supported. Download media can be accomplished in a
limited way by forwarding the content to a personal email
address entered using a virtual keyboard or by selecting a
username from a list in case the display system has registered
users. Signalling presence can be supported in a manual way
as in the Ubi-hotspot [47] system where users can touch the
display to trigger a transition from a passivemode to an inter-
active mode. None of the public display systems we surveyed
used a touch-screen (without any other device) for uploading
media, although one could conceive that it could be used
for uploading by entering the public address of a file using
a virtual keyboard. However, touch-screens in conjunction
with other devices can provide richer interactive experiences
and better support for the full range of interaction tasks. The
download and upload tasks in particular can take advantage
of personal mobile devices for an easier transfer of media files
by using an approach similar to the one used by the Hermes
PhotoDisplaywithBluetoothOBEX transfers or theDigifieds

approach with visual and textual codes. Signalling presence
can also be made more flexible by incorporating personal
card readers into the display as in the BlueBoard or Ubi-
hotspot display systems.

4.1.2. Interaction Based on Personal Mobile Devices. Remote
interaction can be accomplished through many interaction
mechanisms. A popular approach is to provide a custom
mobile application (usually for smartphones) for interacting
with the display. Some mobile applications require specific
mobile hardware to function properly, such as having a cam-
era, Bluetooth, infrared, and NFC; other mobile applications
require the display to be able to generate visual codes.Most of
thesemobile applications provide an indirect interaction style
with the public display where the user’s focus is on themobile
device interface. Some, however, turn the mobile device into
a tracked object as in C-Blink and Point and Shoot or into
a viewport into the public display interface, as in the Visual
Code Widgets, which provides a direct interaction style but



12 Advances in Human-Computer Interaction

also requires users to stand closer to the display and hold the
device in front of it. These solutions cover the complete set of
interaction tasks for public displays, allowing users to have a
rich interaction experience with a public display, remotely.

Another frequent alternative is to use the standard
processing and communication features of mobile devices,
without the need to install additional applications. Bluetooth
detection, Bluetooth naming, SMS, Multimedia Message
Service (MMS), and Dual-Tone Multifrequency (DTMF)
have been used to support different interactive features.
Although these interaction mechanisms do not support all
the interaction tasks, they may still be a viable solution for
specific interactions. Bluetooth has the advantage of being
widely supported bymobile devices and cost-free for the user.
Bluetooth detection, that is, scanning the area near the public
display for Bluetooth enabled devices and reading their ids,
can be used to estimate the number of people that are present
and to determine which devices have been near the display
and when, as in the BluScreen system. SMS and Bluetooth
naming, that is, interpreting the Bluetooth name of the device
as commands to the display system, can be used for selection
and data entry, even if in a simple way, as in the e-Campus,
and Instant Places systems. MMS can be used to upload or
download pictures and other media files. The downside of
both SMS andMMS is that it requires users or display system
to incur in costs (which can be considerable for MMS) when
sending the messages. Finally, DTMF can be used to support
selection and data entry tasks as in the Bluetone system and
dynamic manipulation as in the Vodafone Cube. DTMF also
has costs for users, unless it is done over Bluetooth as in
Bluetone.

4.1.3. Device-Free Interaction. Device-free interaction with
public displays can be accomplished with cameras (standard
web cameras or depth sensing cameras such as the Kinect)
and computer vision techniques. Device-free interaction has
the advantage of providing a walk-up-and-use interaction
and not requiring users to directly touch the display, allowing
it to be positioned in a way that allows multiple users
to see and interact with it simultaneously. With devices
such as the Kinect, it can be a viable solution in scenarios
such as shop windows where it can also be used to detect
and attract passers-by. Selection, data entry, presence, and
dynamic manipulation tasks can be accomplished with these
interaction mechanisms. Although device-free interaction
by itself does not support download and upload tasks, it
is possible to use additional devices for this purpose as in
Bragdon et al. [48].

4.1.4. Desktop-Like Interaction. It is also possible to support
all the interaction tasks through desktop-like interfaces. One
possibility is to provide a custom native or web application
that enables users to interact with the public display. All
the interaction tasks can easily be supported in this manner.
For example, Notification Collage, CoCollage, and Digifieds
provide applications that mediate the interaction with the
public display itself. It is also possible to provide a desktop-
like interaction where the public display application itself

behaves in a similar manner to a desktop application as in
the Dynamo display where users simply pick up a mouse and
keyboard to interact with the display. As in the case of mobile
devices, it is also possible to use standard desktop applications
such as email or instant messaging to interact with a public
display system as in Plasma Posters, CWall, WebGlance, and
other systems. Although it is not possible to support all the
interaction tasks (e.g., dynamic manipulation is not possible
with email or instant messaging), it can still be a plausible
solution in some cases, as it leverages on existing applications
thus obviating the need to install additional software.

4.2. Interaction Controls. Interaction controls provide the
next element that is needed to enable applications to benefit
from the interaction tasks that we have identified. The high
level of abstraction that is associated with the interaction
tasks needs to be instantiated into specific controls that can
be integrated into applications to support interaction. A
control can still maintain independence from the concrete
interactionmechanism, but it refines the specific information
being exchanged, defines additional optional and mandatory
parameters, and can manage input in a specific way before
triggering the interaction event. Just as we have several types
of data entry controls for desktop applications, public display
applications also need different controls for the same interac-
tion task.These controls will form the main components that
applications will use to provide their interaction features.

As part of our analysis of the interaction tasks, we sought
to identify a representative set of controls that could illustrate
how the various tasks could be instantiated. To define the set
of controls we have considered the need to include all the
interaction tasks, the key variations within each task and also
what seemed to be the most common forms of interaction
in the research literature, as illustrated in Tables 2 through
5. Still, this is not meant to be an exhaustive listing (As
Foley et al. [5, page 20] put it “their number is limited only
by one’s imagination”), but it provides a good overview and
comparison of the possibilities for implementing the various
tasks for public display interaction and it should provide a
relevant starting point for designing interaction systems for
public display applications. The relevance of these specific
controls will ultimately depend on their real world usage,
which may lead to the emergence of totally new controls,
changes to existing ones, and the disappearance of others.

In this description, we focus on the interaction events and
information processing associatedwith the controls.We leave
out the graphical representation and feedback aspects usually
associated with widgets in desktop systems, as these would
be very dependent on the specific implementation of the
interaction system. Table 6 provides a list of possible controls
for the various tasks.

Together, the mapping between the interaction mech-
anisms and interaction tasks and the characterization of
the controls that support those tasks forms a design space
for interaction abstractions for public displays that can be
used in several ways. A designer of an interaction toolkit
for public display applications can use the design space to
understand the kinds of high-level controls that the toolkit



Advances in Human-Computer Interaction 13

Table 6: List of possible controls for supporting the various interaction tasks.

Task Control Description

Select

Action A generic action control, which causes the application to execute an action; similar to a
desktop button. Triggers an event that identifies the action.

Option list A generic list control, which presents several options and allows users to select one (or
more). Triggers an event with the selected option when a user makes a selection.

Vote
Time based action control with a list of alternatives that waits for interactions during a
predefined period of time. Triggers an event with the most voted alternative, when the
time expires.

Data entry

Unbounded text Allows users to input any string of text. Triggers an event with the input string.

Bounded text Supports various text patterns (such as email addresses, phone numbers, and dates).
Triggers events with input string that conform to the specified pattern.

Numeric entry Generic numeric entry control allows users to input numbers, possibly with lower and
upper limits, integer, or floating point. Triggers event with the input number.

Rate Allows users to rate content. May support various formats such as different scales,
discrete/continuous rating scale. Triggers event with the input rating.

Upload media

Generic upload An upload control that accepts any media file, possibly with a parameter to limit the
total file size. Triggers an event with the location of the uploaded file.

Video upload
Accepts only video files. Allows applications to specify the maximum duration of the
video and supported video formats. Automatically converts between unsupported
video formats to supported ones, for example, or simply does not allow unsupported
formats.

Image upload
Accepts only images. Allows applications to specify the maximum/minimum image
size and supported image formats. Automatically converts images that do not conform
to the specified size and format restrictions.

Audio upload Accepts audio files. Allows applications to specify the supported formats and
maximum audio duration.

Download media
Download Allows application to specify the media type and location of a content item that users

can download. Triggers an event that identifies the downloaded file.

Share Allows users to share a content item with other people. Triggers an event that identifies
the shared file.

Signal presence

Check-in
Allows users to explicitly signal their presence near a display. Optionally, the
interaction event can carry the location verification status, allowing the display system
to give more weight to check-ins with verified locations, for example.

Presence
Signals the presence of users obtained implicitly from sensors. The information carried
on the interaction event may vary, depending on the concrete types of sensors
available, but we can generally categorize it according to the levels of information that
are sensed: presence detection, characterization, and identification.

Dynamic manipulation

Cursor Allows users to dynamically interact via (multiple) cursor positions. The interaction
event is a continuous flow of cursor positions.

Joystick Provides joystick information (direction, gamepad button states), for gaming
purposes. The interaction event is a continuous flow of direction and button states.

Keyboard Provides keystroke events. The interaction event is a continuous flow of key presses.

Skeleton Provides positioning of body joints and/or user’s silhouette information (full or partial
body parts). The interaction event is a continuous flow of skeleton/silhouette data.

should provide to application developers and which interac-
tion mechanisms can support those controls. For someone
deploying a public display system, the design space can be
used to helpmake informed choices regarding the interaction
mechanisms that should be deployed in order to support
a specific set of interaction tasks. It can also be used to
determine the interaction characteristics those interaction
mechanisms impose. Application developers can use the
design space to understand which controls can be supported
by public display systems and decide how the interaction
features of their applications can be implemented using

those controls. Additionally, the various concrete examples of
display systems listed in the design space can also be used as
reference or design patterns, for the implementation of the
various controls in the interaction toolkit.

4.3. PuReWidgets Toolkit. As part of our work on interac-
tion abstractions for public displays, we have also created
the PuReWidgets (Public, Remote Widgets) programming
toolkit [49] for web-based interactive public display applica-
tions.This toolkit instantiatesmost of the interaction controls



14 Advances in Human-Computer Interaction

that constitute our design space, enabling us to demonstrate
the overall applicability of the design space in the context
of the specific needs of multiple interactive applications for
public displays.

We targeted web-based public display applications and
created a programming library that developers of public
display applications can incorporate into their applications
to take advantage of widget-based interaction abstractions.
In our current implementation, the programming library
is available for the Google Web Toolkit [50] development
framework. Our widgets were derived from the controls
presented earlier and they abstract input from a variety of
interaction mechanisms, provide graphical representations,
and provide a standard object-oriented programming
interface. The following widgets are currently provided.

Button. A button widget represents an action control (select
task) and it allows users to trigger actions in the public display
application. An action button is graphically represented on
the public display as a standard web button with a label
(Figure 1(a)).

List Box.The list box widget represents an option list control
(select task) and allows users to select among a set of related
items. List boxes are graphically represented as a vertical list
of text items with a title at the top (Figure 1(e)).

Text Box. A text box widget represents an unbounded text
control (data entry task) and it allows users to input free text.
Text boxes are graphically represented as standard web text
boxes with a label inside (Figure 1(f)).

Upload. An upload widget represents a generic upload
control (upload media task) and it allows users to submit
media files to the public display application. An upload
widget is graphically represented as box with a down arrow
and a label inside (Figure 1(c)).

Download. A download widget represents a generic
download control (download media task) and it allows
the application to provide files that users can download to
their personal devices. A download widget is graphically
represented as box with an up arrow and a label inside
(Figure 1(b)).

Check-in. A check-in widget represents a check-in control
(signal presence task) and it allows users to signal the
application that they are present. It is graphically represented
as a location marker with a label on the side (Figure 1(d)).

These widgets can be interacted with using various
mechanisms, but programmers are shielded from the details
of the particular mechanism used to interact: all widgets
trigger high-level events that are independent of the concrete
mechanismused by a particular user.Our toolkit supports the
following types of interaction mechanisms. Text-based inter-
action includes various different input mechanisms such as
SMS, instant messaging, email, Bluetooth naming, and other
mechanisms where the communication is made mainly via
text messages.The toolkit generates unique textual references

Figure 1: Default graphical representations for widgets.

Figure 2: Widgets in the context of a public display application.

that users input in the text message to allow the system to
identify the target application and widget. The toolkit also
supports smart-devices by automatically generating a graphi-
cal user interface for mobile devices. The toolkit is also capable
of generatingQR codes for widgets, allowing interaction with
specific application features simply by scanning a visual code.
Finally, widgets are also touch-enabled, allowing users to
interact directly with the application via touch-displays.

We have already created and deployed various interactive
public display applications created with this toolkit and
we have evaluated it with independent programmers and
application users in a real-world setting. Figure 2 shows an
example of the Public YouTube Player application created
with our toolkit. This application searches for and plays
YouTube videos providing several interaction features to
users such as “liking” videos that have been recently played;
getting the URL of a recently played video to play it in their
own devices; selecting a video to be played next from the
list of search results; and reporting inappropriate videos. Any
user can interact with any of these features at any time, using
any of the interaction mechanisms mentioned before.

A full evaluation of this toolkit can be found in [51].
Our experience with the toolkit reinforces the suitability of
the design space of interaction controls we have proposed in
this paper. We created three applications that had different
requirements for interaction features: a video player, a word
game, and a polls application.These applications were created
without any specific interactionmechanism inmind but they



Advances in Human-Computer Interaction 15

were deployed and interacted with using different mecha-
nisms (SMS, email, QR codes, and smartphone app). Users
successfully interacted with and understood the different
types of controls and feedback that were provided by each
application. In addition, independent programmers used our
toolkit to create interactive content and reported no major
difficulty in understanding the concepts behind the provided
high-level interaction abstractions that the toolkit provides.

5. Conclusion

We have presented a study about interaction tasks and
controls for public display applications, grounded on the
existing descriptions of concrete interactive display systems
available in scholarly publications. The key contributions
of this work are as follows. We have characterized six
high-level interaction tasks focused on the specificities of
public display interaction, more specifically select, data entry,
upload, download, signal presence, and dynamic manipula-
tion. These tasks represent a classification of the major types
of interaction between users and public displays; we have
also identified various types of concrete interaction controls
that may enable those interaction tasks to be integrated into
applications for public displays. These controls constitute a
first step towards a list of controls that may compose future
interaction toolkits for public displays; we have also orga-
nized the various interaction mechanism for public displays
in a design space adapted fromBallagas et al. [6] that sketches
a mapping between the high-level abstractions provided
by the interaction tasks that have been identified and the
concrete interactionmechanisms that can be implemented by
those displays.

We realize that although interaction tasks define different
types of information exchanges between user and system,
there are borderline cases where different interaction tasks
could be used to implement the same interaction feature.
For example, an important difference between data entry and
select tasks is that in data entry tasks it is generally impossible
for the application to enumerate all possible values. In cases
where it is possible to enumerate all possible values, the two
types of tasks could be used interchangeably. However, using
data entry to mimic a select task would require applications
to perform extra validation and processing of the received
data. This is also valid for other cases, such as uploading,
downloading, and signal presence tasks, which could be
mimicked by applications using other tasks, at the expense
of extra processing and validation.

We also realize that, through abstraction, we lose some
of the detail that may be important for certain types of
application. For example, in some games, a very-fine grained
control of gesturing can be a fundamental part of the playing
experience and may not be properly addressed by high-
level abstractions. In these cases, the interaction experi-
ence is tightly coupled with the interaction mechanism and
abstracting the interaction into tasks loses the detail about
the bodily movements. For these cases, a different approach
would obviously be needed and by no means do we claim
with our work to cover the whole interaction design space.
Our focus is the broad range of simple interaction techniques

that are highly common (essentially the same across different
displays systems) and yet currently dependent on totally ad
hoc implementation approaches. It is in that space that even
small steps towards increased abstraction can make a huge
difference towards systems that are more usable and easier to
develop.

Finally, we understand that the abstractions embedded
in the desktop computing model exist at multiple levels and
are the result of many years of evolution in interface design.
In this work, we do not aim to reach anywhere near the
equivalent of that for public displays, but simply to provide
a first step in that direction. With the interaction tasks, the
mapping between tasks and mechanisms, and the interaction
controls, we have a tool to structure an interaction system for
public display applications.This is a valuable tool for allowing
application developers to make more informed decisions
on the types of controls that they would need, considering
for example, the applications goal but also the envisioned
interaction modalities. We have made a first demonstration
of how this can be achieved through the instantiation of the
interactive controls of our design space in the PW toolkit.
Hopefully, this design space will be the basis for various
others infrastructures, toolkits, and libraries, with different
aims and offering different interaction models, contributing
to open up the development of interactive public display
applications.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The research has received funding from the European Union
Seventh Framework Programme (FP7/2007–2013) under
Grant agreement no. 244011 (PD-NET). Jorge Cardoso has
been supported by “Fundação para a Ciência e Tecnologia”
(FCT) and “Programa Operacional Ciência e Inovação 2010”,
co-funded by the Portuguese Government and European
Union by FEDER Program and by FCT training Grant
SFRH/BD/47354/2008.

References

[1] A. Bellucci, A. Malizia, P. Diaz, and I. Aedo, “Human-display
interaction technology: emerging remote interfaces for perva-
sive display environments,” IEEE Pervasive Computing, vol. 9,
no. 2, pp. 72–76, 2010.

[2] N. Davies, M. Langheinrich, R. Jose, and A. Schmidt, “Open
display networks: a communications medium for the 21st
century,” Computer, vol. 45, no. 5, pp. 58–64, 2012.

[3] R. R. Swick and M. S. Ackerman, “The X toolkit: more bricks
for building user interfaces, or widgets for hire,” in Proceedings
of the Usenix Winter 1988 Conference, pp. 221–228, 1988.

[4] J. Mackinlay, S. K. Card, and G. G. Robertson, “Semantic
analysis of the design space of input devices,”Human-Computer
Interaction, vol. 5, no. 2-3, pp. 145–190, 1990.



16 Advances in Human-Computer Interaction

[5] J. D. Foley, V. L. Wallace, and P. Chan, “The human factors
of computer graphics interaction techniques,” IEEE Computer
Graphics and Applications, vol. 4, no. 11, pp. 13–48, 1984.

[6] R. Ballagas, M. Rohs, J. G. Sheridan, and J. Borchers, “The
Design Space of Ubiquitous Mobile Input,” in Handbook of
Research on User Interface Design and Evaluation for Mobile
Technology, J. Lumsden, Ed., vol. 1, pp. 386–407, IGI Global,
2008.

[7] G. F. P. Deecker and J. P. Penny, “Standard input forms for
interactive computer graphics,” ACM SIGGRAPH Computer
Graphics, vol. 11, no. 1, pp. 32–40, 1977.

[8] B. A. Myers, “New model for handling input,” ACM Transac-
tions on Information Systems, vol. 8, no. 3, pp. 289–320, 1990.

[9] L. Bass and J. Coutaz,Developing Software for the User Interface,
Addison Wesley, 1991.

[10] D. A. Norman, The Design of Everyday Things, Basic Books,
2002.

[11] F. Paterno, C. Santoro, and L. D. Spano, “MARIA: a universal,
declarative, multiple abstraction-level language for service-
oriented applications in ubiquitous environments,”ACMTrans-
actions on Computer-Human Interaction, vol. 16, no. 4, article 19,
pp. 1–30, 2009.

[12] L. Terrenghi, A. Quigley, and A. Dix, “A taxonomy for and
analysis of multi-person-display ecosystems,” Personal and
Ubiquitous Computing, vol. 13, no. 8, pp. 583–598, 2009.

[13] A. J. Dix and C. Sas, “Mobile personal devices meet situated
public displays?: synergies and opportunities,” International
Journal of Ad Hoc and Ubiquitous Computing, vol. 1, no. 1, pp.
11–28, 2010.

[14] R. Ballagas, M. Rohs, and J. G. Sheridan, “Sweep and point and
shoot: phonecam-based interactions for large public displays,”
in Proceedings of the CHI conference on Human factors in
computing systems, pp. 1200–1203, 2005.

[15] R. José, N. Otero, S. Izadi, and R. Harper, “Instant places:
using bluetooth for situated interaction in public displays,” IEEE
Pervasive Computing, vol. 7, no. 4, pp. 52–57, 2008.

[16] N. Davies, A. Friday, P. Newman, S. Rutlidge, and O. Storz,
“Using bluetooth device names to support interaction in smart
environments,” in Proceedings of the 7th International Confer-
ence onMobile Systems, Applications, and Services (MobiSys ’09),
pp. 151–164, June 2009.

[17] K. Cheverst, A. Dix, D. Fitton et al., “Exploring bluetooth based
mobile phone interaction with the hermes photo display,” in
Proceedings of the 7th International Conference on Human Com-
puter Interaction with Mobile Devices and Services (MobileHCI
’05), pp. 47–54, September 2005.

[18] D. Dearman and K. N. Truong, “BlueTone: a framework
for interacting with public displays using dual-tone multi-
frequency through bluetooth,” in Proceedings of the 11th ACM
International Conference on Ubiquitous Computing (UbiComp
’09), pp. 97–100, October 2009.

[19] LocaModa, “LocaModa App Store,” 2010, http://locamoda
.com/.

[20] T. Paek, M. Agrawala, S. Basu et al., “Toward universal mobile
interaction for shared displays,” in Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW
’04), pp. 266–269, usa, November 2004.

[21] D.W.McDonald, J. F.McCarthy, S. Soroczak,D.H.Nguyen, and
A.M. Rashid, “Proactive displays: supporting awareness in fluid
social environments,” ACM Transactions on Computer-Human
Interaction, vol. 14, no. 4, article 16, pp. 1–30, 2008.

[22] D. Vogel and R. Balakrishnan, “Interactive public ambient
displays: transitioning from implicit to explicit, public to per-
sonal, interaction with multiple users,” in Proceedings of the
17th Annual ACM Symposium on User Interface Software and
Technology, pp. 137–146, October 2004.

[23] N. Sawhney, S. Wheeler, and C. Schmandt, “Aware community
portals: shared information appliances for transitional spaces,”
Personal and Ubiquitous Computing, vol. 5, no. 1, pp. 66–70,
2001.

[24] T. Ojala, V. Kostakos, H. Kukka et al., “Multipurpose interactive
public displays in the wild: three years later,” Computer, vol. 45,
no. 5, pp. 42–49, 2012.

[25] B. Glaser and A. Strauss, The Discovery of Grounded Theory,
Aldine Transaction, 1967.

[26] J. C. S. Cardoso and R. José, “Interaction tasks and controls
for public display applications—list of analysed publications,”
Figshare, 2014.

[27] A. Cooper, R. Reimann, and D. Cronin, About Face 3: The
Essentials of InteractionDesign, JohnWiley and Sons, NewYork,
NY, USA, 2007.

[28] E. Toye, R. Sharp, A. Madhavapeddy, and D. Scott, “Using
smart phones to access site-specific services,” IEEE Pervasive
Computing, vol. 4, no. 2, pp. 60–66, 2005.

[29] E. F. Churchill, L. Nelson, L.Denoue, J. Helfman, andP.Murphy,
“Sharing multimedia content with interactive public displays:
A case study,” in Proceedings of the conference on Designing
Interactive Systems: Across the Spectrum (Dis ’04), pp. 7–16,
August 2004.

[30] J. F. McCarthy, S. D. Farnham, Y. Patel et al., “Supporting
community in third places with situated social software,” in
Proceedings of the 4th international conference on Communities
and technologies (C&T ’09), pp. 225–234, 2009.

[31] F. Alt, T. Kubitza, D. Bial et al., “Digifieds: insights into
deploying digital public notice areas in the wild,” in Proceedings
of the 10th International Conference on Mobile and Ubiquitous
Multimedia (MUM ’11), pp. 165–174, 2011.

[32] M. Rohs, “Visual code widgets for marker-based interaction,”
in Proceedings of the 25th IEEE International Conference on
Distributed Computing Systems Workshops, pp. 506–513, 2005.

[33] A. Grasso, M. Muehlenbrock, F. Roulland, and D. Snowdon,
“Supporting communities of practice with large screen dis-
plays,” in Public and Situated Displays: Social and Interactional
Aspects of Shared Display Technologies, K. O’Hara, E. Perry,
E. Churchill, and D. M. Russel, Eds., pp. 261–282, Kluwer
Academic, 2003.

[34] K. Martin, A. Penn, and L. Gavin, “Engaging with a situated
display via picture messaging,” in Proceedings of the CHI
conference on Human factors in computing systems (CHI ’06),
2006.

[35] S. Carter, E. F. Churchill, L. Denoue, J. Helfman, and L. Nelson,
“Digital graffiti: public annotation of multimedia content,”
in Proceedings of the CHI conference on Human factors in
computing systems (CHI ’04), pp. 1207–1210, 2004.

[36] H. Brignull, S. Izadi, G. Fitzpatrick, Y. Rogers, and T. Rodden,
“The introduction of a shared interactive surface into a com-
munal space,” in Proceedings of the Conference on Computer
Supported CooperativeWork (CSCW ’04), pp. 49–58, November
2004.

[37] A. Ferscha, G. Kathan, and S. Vogl, “WebWall: an architecture
for public display WWW services,” in Proceedings of the Inter-
national World Wide Web Conference, 2002.



Advances in Human-Computer Interaction 17

[38] H. Raj, R. Gossweiler, and D. Milojicic, “ContentCascade
incremental content exchange between public displays and
personal devices,” in Proceedings of the 1st Annual International
Conference on Mobile and Ubiquitous Systems: Networking and
Services (MOBIQUITOUS ’04), pp. 374–381, August 2004.

[39] R. Hardy and E. Rukzio, “Touch & interact: touch-based
interaction ofmobile phoneswith displays,” inProceedings of the
10th International Conference on Human-Computer Interaction
with Mobile Devices and Services (MobileHCI ’08), pp. 245–254,
September 2008.

[40] D.M. Russell and R. Gossweiler, “On the design of personal and
communal large information scale appliances,” in Proceedings
of the 3rd international conference on Ubiquitous Computing
(UbiComp ’01), pp. 354–361, 2001.

[41] R. José, H. Pinto, B. Silva, A. Melro, and H. Rodrigues, “Beyond
interaction: tools and practices for situated publication in dis-
play networks,” in Proceedings of the International Symposium
on Pervasive Displays (PerDis ’12), pp. 1–6, 2012.

[42] B. Shneiderman, “Directmanipulation: a step beyond program-
ming languages,” Computer, vol. 16, no. 8, pp. 57–69, 1983.

[43] P. Peltonen, E. Kurvinen, A. Salovaara et al., “‘It’s mine, don’t
touch!’: interactions at a large multi-touch display in a city
centre,” in Proceeding of the 26th Annual CHI Conference on
Human Factors in Computing Systems (CHI ’08), pp. 1285–1294,
April 2008.

[44] Ydreams, “Vodafone Cube,” 2003, http://www.ydreams.com/#/
en/projects/publicurbanexperiences/giantinteractivebillboards-
vodafone/.

[45] B. A. Myers, H. Stiel, and R. Gargiulo, “Collaboration using
multiple PDAs connected to a PC,” in Proceedings of the 7th
ACM Conference on Computer Supported Cooperative Work
(CSCW ’98), pp. 285–294, November 1998.

[46] J. Müller, R. Walter, G. Bailly, M. Nischt, and F. Alt, “Looking
glass: a field study on noticing interactivity of a shop window,”
in Proceedings of the ACM annual conference on Human Factors
in Computing Systems (CHI ’12), 2012.

[47] T. Ojala, H. Kukka, T. Lindén et al., “UBI-hotspot 1.0: large-
scale long-term deployment of interactive public displays in a
city center,” in Proceedings of the 5th International Conference
on Internet and Web Applications and Services (ICIW ’10), pp.
285–294, May 2010.

[48] A. Bragdon, R. DeLine, K. Hinckley, and M. R. Morris, “Code
space: Touch + Air gesture hybrid interactions for supporting
developer meetings,” in Proceedings of the International Confer-
ence on Interactive Tabletops and Surfaces (ITS ’11), pp. 212–221,
November 2011.

[49] J. C. S. Cardoso and R. José, “PuReWidgets: a programming
toolkit for interactive public display applications,” in Pro-
ceedings of the 4th ACM SIGCHI symposium on Engineering
interactive computing systems (EICS ’12), pp. 51–60, 2012.

[50] Google, “Google Web Toolkit,” 2011, http://code.google.com/
webtoolkit/.

[51] J. C. S. Cardoso and R. José, “Evaluation of a programming
toolkit for interactive public display applications,” in Pro-
ceedings of the 12th International Conference on Mobile and
Ubiquitous Multimedia (MUM ’13), pp. 1–10, 2013.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


