
Research Article
Orchestrating End-User Perspectives in the Software Release
Process: An Integrated Release Management Framework

Simon Cleveland and Timothy J. Ellis

Nova Southeastern University, 3301 College Avenue, Fort Lauderdale-Davie, FL 33314, USA

Correspondence should be addressed to Simon Cleveland; sc1674@nova.edu

Received 2 June 2014; Accepted 12 August 2014; Published 16 November 2014

Academic Editor: Anthony Savidis

Copyright © 2014 S. Cleveland and T. J. Ellis. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Software bugs discovered by end-users are inevitable consequences of a vendor’s lack of testing.While they frequently result in costly
system failures, one way to detect and prevent them is to engage the customer in acceptance testing during the release process. Yet,
there is a considerable lack of empirical studies examining releasemanagement from end-users’ perspective. To address this gap, we
propose and empirically test a release framework that positions the customer release manager in the center of the release process.
Using a participatory action research strategy, a twenty-seven-month studywas conducted to evaluate and improve the effectiveness
of the framework through seven major and 39 minor releases.

1. Introduction

This paper extends prior research on customer-driven release
models [1] by expanding scope of the release problem
areas and proposing an integrated release framework with a
specified role of the customer release manager.

A considerable portion of software bugs contributing to
the largest system failures are discovered by customers in
their production environments [2, 3]. A recent survey reve-
aled that 46% of software developers do not perform thor-
ough testing due to lack of time and 36% do not believe that
their companies perform enough prerelease testing. Addi-
tionally, 88% of software development companies do not use
fully automated test systems, opting for less reliable manual
testing instead [4]. Reference [5] reported a system experi-
encing nearly 15,000 software bugs throughout a 12-year span.
Reference [6] reported over 60% of organizations discovering
major software errors in production.

Common service level agreements between the vendor
and the users have provisions for resolution of software bugs;
however, these bugs are more likely to require several fixes.
Reference [7] found that software bugs discovered by cus-
tomers are more likely to be reopened for fixing (up to 1.33
times more) due to a poor or incorrect fix in the first place,
requiring more time to roll out new fixes and increased

productivity and financial losses for the end-users. Causes
for the undiscovered bugs include (1) difficulty for software
developers to reproduce failures due to differences in envi-
ronment, (2) customer privacy concerns regarding the type of
data shared with vendor for off-site diagnosis, and (3) lack of
automated feedback regarding the root cause of each failure
[2, 8]. According to [9], companies sell buggier software
products as a trade-off for earlier market entry, while 53% of
software developers cite computing resources for their lack of
software testing [4]. According to [10], unit testing, consid-
ered essential for software quality, is frequently omitted due to
costs associated with personnel, automation [11], and insuffi-
cient testing infrastructure [6]. In the public sector, shrinking
IT budgets account for the lack of computing resources.
While software as a service (SaaS) or cloud models ease cost
pressures by allowing customers to outsource some applica-
tions [12–14], most large information systems do not support
thesemodels. Instead, vendors of these systems follow the tra-
ditional model of software updates, by delivering patches and
new versions at various intervals. As a result, it is imperative
to find ways to minimize occurrences of software bugs in live
production environments [15].

A proven cost effective method to reduce software
bugs and improve service delivery is through the adoption
of release management framework (Table 1), such as the

Hindawi Publishing Corporation
Advances in Human-Computer Interaction
Volume 2014, Article ID 805307, 15 pages
http://dx.doi.org/10.1155/2014/805307



2 Advances in Human-Computer Interaction

Table 1: Release Activity and Corresponding Articles.

Release Management
Activity Article and Description

Release Policy [15, 34]
Release Planning [35, 37]

Design and Develop
Software

Variety of methods; handled by
software or IT service vendor. Also
see release acceptance [38, 39]

Build and Configure
Release

Variety of methods; handled by
software vendor.

Fit-for-Purpose Testing [40–42]
Release Acceptance [38, 39]
Roll-out Planning [22, 23]
Communication,
Preparation and Training [23, 25]

Distribution and
Installation [24, 45]

InformationTechnology Infrastructure Library (ITIL) frame-
work [16]. ITIL represents a set of documents created by
United Kingdom’s Central Computer and Telecommunica-
tionsAgency (CCTA) in the 1980swith the goal of providing a
common language between IT andbusiness units and stream-
lining the improvement of IT service management processes.
ITIL consists of a comprehensive collection of procedures
designed to increase the value of IT operations.Organizations
adopting ITIL define the structure and skills of their IT
departments for a business-driven, top-down method of IT
service management, improving end-to-end service avail-
ability [17–19]. Research on release management focuses on
software vendor challenges associated with release planning
[20, 21], open source release support [22], service provision
[23], release automation [24], and patch management [25].
Reference [26] proposed a software product development
framework incorporating aspects of release management and
addressing the process from the perspective of the software
vendor. Reference [27] proposed an EM3 framework based
on two industrial models (Microsoft’s and Oracle’s). It
addressed customer (acceptor) release management pro-
cesses but was not tested in a “typical” acceptor organization.
Instead, their framework was studied in an organization that
developed and maintained software systems, with level-three
support from a software vendor.

Empirical studies examining the release management
process from an end-users’ perspective are lacking. To
address this gap, this paper presents a case study of the release
management process from the customer’s point of view. The
goal of the study is to develop a method for better integrat-
ing end-user perspectives in the release process. The main
research question is how can organizations improve their
release management process while minimizing the amount
of software bugs in the production systems? Based on the
study’s results, a framework is proposed to accomplish this
goal and to improve the overall release management process,
minimizing the occurrence of software bugs. The framework

is unbounded by industry specific models and instead com-
bines the traditional ITIL release management methodology
with the project management methodology developed by the
Project Management Institute (PMI). To our knowledge, this
is the first empirical study to propose specific details of the
customer release manager (CRM) role in each of the release
management processes.

The balance of this paper will first review relevant litera-
ture in the area of releasemanagement, with a particular focus
on each release component identified in the ITIL frame-
work and articles addressing challenges in each activity. The
researchmethods employedwill then be detailed, followed by
a review of the results.The proposed framework for incorpo-
rating the customer’s perspective in the release management
is presented with a description of the CRM’s role for each
process. The paper concludes with an overview of the study,
limitations, and recommendations for future research.

2. The Literature Review

Release management, a process associated with the delivery
of high quality software to users [28], consists of building,
testing, packing, collaborating, and arranging tasks between
the software vendor and the final users and deploying
software and hardware releases effectively into production.
Release management is executed in incremental steps involv-
ing both technical and management tasks covering the
initial gathering of requirements, software development, and
deployment into production with the ultimate goal of rolling
out the final release packages into the end-users’ production
environments without issues and within a specified schedule
[20, 23, 29]. Release management is a challenging process for
software vendors who use it frequently as a mechanism to
maintain the value of their software product [30]. Vendors
provide release packages to multiple customers who have
different environments and various needs. Some customers
require new versions of the software to fix software bugs,
while others require new enhancements. Depending on the
complexity and component integration of the software appli-
cation, the release may involve multiple resources and tasks,
increasing the chance for errors [23, 31]. Only 45% of com-
panies use specific frameworks for their release management
process [20]. Several process frameworks have been devel-
oped to address release management, including ITIL, Con-
trolled Objectives for Information and related Technology
(COBIT), and ISO 20,000. ITIL, the most popular, structures
software releases based on reported user-incidents, analyzed
by software developers, and deployed as release packages into
the end-users’ environments [23]. The ITIL framework has
been shown to increase customer satisfaction and improve
operational performance [32].

The ITIL release management involves determining,
acquiring, releasing, and deploying changes (such as bug fixes
and enhancements) in an IT environment. The following
table outlines the key release management activities accord-
ing to the ITIL framework [33] and articles addressing
challenges/solutions.



Advances in Human-Computer Interaction 3

2.1. Release Policy. Release policy, the first activity of the
release management process, represents a formal agreement
on the strategic approach and includes (1) infrastructure used
in the release; (2) acceptable schedule; (3) definition of major
versus minor releases; (4) deliverables for each release; (5)
roll-out and back-out plans; (6) documentation of releases;
and (7) roles, responsibilities, escalation steps, contacts for
vendors, and end-users [34]. This activity also ensures that
each release has its unique number by which it can be tracked
throughout the release management process. Versioning is
used for the purpose of release stability and for the purpose
of soliciting responses for an upcoming release. From the
customer’s perspective, the release policy is generally outlined
in the contractual maintenance agreements negotiated bet-
ween the vendor and the customer’s contracts/procurement
department at the time of the initial procurement of the
system. Reference [15] considered the release policy activity
in the scenario between a software vendor and a customer.
They developed a release policy and a cost model that reduces
costs for buggy software by extending the testing time after
release. In this scenario, the vendor testing teams are not
dissolved after a release but instead continue to test the system
once it is in production. Any detected bugs are resolved
with patches or new releases before they cause significant
impact for the larger user community. Although this model
can support a software vendor’s early market entry, the risks
are transferred to the end-users who accept the release earlier
with the possibility of placing undiscovered critical bugs into
production.

2.2. Release Planning. This activity is concerned with the
designation of resources, the roles and responsibilities of
these resources, agreement on policies and procedures to
be used during the release, decision on deliverables, and
features [35].The key step is a predefined acceptance criterion
specifying whether a release should be accepted in the pro-
duction environment or paused and reverted to a prior release
stage [34]. Release planning has been termed a “wicked”
problem not guaranteeing stable software for the end-users
regardless of frequency [22, 35, 36]. Reference [37] found that
69% of release planning challenges of software development
companies were associated with the priorities and needs of
the system stakeholders and the interdependencies of
requirements. Additionally, they noted that the release plan-
ning process takes approximately 60% of a release manager’s
time. Reference [35] also approached the release planning
process from the perspective of the software vendor. They
developed a model heavily involving stakeholders (external
customers) in the process, allowing them the opportunity to
vote on features and assign priority to requirements.

2.3. Design and Develop Software. This activity involves the
process of designing the software based on requirements and
developing the software included in the release. End-users
engagewith the software developers inwriting the acceptance
test cases as defined in the release acceptance activity [38, 39].
Presently, this process has the least customer involvement,

as the majority of customers do not get involved with the
building of the software.

2.4. Build and Configure Release. This activity includes the
compilation of modules stored in the software library to cre-
ate the derived objects from the source objects. Reference [34]
recommends the use of build procedures, tools, and checklists
during the assembling of the release package to ensure
repeatable practice with anticipated outcome. This activity
is dependent on the software vendor’s available tools. This
process also has some of the least customer involvement, is
very environment specific, and is not technology or process
agnostic.

2.5. Fit-for-Purpose Testing. This activity includes functional,
operational, performance, and integration testing of the
release. Lack of resources (including testers and test environ-
ments) impedes testing, resulting in releases with software
bugs [23]. Research heavily addresses this activity from the
perspective of the software vendor. Vendors are concerned
with the reliability of their software and use a variety of
models to determine the probability of their product’s failure-
free operation for a given time in a given environment [10].
These models include reliability modeling [40], causal pre-
diction [41], and good enough to release (GETR) [42]. During
the fit-for-purpose testing activity, customers are not engaged
in the testing of the software. According to [43], vendors can
gain confidence in the operations of the system if the testing is
performed to mimic the actual product use. As a result,
software should be tested based on typical usage scenarios
with feedback provided by the end-users.

2.6. Release Acceptance. This activity includes testing soft-
ware by the end-users and obtaining approval for the release
to proceed. During this activity, the release package is
deployed to the customer’s test environments with the coor-
dination of the customer’s technical team. Typically, testing is
performed by end-users, and the release acceptance is based
on specific conditions which the released package must
satisfy [44]. Reference [25] found that release package quality
was poor due to lack of quality control acceptance procedures
established by the customer during the release acceptance
activity. To streamline this activity, [38] proposed a tool
allowing end-users to collaborate with developers earlier in
order to write, automate, and execute acceptance tests during
the software development cycle. Similarly, [39] proposed a
method for generating user acceptance testing (UAT) test
cases from behavioral use cases created during the require-
ments analysis phase. This study implies that the require-
ments and use cases should be confirmed by the end-users
prior to the generation of UAT test cases.

2.7. Roll-Out Planning. This activity involves the creation of a
time table, resources, responsibilities, and events during the
distribution and installation of the release. Reference [22]
discussed a time-based strategy which follows a predefined
schedule with a cut-off date for inclusion of additional
features. Additionally, a release checklist was discussed as



4 Advances in Human-Computer Interaction

a method to ensure that no steps were missed during new
releases. Reference [23] recommended timetables and action
plans for the release installation. Both studies addressed this
activity from the perspective of the software vendor, expect-
ing to communicate with various customer parties to coor-
dinate the release (e.g., customer’s IT department, the end-
users, etc.).

2.8. Communications, Preparations, and Training. This activ-
ity, involving notifications to release stakeholders (including
software development, release, and end-user teams), roll-out
meetings, and training sessions, heavily involves the end-
users in preparation of the release deployment. Clearly
defined procedures are necessary to keep end-users informed
of the upcoming release changes, and trainings must be
organized before the release delivery [23, 25].

2.9. Distribution and Installation. This activity concerns the
deployment of the final changes into the live environments.
Since only 9% of companies use a proper release automation
tool [20], the distribution and installation activity are
essentially a manual process typically handled by the ven-
dor’s release manager [45]. Ramakrishnan proposed a tool
addressing common distribution and installation issues such
as files already existing in the environments and file permis-
sions changes from prior releases. Reference [24] considered
the distribution and installation activity as part of the end-
users’ responsibility for locating, retrieving, and assembling
the software components. They proposed a release manage-
ment tool ensuring distribution transparency and consis-
tency of dependencies among component based software.

2.10. Release Manager. The release manager role is not
defined in the ITIL framework, yet it plays a key figure in the
software release management process.The release manager is
expected to possess all the qualifications of experienced
project managers such as judgment, community building,
attention to detail, and communications and management
skills. While 60% of a release manager’s time is spent on
release planning, 30% of the remaining time is spent on
replanning activities due to changes in requirements and
stakeholder priorities [37]. According to [20], 97%of software
development organizations depend largely on the release
manager to ensure successful releases. Reference [23] noted
that a designated releasemanaged with specified assignments
and responsibilities can increase the quality of release and
reduce the number of the incidents occurring after installa-
tion into the customer’s production environment. Reference
[22] briefly addressed the key responsibility of the software
release manager by noting that he or she should be directing
the development team, assessing the risks of each change
proposed in the release, examining each software line of code,
writing the release notes, and interacting with users. The
release manager has complete control over the releases [15,
24, 37, 44]. However, while software vendors use releaseman-
agers to coordinate their internal release activities, coordinat-
ing the customer resources (e.g., end-user testers, end-user
test environments, and release dates) could be challenging

Executing

Monitor and control Monitor and control 

Closing

Executing

Closing

Initiating

Planning

Initiating

Planning

Release 
activity 2 

Release
activity 1 

Figure 1: Release activity and project process group integration.

for someone who is external to the customer organization.
Vendor release managers may not be familiar with the
customer’s organizational and reporting structure. If releases
provide fixes or enhancements for various departments, the
releasemanagermay need to coordinate availability of testing
resources from various departments with their managers. At
the same time, organizational priorities may deter promised
resources and impact directly the release schedule. The
customer’s IT department resources need to be coordinated
for the distribution of the release into the customer’s testing
and then production environments.

The ITIL framework, as implemented, does not fully
address the issues that could cause software failure, because
that framework is essentially focused on release management
from the vendor’s perspective. Our position is that expanding
the ITIL framework to include the customer perspective in
the form of a customer release manager (CRM) function
would reduce those errors.

3. Proposed Framework

Based on the literature review, a customer-driven release
management framework is developed that combines the
ITIL’s best practices framework for releases with the PMI pro-
cess group methodology for project delivery. The framework
considers each ITIL release management area as an unique
subproject with incorporated PMI’s structured process
groups and respective tasks. Figure 1 demonstrates the integr-
ation points between the release activities and project man-
agement process groups.

This new framework aims to address the common release
issues associated with communication, coordination of ven-
dor, and customer involvement in the release management
activities.

Releases can be considered to be projects, as they are tem-
porary endeavors with predefined start and finish dates [46].
The PMI methodology is universally scalable and incorpo-
rates initiating, planning, executing,monitoring, controlling,
and closing of temporary endeavors (e.g., releases).

The following section describes the role of the CRM in the
framework’s release and process group activities.



Advances in Human-Computer Interaction 5

3.1. Release Activities and CRM

3.1.1. CRM Role in Release Policy. During the release policy
activity, the CRM should formulate and document optimal
acceptable release criteria for the customer based on dis-
cussions with internal stakeholders. These criteria should be
included in the contract and negotiated with the software
vendor at the time of software procurement. The criteria
should include triggers for each release (e.g., change requests,
entry and exit conditions for each activity, staff skills, service
and operations level agreements, UAT criteria, release design
option such as phased approach, or push or pull of new
software [34]).

3.1.2. CRM Role in Release Planning. The release planning
activity should also occur on the customer’s end. It should
include a comprehensive planning effort on behalf of the
release manager who should address the scope, time frame,
possible costs, resources which will test the release, quality
control, risks, communications strategy, and procurement of
required hardware and software. The planning effort should
be coordinated with the vendor’s release manager to confirm
that planning estimates coincide with the vendor’s resource
availability and that all stakeholders’ expectations are man-
aged.

3.1.3. CRM Role in Design and Developing Software. During
the design and developing software activity, the CRM should
coordinate the development of user acceptance test cases
between the end-users and the vendor’s software team. This
proactive effort will ensure that the vendor discovers issues
during the fit-for-purpose testing activity and will not delay
the release acceptance activity.

3.1.4. CRM Role in Build and Configuration Release. During
the build and configuration activity, the CRM should com-
municate with the vendor release manager to address any
issues associated with versioning of the release, security, and
access rights that could jeopardize the release process.

3.1.5. CRM Role in Fit-for-Purpose Testing. During the fit-
for-purpose testing activity, the CRM should organize a
preliminary end-user testingwith the vendor releasemanager
into the vendor’s test environment. Reference [34] recom-
mended the use of pilots to test the release prior to the
actual user acceptance testing activity. Any changes or issues
should be communicatedwith the vendor releasemanager for
resolution prior to the release acceptance activity.

3.1.6. CRM Role in Release Acceptance. During the release
acceptance activity, the CRM should ensure that the new
build is deployed to the customer’s test environment and
should communicatewith theUAT team to initiate the testing
process. He or she will also report any bugs discovered to the
vendor release manager and ensure that fixes are provided
by the vendor and retested by the UAT team. During this
activity, the CRM would adjust the release plan based on

release progress, document, and enforce any changes that are
reported.

3.1.7. CRM Role in Roll-Out Planning. During the roll-out
planning activity, the CRM should prepare a detailed roll-out
checklist that outlines key tasks, start and end times, key
resources and their responsibilities, system backups, and
back-out procedures should the installation fail. Testing of the
release in production should also be planned at this time.The
checklist should be coordinated with the vendor release
manager to include vendor resources.

3.1.8. CRM Role in Coordination, Communication, and Train-
ing. During the coordination, communication, and training
activity, a decision on go or no go for the release should be
made by all internal and external stakeholders. The CRM
should direct end-users during the training sessions and host
several trial runs of the upcoming installation with the roll-
out team.

3.1.9. CRM Role in Distribution and Installation. Finally,
during the distribution and installation activity, the CRMand
the vendor release manager should coordinate the delivery
of the release. The CRM should monitor the installation, the
final production testing of the release by key end-users, and
make a decision if the release should be stopped based on the
reported production bugs.

3.2. Project Management Processes and CRM. The proposed
release management framework provides a flexible and
innovative methodology that could be utilized by many
individuals, departments, and vendors for the effective release
of software. Moreover, a definition of the CRM role within
each release process group from the proposed framework
is provided where the CRM is appointed to coordinate the
release process on the customer’s end. The CRM should be
skilled in the PMI’s project management methodology and
possess sufficient technical skills to be able to execute certain
engineering and database operations (such as rolling out
application installers and performing database backups and
restorations for roll-back purposes). The CRM should get
involved in the formulation of the customer release team and
work with the vendor release manager to facilitate the plan-
ning, delivery, testing, and installation of the final software
packages. He or she would accomplish this by applying
the project management process groups through the release
management activities.

From the very inception of each release, the CRM will
embark on a thorough planning effort that integrates careful
consideration of the enterprise’s environmental factors influ-
encing the release’s success (e.g., organizational culture, end-
user testing availability, IT hardware and software resource
administration, and established organizational communica-
tion channels). Table 2 outlines proposed release manage-
ment activities and process group mapping. It demonstrates
key tasks for the CRM.



6 Advances in Human-Computer Interaction

Ta
bl
e
2:
Pr
op

os
ed

Cu
sto

m
er

Re
le
as
eM

an
ag
er

Ac
tiv

iti
es

an
d
Pr
oc
es
sG

ro
up

M
ap
pi
ng

s.

Re
le
as
eA

ct
iv
ity

Pr
oj
ec
tM

an
ag
em

en
tP

ro
ce
ss

In
iti
at
in
g

Pl
an
ni
ng

Ex
ec
ut
in
g

M
on

ito
rin

g
an
d

C
on

tro
lli
ng

Cl
os
in
g

Re
le
as
eP

ol
ic
y

D
et
er
m
in
eo

pt
im

al
po

lic
y

fo
rt
he

or
ga
ni
za
tio

n
w
ith

ap
pr
op

ria
te
sta

ke
ho

ld
er
s

D
ev
elo

p
th
er

ele
as
ep

ol
ic
y
an
d

ad
d
to

pr
oc
ur
em

en
t

do
cu
m
en
ta
tio

n

N
eg
ot
ia
te
po

lic
y
w
ith

ve
nd

or
at

so
ftw

ar
ep

ro
cu
re
m
en
tt
im

e.
En

fo
rc
e

ch
an
ge
s

En
su
re
po

lic
y
is
fo
llo

w
ed

by
ve
nd

or
an
d
do

cu
m
en
t

ch
an
ge
si
fn

ec
es
sa
ry

D
oc
um

en
ta
nd

ar
ch
iv
e

le
ss
on

sl
ea
rn
ed

Re
le
as
eP

la
nn

in
g

In
te
gr
at
el
es
so
ns

le
ar
ne
d

fro
m

pr
io
rr
ele

as
es
.R

ev
ie
w

pr
io
rit
iz
ed

re
qu

es
tf
or

ch
an
ge
s(
RF

C)
.I
de
nt
ify

im
pa
ct
ed

en
d-
us
er
sa

nd
ad
dr
es
se

nd
-u
se
r

en
ha
nc
em

en
ts
ne
ed
s

Pl
an

re
le
as
e’s

sc
op

e(
RF

C,
en
ha
nc
em

en
ts)

,s
ch
ed
ul
e,

po
te
nt
ia
lc
os
ts,

UA
T
(u
se

ca
se
s,

qu
al
ity

co
nt
ro
lt
es
tin

g)
,r
es
ou

rc
e

ro
le
s,
co
m
m
un

ic
at
io
n
str

at
eg
y,

ris
ks
,h
ar
dw

ar
e/
so
ftw

ar
e

pr
oc
ur
em

en
tn

ee
ds
,r
ol
l-o

ut
st
ra
te
gy
,t
ra
in
in
g,
di
st
rib

ut
io
n,

an
d
in
sta

lla
tio

n
str

at
eg
y.
Re

-p
la
n

ba
se
d
on

ch
an
ge
s

C
oo

rd
in
at
ep

la
ns

w
ith

th
ev

en
do

r’s
re
le
as
em

an
ag
er
.C

om
m
un

ic
at
ep

la
ns

w
ith

re
le
as
es

ta
ke
ho

ld
er
s.
Pr
oc
ur
e

ha
rd
w
ar
eo

rs
oft

w
ar
e.
En

fo
rc
ec

ha
ng
es

D
oc
um

en
tc
ha
ng
es

ba
se
d

on
ve
nd

or
’s
re
le
as
e

m
an
ag
er
’s
fe
ed
ba
ck
.T
ra
ck

an
d
do

cu
m
en
ta
ny

ch
an
ge
s

D
oc
um

en
ta
nd

ar
ch
iv
e

le
ss
on

sl
ea
rn
ed

D
es
ig
n
an
d

D
ev
elo

p
th
e

So
ftw

ar
e

Re
vi
ew

th
er

ele
as
es

co
pe
,

sc
he
du

le,
en
d-
us
er

re
so
ur
ce
sp

la
ns
,a
nd

in
te
gr
at
el
es
so
ns

le
ar
ne
d
on

UA
T
ca
se
sf
ro
m

pr
io
r

re
le
as
es

Pl
an

re
qu

ire
d
us
ec

as
es

fo
rt
he

RF
Cs

an
d
en
ha
nc
em

en
ts
w
ith

en
d-
us
er
sa

nd
ve
nd

or
re
le
as
e

m
an
ag
er
.R

e-
pl
an

if
th
er
ea

re
ne
w
ch
an
ge
s

D
ire

ct
an
d
m
an
ag
et
he

do
cu
m
en
ta
tio

n
eff
or
to

fe
nd

-u
se
rs
.C

oo
rd
in
at
e

pr
og
re
ss
an
d
di
str

ib
ut
io
n
of

us
ec

as
es

w
ith

ve
nd

or
’s
re
le
as
em

an
ag
er
.E

nf
or
ce

ch
an
ge
s

Ve
rif
y
al
lu

se
ca
se
sh

av
e

be
en

co
m
pl
et
ed

an
d

de
liv
er
ed
.T
ra
ck

an
d

do
cu
m
en
ta
ny

ch
an
ge
s

D
oc
um

en
ta
nd

ar
ch
iv
e

le
ss
on

sl
ea
rn
ed

Bu
ild

an
d

C
on

fig
ur
et
he

Re
le
as
e

In
te
gr
at
el
es
so
ns

le
ar
ne
d
on

bu
ild

an
d
co
nfi

gu
ra
tio

n
fro

m
pr
io
rr
ele

as
es

Re
-p
la
n
if
th
er
ea

re
ch
an
ge
s

Ad
dr
es
sp

ot
en
tia

li
ss
ue
sa

ss
oc
ia
te
d

w
ith

th
ec

om
pi
la
tio

n
an
d

co
nfi

gu
ra
tio

n
w
ith

ve
nd

or
re
le
as
e

m
an
ag
er

(v
er
sio

n,
ac
ce
ss
pe
rm

iss
io
ns
,

an
d
se
cu
rit
y)
.E

nf
or
ce

ch
an
ge
s

Tr
ac
k
an
d
do

cu
m
en
ta
ny

ch
an
ge
s

D
oc
um

en
ta
nd

ar
ch
iv
e

le
ss
on

sl
ea
rn
ed

Fi
t-f
or
-P
ur
po

se
Te
st
in
g

In
te
gr
at
el
es
so
ns

le
ar
ne
d
on

fit
-fo

r-
pu

rp
os
et
es
tin

g
fro

m
pr
io
rr
el
ea
se
s

Pl
an

th
et
es
tin

g
of

ap
ilo

t.
Re

-p
la
n
if
th
er
ea

re
ch
an
ge
s

D
ire

ct
an
d
m
an
ag
et
he

pi
lo
tt
es
tin

g.
En

fo
rc
ec

ha
ng
es

D
oc
um

en
ta
nd

co
m
m
un

ic
at
ei
ss
ue
sa

nd
po

te
nt
ia
lc
ha
ng
es

w
ith

en
d-
us
er
sa

nd
ve
nd

or
re
le
as
em

an
ag
er

D
oc
um

en
ta
nd

ar
ch
iv
e

le
ss
on

sl
ea
rn
ed

Re
le
as
eA

cc
ep
ta
nc
e

In
te
gr
at
el
es
so
ns

le
ar
ne
d
on

re
le
as
ea

cc
ep
ta
nc
ef
ro
m

pr
io
rr
ele

as
es
.R

ev
ie
w

re
le
as
ep

la
ns

Re
-p
la
n
if
th
er
ea

re
ch
an
ge
s

D
ire

ct
an
d
m
an
ge

th
ed

ep
lo
ym

en
to

f
re
le
as
ei
nt
o
te
st
en
vi
ro
nm

en
t,
th
e

ac
ce
pt
an
ce

te
st
in
g
an
d

co
m
m
un

ic
at
io
ns

of
iss

ue
sw

ith
ve
nd

or
re
le
as
em

an
ag
er
,a
nd

th
ed

ep
lo
ym

en
t

of
fix
es

to
iss
ue
s.
Ad

ju
st
re
le
as
ep

la
ns

ba
se
d
on

pr
og
re
ss
.E

nf
or
ce

ch
an
ge
s

D
oc
um

en
ta
nd

tr
ac
k

re
po

rt
ed

iss
ue
s,
ch
an
ge
s,

an
d
re
po

rt
on

pr
og
re
ss
w
ith

sta
ke
ho

ld
er
s

D
oc
um

en
ta
nd

ar
ch
iv
e

le
ss
on

sl
ea
rn
ed



Advances in Human-Computer Interaction 7

Ta
bl
e
2:
C
on

tin
ue
d.

Re
le
as
eA

ct
iv
ity

Pr
oj
ec
tM

an
ag
em

en
tP

ro
ce
ss

In
iti
at
in
g

Pl
an
ni
ng

Ex
ec
ut
in
g

M
on

ito
rin

g
an
d

C
on

tro
lli
ng

Cl
os
in
g

Ro
ll-
ou

tP
la
nn

in
g

In
te
gr
at
el
es
so
ns

le
ar
ne
d
on

ro
ll-
ou

tf
ro
m

pr
io
rr
ele

as
es
.

Id
en
tif
y
sta

ke
ho

ld
er
s

in
vo
lv
ed

in
th
er

ol
l-o

ut
(e
.g
.

IT
,k
ey

en
d-
us
er
s,
ve
nd

or
re
so
ur
ce
s)

Pr
ep
ar
ed

ist
rib

ut
io
n
an
d

in
sta

lla
tio

n
tim

et
ab
le
ch
ec
kl
ist

in
clu

di
ng

ba
ck

ou
tp

ro
ce
du

re
s,

pr
od

uc
tio

n
te
sti
ng

,e
ac
h
ro
ll-
ou

t
ac
tiv

ity
,a
nd

ea
ch

pa
rt
ic
ip
an
t’s

ro
le
an
d
re
sp
on

sib
ili
ty
.R

e-
pl
an

if
th
er
ea

re
ch
an
ge
s

C
oo

rd
in
at
er

ol
l-o

ut
pl
an

w
ith

ve
nd

or
re
le
as
em

an
ag
er
.E

nf
or
ce

ch
an
ge
s

Tr
ac
k
an
d
do

cu
m
en
ta
ny

ch
an
ge
s

D
oc
um

en
ta
nd

ar
ch
iv
e

le
ss
on

sl
ea
rn
ed

C
om

m
un

ic
at
io
n,

Pr
ep
ar
at
io
n,

an
d

Tr
ai
ni
ng

In
te
gr
at
el
es
so
ns

le
ar
ne
d

fro
m

pr
io
rr
ele

as
es
.I
de
nt
ify

sta
ke
ho

ld
er
sw

ho
w
ill

pe
rfo

rm
th
et
ra
in
in
g

Re
vi
ew

re
le
as
ep

la
n
fo
rt
ra
in
in
g,

le
ve
ls
of

su
pp

or
ta
fte

rt
he

re
le
as
e

in
st
al
lat
io
n.

Re
-p
la
n
if
th
er
ea

re
ch
an
ge
s

D
oc
um

en
ta
ny

pr
oc
ed
ur
es
,a
nd

co
m
m
un

ic
at
ew

ith
en
d-
us
er
sa

nd
ve
nd

or
re
le
as
em

an
ag
er

to
ad
dr
es
sa

ny
im

pr
ov
em

en
ts.

D
ire

ct
an
d
m
an
ag
e

tr
ai
ni
ng

.M
ak
efi

na
ld

ec
isi
on

on
go
/n
o

go
fo
rr
ele

as
ew

ith
ve
nd

or
re
le
as
e

m
an
ag
er

an
d
st
ak
eh
ol
de
rs
.M

an
ag
e

tr
ia
lr
un

sf
or

th
ei
ns
ta
lla
tio

n.
En

fo
rc
e

ch
an
ge
s

Tr
ac
k
an
d
do

cu
m
en
ta
ny

ch
an
ge
s

D
oc
um

en
ta
nd

ar
ch
iv
e

le
ss
on

sl
ea
rn
ed

D
ist
rib

ut
io
n
an
d

In
sta

lla
tio

n

In
te
gr
at
el
es
so
ns

le
ar
ne
d
on

di
str

ib
ut
io
n
an
d

in
sta

lla
tio

n
fro

m
pr
io
r

re
le
as
es

Re
-p
la
n
if
th
er
ea

re
ch
an
ge
s

D
ire

ct
an
d
m
an
ag
et
he

ro
ll-
ou

t.
En

su
re

ba
ck
up

sa
re

co
m
pl
et
ed
.D

ire
ct

pr
od

uc
tio

n
te
st
in
g
an
d
m
ak
ed

ec
isi
on

of
go
-li
ve

ve
rs
us

sto
pp

in
g
th
er

ele
as
e.

En
fo
rc
ec

ha
ng
es

Tr
ac
k
pr
og
re
ss
,d
oc
um

en
t

iss
ue
s,
an
d
co
m
m
un

ic
at
e

w
ith

sta
ke
ho

ld
er
s

D
oc
um

en
ta
nd

ar
ch
iv
e

le
ss
on

sl
ea
rn
ed



8 Advances in Human-Computer Interaction

3.2.1. CRM Role in Initiating Process. During the initiating
process group, the CRM will determine release policy, define
the initial scope of the release (including RFCs), schedule,
costs, and identify both external stakeholders (e.g., ven-
dor release manager and vendor resources) and internal
stakeholders (organization’s end-users, managers, and IT
resources). Authorization will be obtained to proceed with
the release and release charter will be completed.This process
group feeds from lessons learned in prior releases and
requires a different review of archived documentation by
CRM.

3.2.2. CRM Role in Planning Process. During the planning
process, the overall release plan will be defined along with
comprehensive plans for the tasks and end-user involvement
during each of the remaining release processes (the design
and development of the software, build and configuration of
the release, fit-for-purpose testing, release acceptance, roll-
out, communication, preparation, training, distribution, and
installation of the release).

3.2.3. CRM Role in Execution Process. During the execution
process, the release manager will coordinate, direct, and
manage the work done by the end-user release team as well
as the internal and external stakeholders (including vendor).
He or she will also enforce any changes discovered during the
monitoring and controlling process.

3.2.4. CRM Role in Monitoring and Controlling Process.
During the monitoring and controlling process, the release
manager will track the progress of the release, monitor, and
use corrective actions to realign the release back in line with
the plan and document any changes. This process involves
frequent communication with end-users to determine and
inform users of pending changes.

3.2.5. CRM Role in Closing Process. During the closing pro-
cess, the release manager will ensure that all deliverables have
been released and lessons learned have been documented and
archived.

4. Methodology

4.1. Participatory Action Research. To test the framework,
a participatory action research (PAR) strategy was adopted
[47, 48]. Action research has been shown to address real life
issues by allowing researchers to implement frameworks in
empirical settings and observe, document, andmake changes
based on the results [47].This specific type of research allows
researchers active involvement and insights to the experiment
that otherwise may not be observed by external researchers
[49]. Reference [50] was the first who coined the term “action
research,” while [51] introduced the term “participant action
research” as amethod to diagnose a problem, create an action
plan, and implement it to solve the problem in collaborative
ways between the researcher and the organization’s system.

Reference [52] expanded on the applicability of action
research by designating it as a collaborating method

Diagnosis

Action plan

Action takenEvaluation

Learning

Figure 2: Adopted participatory action research strategy.

for addressing an organization’s practical issues and the
researcher’s scientific goals via the use of ethical framework.
Reference [53] formulated the key characteristics of action
research by defining it as future oriented, collaborative,
implying systems development, generating theory grounded
in action, agnostic, and situational.They proposed that action
research can be conducted as a cyclical process in five phases:
diagnosing, action planning, action taking, evaluating, and
specifying learning.

During the diagnosing stage, the researcher and partic-
ipants identify an organizational problem and settle on a
framework that will be used to address it. Next, the organi-
zation designates a team and the intervention as part of the
planning stage. Research occurs during the action taking
phase, followed by data collection, analysis, and summariza-
tion during the evaluating phase. In the final phase, specific
lessons are documented for improvement during the follow-
ing cycles. According to [54], structure and rigor should be
kept in every phase.

In this study, the testing of the framework followed the
same PAR strategy and stages (Figure 2).

4.2. Project Background. The unit of analysis for this study
was a two-year period of participation by one of the authors
following the five phases of action research. The author, a
certified PMI project management professional, was assigned
as the leading project manager for the implementation of an
ERP system at a large county in the southern quadrant of
the United States between February 2010 and June 2012. The
ERP system, a non-US developed system, was procured in
2007 with the goal of replacing an unsupported and rapidly
aging system, which lacked vendor support and was entirely
maintained by the county’s IT department. The goal of the
new system was to improve the department’s business oper-
ations by delivering customized business workflows and
streamlined data access for over 200 employees with fully
dedicated support provided by the software vendor. The new
systemalso included anewpublicwebportal to handle citizen
inquiries as well as an integrated voice response (IVR) system
for permits and inspections status via phone and fax requests.



Advances in Human-Computer Interaction 9

33

12

43

3 3 3 3

9

2

11

22

2

15

3

9
11

31

5
3

2
4

6

3
1 1

15

2
1

5

1

11

19

5

12

6
4

1 1 1 1

8

4

1

5

14

4

3/
23

/2
01

0
8/

20
/2

01
0

12
/1

0/
20

10
6/

8/
20

11
6/

15
/2

01
1

6/
21

/2
01

1
7/

5/
20

11
7/

18
/2

01
1

7/
27

/2
01

1
8/

10
/2

01
1

8/
20

/2
01

1
8/

22
/2

01
1

8/
29

/2
01

1
9/

6/
20

11
9/

14
/2

01
1

9/
20

/2
01

1
10

/1
/2

01
1

10
/6

/2
01

1
10

/1
1/

20
11

10
/1

3/
20

11
10

/2
0/

20
11

11
/3

/2
01

1
11

/9
/2

01
1

11
/1

0/
20

11
11

/1
7/

20
11

11
/2

1/
20

11
11

/2
9/

20
11

11
/3

0/
20

11
12

/8
/2

01
1

12
/1

2/
20

11
12

/2
1/

20
11

1/
6/

20
12

1/
18

/2
01

2
1/

24
/2

01
2

1/
31

/2
01

2
2/

7/
20

12
3/

2/
20

12
3/

6/
20

12
3/

15
/2

01
2

3/
29

/2
01

2
4/

13
/2

01
2

5/
1/

20
12

5/
8/

20
12

5/
15

/2
01

2
5/

24
/2

01
2

5/
31

/2
01

2

Figure 3: Resolved bugs and corresponding releases (red = major releases; blue = minor release).

It was heavily customized to fit the county’s business pro-
cesses. Results for the success of the framework were deter-
mined by measuring the number of releases and release
types, reported and resolved software bugs, number of system
crashes, average release acceptance durations, and average
installation durations prior to and after intervention of each
cycle.The data was evaluated using tables, graphs, and charts.

The project implementation was divided into three
phases. Phase 1, completed in 2008, included the delivery of
the code enforcement module. Phase 2 included the planning
and engineering modules and was delivered in 2009. Sched-
ule delays and lack of acceptance testing during these phases
resulted in the accumulation of a number of software bugs.
The release management process was performed ad hoc with
the vendor delivering the final module resulting in the cus-
tomer accepting it into production without rigorous testing.
The final phase, which included the permitting and inspec-
tions module, the public web portal, and the IVR system,
was completed in 2011. This study covered the twenty-seven-
month time frame required to implement the final phase and
resolve accumulated software bugs from prior phases via the
use of the ITIL release management process.

At the time of the study, the system had accumulated 45
major unresolved software bugs from the prior phases. Some
of these errors caused six system crashes with significant user
down time. Furthermore, critical functionality was missing
on already delivered components. As a result, the project

was halted until the vendor resolved the system performance
issues and delivered themissing functionality.The author and
the project team performed an analysis of the existing release
management processes based on the ITIL framework and
identified the following critical problem areas that were
addressed in two action research cycles: (1) no existing release
acceptance criteria; (2) inefficient customer roll-out planning
process; (3) inefficient distribution and installation; (4) no
existing release planning process in place; and (5) no existing
release policy in place to address the process of release
management.

5. Results and Discussion

Between March 2010 and June 2012, one of the researchers,
the project team, and the software vendor worked to resolve
361 software bugs via seven major and 39 minor releases.
Figure 3 shows the number of software bugs resolved, the
type of release, and the date of the releases. Major releases
are defined as those that included more than one customer
resource and took more than three man hours to complete
(not including vendor hours). Minor releases included not
more than one customer resource that took no longer than
three man hours to complete.

The following section identifies the action research cycles,
identified problems, and the application of the framework to
resolve these problems.



10 Advances in Human-Computer Interaction

5.1. Cycle 1

5.1.1. Problem 1: No Release Planning

(1) Diagnosis. No release planning existed between the vendor
and the customer. Releases were performed ad hoc with
the vendor primarily setting expected delivery dates without
customer requested software fixes. There were no release
acceptance criteria specified, roll-out and back-out plan, or
release notes provided to customers prior to the release.
The customer did not have a designated release manager
to coordinate the resources. No user acceptance testing was
performed prior to the release delivery.

(2) Action Plan. Develop a release plan that includes specific
roles and responsibilities of the CRM, user acceptance team,
content of each release, and acceptance criteria. Identify
impacted end-users and address requests for change (RFC).
Plan the upcoming release scope, schedule, cost, resources,
acceptance tests, roll-out, training, distribution, and instal-
lation strategy. Coordinate plans with the vendor’s release
manager. Document lessons learned.

(3) Action Taken. The release plan was developed by the
CRM with feedback from the vendor, the customer’s IT
department, and the business unit stakeholders. Resources,
costs, and overall release strategy were addressed before com-
mencement of the release. Change requests were documented
in an RFC document, tracked, and communicated with all
internal and external stakeholders.

(4) Evaluation. The release plan went into effect immediately
after it was accepted by both the customer and vendor. The
vendor provided the CRM with release notes for the upcom-
ing release. The notes were used as the agenda for discussion
between the CRM, the newly formed customer user testing
team, and internal stakeholders. The group determined that
some of the proposed fixes were not of significant importance
to the users, while the ones that were had not been considered
for release. A decision wasmade to create a bug prioritization
scale. All software bugs reported by the users were prioritized
via vote by all stakeholders and communicated to the vendor.
The scheduled release was cancelled. Instead, a new release
was planned to address the proposed high impact bugs.

(5) Learning. This cycle ended with the creation of a new
process for software bug prioritization, which became the
driving factor for subsequent release planning processes.
Stakeholders voted on what key software bugs needed to be
addressed. A release schedule determined start and end dates
and informed management of when key customer resources
were required to participate in the testing process and
therefore could not be absent. The release plan also provided
the vendor team with expected deliverables.

5.1.2. Problem 2: No Release Planning

(1) Diagnosis. Since no release acceptance criteria existed
between the customer and the vendor, releaseswere not rigor-
ously tested by the customer and no conditions were specified

when a release should or should not be accepted. The
vendor relied exclusively on its internal fit-for-testing process
prior to delivery and installation of the release into the
customer’s production environment. As a result, a number of
bugs appeared after release that were related to the differences
in the vendor versus live customer environments. Further-
more, because the vendor teamwas not testing the application
in the manner it was utilized by end-users, the total count of
software bugs discovered in production continued to climb,
while the production system frequently crashed two to three
times per week for a period of onemonth due to performance
problems.

(2) Action Plan. Determine the cause and resolve the perfor-
mance issue leading to system crashes. Develop a rigorous
user acceptance testing process that includes the development
and execution of test cases for each of the application’s busi-
ness functionality, prioritization, and reporting of each bug
discovered during testing, retesting of fixed software, and a
go/no go approval decision for the acceptance of the tested
release. Manage the deployment of release into test environ-
ment, the acceptance testing, and communications of issues
with vendor release manager. Track reported changes and
communicate often the progress with stakeholders. Docu-
ment lessons learned.

(3) Action Taken. The performance issue was addressed first.
The CRM and the UAT team prepared several test cases and
distributed them to all the 150 application users. At a specified
date and time, the organization ceased business operation,
and, for 30minutes, all users executed the test cases in the live
production environmentwhile theCRMand the vendor team
monitored and recorded the performance of the system. The
test yielded enough information to pinpoint a memory leak
occurring with the live system.The vendor began working on
a fix to address thememory leak. A new test environment was
created to match the live production environment. The CRM
worked with the UAT team to develop test cases based on the
departmental business process maps. When the emergency
release was deployed to the test environment, the UAT team
executed the test cases and discovered additional bugs that
were able to create other system performance issues. The
release was also tested for memory leaks.

(4) Evaluation. The creation and execution of test cases and
acceptance criteria added 40 days to the final schedule. As a
result, the release schedule was adjusted to incorporate
sufficient lead time in the future to allowUAT, resolution, and
retesting.

(5) Learning. The release acceptance process was addressed
first because of the urgency to stop accepting more bugs in
production that could impact normal business operations.
The production testing of the system proved successful in
discovering and eliminating the performance related issue.
The business unit management was convinced of the need for
rigorous acceptance testing before production deployment
and dedicated additional users to participate in the UAT.The
UAT team uncovered additional bugs with each new release



Advances in Human-Computer Interaction 11

Table 3: Release details.

Release
date

Release
type

Release
version

Bugs
discovered

3/23/2010 Major 3.3.3 17
6/8/2011 Minor 3.8.4.11 68
7/18/2011 Minor 3.8.4.12 77
8/20/2011 Major 3.8.8 62
8/29/2011 Minor 3.8.8 51
9/20/2011 Minor 3.8.9 68
1/6/2012 Major 3.8.11 26

(Table 3). These were prioritized and resolved in subsequent
releases.

5.1.3. Problem 3: No Release Policy

(1) Diagnosis. No release policy existed prior to the cycle.
Releases were performed ad hoc with the vendor primarily
setting expected delivery dates without being agreed upon
software fixes.There were no release acceptance criteria spec-
ified, roll-out and back-out plan, or release notes provided to
customers prior to the release.

(2) Action Plan. Determine optimal policy for the organi-
zation with internal stakeholders. Propose, negotiate, and
implement a release policy with the vendor that defines
acceptable schedule, deliverables for each release, definition
of major (merge build) versus minor (point) releases, test and
production environments used for each release, roll-out plan,
roll-back plans in case of issues with the release, roles,
responsibilities, escalation steps, procurement needs, and
contacts for vendor and customers.

(3) Action Taken. The release policy was developed with
feedback from the vendor, the customer’s IT department, and
the business unit users. The final policy was negotiated with
the vendor via the customer’s procurement department and
was incorporated into the maintenance agreement of the
contract.

(4) Evaluation. The release policy included provisions for
unlimited telephone support services concerning the use of
the software. Prior to the policy, bugs were reported via email
or restricted for reporting to specific times. The policy speci-
fied criteria for response to all errors found in the software
within a defined timeframe. The policy specified technical
documentation that the vendor should provide for each
subsequent update, revision, release, or new version of the
software. The policy identified an installation process by the
vendor of each update, revision, release, or new version of the
software. This included installation in the customer’s test
environment of every release, customer testing criteria, and
vendor deployment in the live production environment.
Additionally, the release policy outlined a semiannual review
of customer’s software and database by the vendor to

(i) uncover any patterns and recommend process refine-
ments;

(ii) propose improvements to the database backup logs
and procedures;

(iii) run performance checks on the application server to
check formemory, CPU, and disk capacity issues with
recommended configuration refinements;

(iv) review primary processes with customer’s represen-
tative from each department to help identify bottle-
necks in processes; and

(v) review application configuration to identify adminis-
trative errors and provide written documentation of
all findings and recommendations.

(5) Learning. The new release policy was formulated with
feedback from the customer’s IT department and the business
unit management. This joint collaboration between the two
groups contributed to the documentation of technical and
operational considerations necessary for inclusion into the
release policy. The final product was a broad release policy
that focused on both technology and business process impro-
vements in order to minimize customer productivity due to
system performance or software bugs introduced with each
release. The policy was negotiated with the vendor over a
period of several months.

5.2. Cycle 2

5.2.1. Problem 1: Inefficient Customer Roll-Out Planning

(1) Diagnosis. There was minimal involvement from end-
users during the roll-out planning process. A list of tasks
for the delivery and installation was prepared by the vendor;
however, coordination of customer IT resources for the back-
out procedures was frequently omitted or handled at the last
minute.

(2) Action Plan. Develop a release time table that clearly
outlines

(i) who is involved from each team;
(ii) what tasks are delegated to each participant;
(iii) what are the contact phone numbers and email

addresses for each person;
(iv) what is the conference bridge number which mem-

bers can use to join and remain on for the duration of
the installation;

(v) what is the start and end time for each task on the
release;

(vi) who and what testing will be performed in the
production system; and

(vii) what is the roll-out procedure plan in case the instal-
lation fails?

Distribute the time table and host a preroll-out meeting
with all stakeholders involved with the release to address
questions and provide clarifications. (Integrating) Identify
stakeholders involved in the roll-out (e.g. IT, key end-users,



12 Advances in Human-Computer Interaction

and vendor resources). Track and communicate changes and
document lessons learned.

(3) Action Taken. The CRM developed a detailed release
checklist and provided it to all stakeholders during the
preroll-out meeting. Tasks included

(i) names of servers to be updated,
(ii) dates, times, and responsible party for

(1) release notifications to the entire user pool;
(2) disabling of the production system;
(3) server snapshots;
(4) primary and secondary database backups;
(5) database restores;
(6) installations of the new release by vendor;
(7) UAT testing in production;
(8) desktop client roll-out to all users’ PC worksta-

tions; and
(9) certification of release completion.

During the preroll-out meeting, the CRM informed the
stakeholders of their role in the release, including the fact that
hewould be calling out the completion of each task during the
installation and letting each party know when to start their
respective tasks. Next, the CRM called out each participant
and asked them to read out their task. He solicited partici-
pants’ feedback about the task and addressed any inconsisten-
cies ormisunderstandings. At the end of the preroll-outmeet-
ing, each stakeholder was made aware of the expectations of
his or her role, including start and end times and contact
information for all participants and the CRM.The UAT team
was also informed of the test cases to be executed in the
production environment after the completion of installation.

(4) Evaluation. The use of a release checklist with start
and end times, designated stakeholders, and solicitation for
feedback from each participant helped the team to minimize
confusion. By asking the stakeholders to provide their under-
standing of each task, the CRM was able to evaluate the roll-
out plan, address any inconsistencies, and update the release
checklist where necessary.

(5) Learning. The preroll-out meeting served as a dry run for
the real installation similar to the training and visualization
techniques used by sportsmen before a competition. This
exercise also helped the CRM to determine tasks that were
missed in the initial release planning.

5.2.2. Problem 2: Inefficient Distribution and Installation

(1) Diagnosis. Prior to the study, the delivery and installation
process frequently experienced a number of issues due to
the lack of coordination between the vendor and customer.
On one occasion, the vendor account permissions were not
enabled due to lack of communication between the vendor
and the customer IT department. This caused a delay of
the installation until the security team activated the vendor’s

account and elevated its permissions to allow installations on
the production server. On another occasion, the vendor failed
to provide the software installation files. When the files were
made available for download from the vendor’s FTP site, the
downloading process took over two hours to complete, which
delayed the start of the installation. During the installation,
production server security updates commenced, resulting
in further delays due to lack of coordination between the
customer IT team and the vendor. As a result, the release
was delivered over a period of 16 hours during the weekend.
Similar issues caused other installations to also last over entire
weekends. Furthermore, on the next business day, end-users
would discover configuration issues with the application that
could have been avoided by performing production testing
after the installation.

(2) Action Plan. Ensure the installation process follows a roll-
out checklist with specific roles, time table for tasks, details
about vendor account permissions, and disabling of backups
and security updates on the servers. Ensure installation files
are provided by the vendor at least one day prior to the
installation. Ensure an open channel of communication is
established between all stakeholders, including the vendor at
all times during the installation to address any unforeseen
issues that may occur. Ensure the customer release team is
available at all times during the delivery and installation
process. Ensure the release is tested by the UAT team after the
installation in the production environment. Document any
lessons learned.

(3) Action Taken. During the preroll-out meeting, all release
participants were made aware of their specific tasks and
roles associated with the upcoming installation. During the
delivery, a conference bridge was made available to all stake-
holders. The CRM used the bridge to obtain status on each
specific task and direct the execution of the next task on the
list. All installers were downloaded from the vendor site prior
to the installation. Regular backups were disabled from the
production server at the start of the installation. Production
testing was performed immediately after the installation to
ensure that no errors with the release existed in the live
system.

(4) Evaluation. The first delivery and installation that used
a roll-out checklist were completed within six hours of
initiation. There were no issues reported during the instal-
lation, but three issues were discovered by the UAT team
during production testing. The issues were related to server
configuration settings and were resolved by the vendor. The
CRM certified the release as successful at the end of the sixth
hour and informed all stakeholders. During the next business
day, the CRM and the UAT team responded to calls from
users for general information on the application. No instal-
lation issues were reported by the end-users.

(5) Learning. The use of a time table, checklist with tasks, a
conference bridge for communication, leadership and direc-
tion onwhen a taskwas completed, andwhen a task should be
started, eliminated stakeholder confusion. Production system
uptime data was collected for normal business hours to



Advances in Human-Computer Interaction 13

98.95%

99.81%
99.72%

99.93% 99.93%99.95% 99.96%
99.83%

99.95%

98.40

98.60

98.80

99.00

99.20

99.40

99.60

99.80

100.00

100.20

(%
)

Ju
n-
0
9

Ju
l-0

9

Au
g-
0
9

Se
p-
0
9

O
ct

-0
9

N
ov

-0
9

D
ec

-0
9

Ja
n-
1
0

Fe
b-
1
0

M
ar

-1
0

Ap
r-
1
0

M
ay

-1
0

Ju
n-
1
0

Ju
l-1

0

Au
g-
1
0

Se
p-
1
0

O
ct

-1
0

N
ov

-1
0

D
ec

-1
0

Ja
n-
1
1

Fe
b-
1
1

M
ar

-1
1

Ap
r-
1
1

M
ay

-1
1

Ju
n-
1
1

Ju
l-1

1

Au
g-
1
1

Se
p-
1
1

O
ct

-1
1

N
ov

-1
1

D
ec

-1
1

Ja
n-
1
2

Fe
b-
1
2

M
ar

-1
2

Ap
r-
1
2

M
ay

-1
2

Figure 4: Production system uptime.

440

80
120

30 15 10
30 20 10 15

70

1520

Ju
l-0

9

Au
g-
0
9

Se
p-
0
9

O
ct

-0
9

N
ov

-0
9

D
ec

-0
9

Ja
n-
1
0

Fe
b-
1
0

M
ar

-1
0

Ap
r-
1
0

M
ay

-1
0

Ju
n-
1
0

Ju
l-1

0

Au
g-
1
0

Se
p-
1
0

O
ct

-1
0

N
ov

-1
0

D
ec

-1
0

Ja
n-
1
1

Fe
b-
1
1

M
ar

-1
1

Ap
r-
1
1

M
ay

-1
1

Ju
n-
1
1

Ju
l-1

1

Au
g-
1
1

Se
p-
1
1

O
ct

-1
1

N
ov

-1
1

D
ec

-1
1

Ja
n-
1
2

Fe
b-
1
2

M
ar

-1
2

Ap
r-
1
2

M
ay

-1
2

Figure 5: Actual system downtime (minutes per month).

determine release successes based on the newly delivered
builds. As a result of the improvements, uptime of the
production server improved by an average of 0.15% or nearly
one hour and fiveminutes permonth compared to the period
prior to the changes (Figure 4), while system downtime was
reduced from 440minutes in July of 2009 to only tenminutes
in May of 2012 (Figure 5).

6. Conclusions

This appears to be the first study that proposes an integrated
release management framework with a predefined CRM role.
The paper presents many opportunities for future research
on the release management process. For example, in release
management, it would be valuable to examine the impact on
software quality via use cases written by the customer team
and used by the vendor software development team during
the software coding process.This processwas not investigated
in this case but can prove valuable in order to understand

not only how use cases impact software development but also
how the interaction between the customer UAT team and the
vendor’s software development team canwork together better
to produce higher quality software.

This research has begun the investigation of how the ITIL
framework can be applied from the customer’s perspective
within an organization. By viewing the impact of the release
management process through the lens of the proposed
integrated release management framework, it illustrates how
release management can be accomplished electively through
establishing coordinationmethods by the CRMwith the ven-
dor release manager and how problems are resolved through
the centralization of the activities. Future research can
examine the use of social media systems to capture lessons
learned during releases [55], optimization of on-the-job
learning practices for release teams [56], and customer
privacy protection when sharing issues with vendors [57].

Little research exists on the application of project man-
agement concepts for release management from the cus-
tomer’s perspective. Frameworks like ITIL, COBIT, and ISO



14 Advances in Human-Computer Interaction

20,000 examine software release from a single perspective,
most commonly the vendor’s. Further research through
a multicase study approach on the use of the proposed
integrated release framework and the results achieved with it
could answer questions on its advantages to other systems
across a broad range of industries.This researchwill hopefully
set the stage for investigating these and other important ques-
tions and for more effective and efficient release management
processes.

The ITIL framework holds great promise for leveraging
a structured method of delivery and acceptance of release;
however, the lessons from this case study show that if the
framework is only applied from the vendor’s perspective, the
customer can incur a number of disadvantages. As a result,
the proposed framework addresses the gaps that exist in
literature to address the releasemanagement process from the
customer’s perspective. Whether or not these lessons can be
duplicated in other scenarios is an open question, as each
organization offers unique challenges.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] S. Cleveland and T. J. Ellis, “Toward a model for customer-
driven releasemanagement,” in Proceedings of the 19th Americas
Conference on Information Systems (AMCIS ’13), pp. 3570–3577,
August 2013.

[2] S. K. Sahoo, J. Criswell, and V. Adve, “An empirical study of
reported bugs in server software with implications for auto-
mated bug diagnosis,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering (ICSE ’10), vol.
1, pp. 485–494, Cape Town, South Africa, May 2010.

[3] B. Schroeder and G. Gibson, “A large-scale study of failures in
high-performance computing systems,” IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 4, pp. 337–350,
2010.

[4] E. Cloud, Electric Cloud Survey: 58% of Software Bugs Result
from Test Infrastructure and Process, not Design Defects, 2012,
http://www.electric-cloud.com/news/2010-0602.php.

[5] G. E. Bryan, “Not all programmers are created equal—Redux,”
inProceedings of the IEEEAerospace Conference, pp. 1–10,March
2012.

[6] G. Tassey, “The economic impacts of inadequate infrastructure
for software testing,” RTI Project 7007, National Institute of
Standards and Technology, Gaithersburg, Md, USA, 2002.

[7] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy,
“Characterizing and predicting which bugs get reopened,” in
Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12), pp. 1074–1083, June 2012.

[8] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou, “Triage:
diagnosing production run failures at the user’s site,” in Pro-
ceedings of the 21st ACM SIGOPS Symposium on Operating
Systems Principles (SOSP ’07), pp. 131–144, Stevenson, Wash,
USA, October 2007.

[9] A.Arora, J. P. Caulkins, andR.Telang, “Researchnote—sell first,
fix later: impact of patching on software quality,” Management
Science, vol. 52, no. 3, pp. 465–471, 2006.

[10] A. Bertolino, “Software testing research: achievements, chal-
lenges, dreams,” in Proceedings of the Future of Software Engi-
neering (FoSE ’07), pp. 85–103, May 2007.

[11] O. Taipale, K. Smolander, and H. Kalviainen, “Cost reduction
and quality improvement in software testing,” in Proceedings of
the International Conference on Software Quality Management,
p. 63, 2006.

[12] A. Pande, “Innovations in cloud computing: the way ahead,”
International Journal of Multidisciplinary Research, vol. 2, pp.
197–205, 2012.

[13] J. Hota and S. Mishra, “Implementation of ERP SaaS option for
HRIS reporting practices,” in Proceedings of the International
Conference on Technology and BusinessManagement, p. 28, 2012.

[14] B. Aslan, M. Stevenson, and L. Hendry, “An assessment of the
applicability of enterprise resource planning systems to make-
to-order companies,” in Proceedings of the 6th European and
Mediterranean Conference on Information Systems (EMCIS ’09),
July 2009.

[15] Z. Jiang, S. Sarkar, and V. S. Jacob, “Postrelease testing and soft-
ware release policy for enterprise-level systems,” Information
Systems Research, vol. 23, no. 3, pp. 635–657, 2012.

[16] W.-G. Tan, A. Cater-Steel, and M. Toleman, “Implementing it
service management: a case study focussing on critical success
factors,” Journal of Computer Information Systems, vol. 50, no. 2,
pp. 1–12, 2009.

[17] J. Zeng, “A case study on applying ITIL availabilitymanagement
best practice,” Contemporary Management Research, vol. 4, pp.
321–332, 2008.

[18] J. vanBon, IT ServiceManagementGuide, Addison-Wesley,New
York, NY, USA, 2002.

[19] J. Van Bon, G. Kemmerling, and D. Pondman, IT ServiceMana-
gement: An Introduction, Van Haren Publishing, San Antonio,
Tex, USA, 2002.

[20] A. S. Danesh, M. R. Saybani, and S. Y. S. Danesh, “Software
release management challenges in industry: an exploratory
study,” African Journal of Business Management, vol. 5, no. 20,
pp. 8050–8056, 2011.

[21] D. Greer and G. Ruhe, “Software release planning: an evo-
lutionary and iterative approach,” Information and Software
Technology, vol. 46, no. 4, pp. 243–253, 2004.

[22] M. Michlmayr, F. Hunt, and D. Probert, “Release management
in free software projects: practices and problems,” in Open
Source Development, Adoption and Innovation, vol. 234, pp.
295–300, Springer, Berlin, Germany, 2007.

[23] A. Lahtela and M. Jäntti, “Challenges and problems in release
management process: a case study,” in Proceedings of the
IEEE 2nd International Conference on Software Engineering and
Service Science (ICSESS ’11), pp. 10–13, July 2011.

[24] A. van der Hoek and A. L. Wolf, “Software release management
for component-based software,” Software—Practice and Experi-
ence, vol. 33, no. 1, pp. 77–98, 2003.

[25] H.-M. Sihvonen and M. Jäntti, “Improving release and patch
management processes: an empirical case study on process
challenges,” in Proceedings of the 5th International Conference on
Software Engineering Advances (ICSEA ’10), pp. 232–237, Nice,
France, August 2010.

[26] K. Rautiainen, C. Lassenius, J. Vahaniitty, M. Pyhajarvi, and J.
Vanhanen, “A tentative framework for managing software



Advances in Human-Computer Interaction 15

product development in small companies,” in Proceedings of the
35th Annual Hawaii International Conference on System Sciences
(HICSS ’02), pp. 3409–3417, 2002.

[27] M. Kajko-Mattsson and P. Meyer, “Evaluating the acceptor side
of EM3: release management at SAS,” in Proceedings of the
International Symposium on Empirical Software Engineering, pp.
315–324, November 2005.

[28] K. Levin and O. Yadid, “Optimal release time of improved
versions of software packages,” Information and Software Tech-
nology, vol. 32, no. 1, pp. 65–70, 1990.

[29] M. Moreira, Wrangling a Release:The Role of Release Manager,
2010, http://www.cmcrossroads.com/article/wrangling-release-
role-release-manager.

[30] A. Baethge and T. Rigotti, “Interruptions to workflow: their
relationship with irritation and satisfaction with performance,
and the mediating roles of time pressure and mental demands,”
Work and Stress, vol. 27, no. 1, pp. 43–63, 2013.

[31] G. Ballintijn, “A case study of the release management of a
health-care information system,” in Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM ’05),
pp. 34–43, Budapest, Hungary, September 2005.

[32] B. Potgieter, J. Botha, and C. Lew, “Evidence that use of the
ITIL framework is effective,” in Proceedings of the 18th Annual
Conference of the National Advisory Committee on Computing
Qualifications, pp. 160–167, Tauranga, New Zealand, 2005.

[33] P. Elephant, ITIL IT Service Management Essentials, Pink
Elephant, Burlington, Canada, 2006.

[34] G. Rasa, S. J. Kumar, and D. R. Banu, “Release and deployment
management using ITIL,” Global Journal of Computer Science
and Technology, vol. 10, no. 15, 2010.

[35] G. Ruhe andM.O. Saliu, “The art and science of software release
planning,” IEEE Software, vol. 22, no. 6, pp. 47–53, 2005.

[36] P. Carlshamre, “Release planning in market-driven software
product development: provoking an understanding,” Require-
ments Engineering, vol. 7, no. 3, pp. 139–151, 2002.

[37] J. Momoh and G. Ruhe, “Release planning process impro-
vement—an industrial case study,” Software Process Improve-
ment and Practice, vol. 11, no. 3, pp. 295–307, 2006.

[38] D. Connolly, F. Keenan, and F. M. Caffery, “Acceptance test-
driven development by annotation of existing documentation,”
in Proceedings of the European Systems & Software Process
Improvement and Innovation Conference (EuroSPI ’10), 2010.

[39] C. Ieamsaard and Y. Limpiyakorn, “On integrating user accep-
tance tests generation to requirements management,” in Pro-
ceedings of the International Conference on Information Commu-
nication and Management, pp. 248–252, 2011.

[40] C.-Y. Huang and M. R. Lyu, “Optimal release time for software
systems considering cost, testing-effort, and test efficiency,”
IEEE Transactions on Reliability, vol. 54, no. 4, pp. 583–591,
2005.

[41] N. Fenton,M. Neil,W.Marsh et al., “Predicting software defects
in varying development lifecycles usingBayesiannets,” Informa-
tion and Software Technology, vol. 49, no. 1, pp. 32–43, 2007.

[42] S. K. Donohue and J. B. Dugan, “Is my software “good enough”
to release?—a probabilistic assessment methodology,” in Pro-
ceedings of the 29th Annual IEEE/NASA Software Engineering
Workshop (SEW ’05), pp. 5–13, Greenbelt, Md, USA, April 2005.

[43] S. U. Farooq and S. M. K. Quadri, “Evaluating effectiveness
of software testing techniques with emphasis on enhancing
software reliability,” Journal of Emerging Trends in Computing
and Information Sciences, vol. 2, no. 12, pp. 740–745, 2011.

[44] J. R. Erenkrantz, “Release management within open source
projects,” in Proceedings of the 3rd Open Source Software
Development Workshop, pp. 51–55, 2003.

[45] M. Ramakrishnan, “Software release management,” Bell Labs
Technical Journal, vol. 9, no. 1, pp. 205–210, 2004.

[46] PMI, Guide to the Project Management Body of Knowledge
(PMBOK), Project Management Institute, White Plains, Md,
USA, 2008.

[47] D. Grant and O. Ngwenyama, “A report on the use of action
research to evaluate amanufacturing information systems deve-
lopment methodology in a company,” Information Systems
Journal, vol. 13, no. 1, pp. 21–35, 2003.

[48] A. McIntyre, Participatory Action Research, Sage, Thousand
Oaks, Calif, USA, 2008.

[49] D. Yates and S. Paquette, “Emergency knowledge management
and social media technologies: a case study of the 2010 Haitian
earthquake,” International Journal of Information Management,
vol. 31, no. 1, pp. 6–13, 2011.

[50] K. Lewin, “Action research and minority problems,” Journal of
Social Issues, vol. 2, pp. 34–46, 1946.

[51] I. Chein, S. W. Cook, and J. Harding, “The field of action
research,” The American Psychologist, vol. 3, no. 2, pp. 43–50,
1948.

[52] R.N. Rapoport, “Three dilemmas in action researchwith special
reference to the Tavistock experience,”Human relations, vol. 23,
pp. 499–513, 1970.

[53] G. I. Susman and R. D. Evered, “An assessment of the scientific
merits of action research,”Administrative Science Quarterly, vol.
23, no. 4, pp. 582–603, 1978.

[54] D. DeLuca, M. J. Gallivan, and N. Kock, “Furthering informa-
tion systems action research: a post-positivist synthesis of four
dialectics,” Journal of the Association of Information Systems, vol.
9, no. 2, pp. 48–72, 2008.

[55] S. Cleveland, “Using microblogging for lessons learned in
information systems projects,” in Proceedings of the 7th Inter-
national Research Workshop on Information Technology Project
Management (IRWITPM ’12), Orlando, Fla, USA, 2012.

[56] S. Cleveland, “On-the-job informal learning practices for IS
students,” in Proceedings of Southern Association for Information
Systems Conference, Savannah, Ga, USA, 2013.

[57] S. Cleveland, “In search of user privacy protection in ubiquitous
computing,” in Proceedings of the IEEE 13th International
Conference on Information Reuse and Integration (IRI ’12), pp.
694–699, August 2012.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


