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Smartphones have become indispensable computational tools. However, some tasks can be difficult to perform on a smartphone
because these devices have small displays. Here, we explore methods for augmenting the display of a smartphone, or other PDA,
using interactive paper. Specifically, we present a prototype interface that enables a user to interactively interrogate technical
drawings using an Anoto-based smartpen and a PDA. Our software system, called PaperCAD, enables users to query geometric
information from CAD drawings printed on Anoto dot-patterned paper. For example, the user can measure a distance by drawing
a dimension arrow. The system provides output to the user via a smartpen’s audio speaker and the dynamic video display of a PDA.
The user can select either verbose or concise audio feedback, and the PDA displays a video image of the portion of the drawing near
the pen tip. The project entails advances in the interpretation of pen input, such as a method that uses contextual information to
interpret ambiguous dimensions and a technique that uses a hidden Markov model to correct interpretation errors in handwritten
equations. Results of a user study suggest that our user interface design and interpretation techniques are effective and that users

are highly satisfied with the system.

1. Introduction

Smartphones, and the wide variety of software applications
for them, have become indispensable computational tools.
However, some tasks can be difficult to perform on a
smartphone because these devices have small displays. Here,
we explore methods for augmenting a smartphone display
using interactive paper. Specifically, we present a prototype
interface that enables a user to interactively interrogate
technical drawings using an Anoto-based smartpen [1] and
a PDA. Smartpens serve the same function as a traditional
pen and also record the writing as time-stamped pen strokes.
Smartpens are used with paper preprinted with a special dot
pattern. A camera integrated into smartpen uses the dots
to locate the pen tip on the page and digitize each pen
stroke. Some smartpens process the digitized writing using
application software running on a processor embedded in

the device; other versions wirelessly transmit the digitize
writing so that it can be processed by software running on a
computer, smartphone, or another mobile computing device.

Our prototype software system is called PaperCAD.
Figure 1 shows an example of a simple drawing formatted
for use with the system. The drawing is printed on digital
paper which also contains several printed buttons, such as a
help button and an abort button, which are used to execute
various software functions. The user can measure dimensions
by drawing conventional dimension lines. In Figure 1, for
example, the user has dimensioned the base and height of
the triangle, the angle of one of the corners, and the radius of
the circle. As each dimension is drawn, the system announces
its value with synthesized speech. The values are obtained by
querying a digital model of the drawing and are not scaled
from the paper drawing. A symbolic label is associated with
each dimension so that its value can be used in equations.
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FIGURE 1: A drawing formatted for PaperCAD. The scale has been
changed for clarity.

The user can also measure the area of a bounded region by
simply tracing the boundary. In the current example, the
triangle has been traced and its area has been associated with
the label T'. Likewise, the area of the circular hole has been
associated with the label C. At the bottom of the page, the
user can write algebraic equations. In this example, the user
has written the equation “I' — C =", which computes the area
between the triangle and circle. The system interprets such
equations and announces the result.

In this work, we explore methods for effectively com-
bining the interaction modalities of smartpens and small
mobile computing devices such as smartphones and tablet
computers. For convenience we use the term personal digital
assistant, or PDA, to refer to such mobile computing devices.
Smartpens (e.g., the Livescribe Echo) are typically capable of
providing audio output. Some smartpens can display small
amounts of text on a character display embedded in the barrel
of the pen. PaperCAD provides audio output and offers both
verbose and concise feedback modes. In the verbose mode,
the system uses synthesized speech to indicate the identity of
recognized objects and to report the values of dimensions. In
concise mode, the system uses tones to indicate whether or
not objects have been recognized; synthesized speech is still
used to report the values of dimensions. In addition to the
audio output, PaperCAD provides graphical feedback using
the dynamic video display of a PDA. After the user draws
on the paper drawing, the beautified ink and CAD drawing
in the neighborhood of the pen stroke are displayed on the
PDA. To view a different part of the drawing, the user taps
the smartpen at the desired location on the paper.

Beyond the user interface challenges, creating PaperCAD
required us to solve several problems related to interpreting
hand-drawn input. For example, we developed a recognizer
for dimension arrows capable of recognizing arrows with a
wide range of aspect ratios. We also developed a method
that uses contextual information to interpret ambiguous
dimensions. Similarly, we developed a technique that uses a
hidden Markov model to automatically correct interpretation
errors in handwritten equations.

The next section places this work in the context of related
work. This is followed by an overview of the PaperCAD
system and the details of its implementation. Results of a user
study evaluating PaperCAD’s usability are also presented.
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2. Related Work

There has been extensive research on sketch-based user
interfaces for tablet PCs and other similar pen-based devices
with dynamic video displays. Examples include tools for
simulating hand-drawn mechanical devices [2], a tool for
sketching user interfaces [3], a tool for understanding mil-
itary tactics [4], a circuit analysis tutor [5], a control system
analysis tool [6], and a UML diagram tool [7]. Likewise, there
has been significant progress in sketching 3D shapes [8, 9].
Our work differs in that it also addresses the challenges of user
interface design for a visually static medium, namely, ink on
paper.

Several recent research efforts have aimed at using smart-
pen technology to build pen-based applications. The Papier-
Craft [10] system enables users to edit documents by writing
on paper printouts with an Anoto digital pen. Annotations
and command gestures are captured by the digital pen and
are then uploaded to a PC to be interpreted and executed on
a digital version of the document. The NISMap system [11]
is a military planning tool, also based on the Anoto digital
pen. As the user annotates a paper map, digitized pen strokes
are wirelessly transmitted to a PC for processing. ModelCraft
[12] is used to apply annotations and edits to a 3D geometric
model constructed from dot-patterned paper. Again, ink is
captured with Anoto pens and is processed offline when the
penis docked. PaperCAD, by contrast, is an interactive paper-
based interface.

Recent work has explored methods of integrating paper-
based interfaces with digital devices. For example, Butter-
flyNet [13] enables field biologists to link digital photos to
paper notebooks by drawing a gesture. The system relies on an
Anoto pen wirelessly connected to a digital camera. Similarly,
PocketPad [14] enables users to annotate digital documents
displayed on a PDA by writing with an Anoto pen and paper.
These systems do little recognition of the pen input, and the
final document is produced only when the digital device and
pen are docked with a computer.

Ariel [15] was an early attempt to introduce computa-
tional capabilities into paper drawings. It employed a WIMP
interface projected onto the drawing and used a light pen
only as a pointer. A-book [16] introduced the concept of an
“interaction lens,” a PDA placed over a paper document to
provide a digital image of the contents. A GUI on the PDA
is used to manipulate the digital model of the document.
PaperCAD, by contrast, works directly from the paper.

Work in [17] has begun exploring methods of providing
real-time user feedback directly from a smartpen using LEDs,
voice coils, and audio speakers. Livescribe smartpens include
small OLED displays.

The Newton’s Pen [18] statics tutoring system also runs
on a smartpen. Our work involves numerous advances
beyond this, such as a robust arrow recognizer, an HMM
technique for correcting interpretation errors in equations,
and techniques for using context to disambiguate graphical
objects. PaperCAD also introduces an interface for correcting
recognition errors and provides new feedback modes, includ-
ing concise audio and an LCD.
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Researchers have developed numerous techniques for
recognizing hand-drawn shapes and symbols. Rubine’s
method [19] is an example of early work in this area. This
method employs an inductive learning method in which
a model for each class of shapes is derived from a set of
training examples. Each example is represented by a set of
geometric and temporal features that are used to train a linear
discriminator for classifying unknown shapes.

Many other recognizers also rely on inductive classifiers.
For example, Lee et al’s [18] graph-based recognizer repre-
sents a class of shapes in terms of the statistical distributions
of a set of topological and geometric features. Gennari
et al. [20] developed a technique that uses geometric and
topological features to train a Naive Bayes classifier, while
Fonseca et al’s [21] method considers properties of the convex
hull of a shape.

Hse and Newton [22] developed a particularly accu-
rate recognizer based on Zernike moments, which provide
a rotation invariant representation. Hammond and Davis
[23] developed a recognizer that relies on hand-coded
shape descriptions. More recently [24], they extended their
approach to use hand-drawn and machine-generated exam-
ples to assist the developer in interactively creating shape
descriptions. Shilman et al. [25] present a sketch recognition
approach that requires a manually encoded visual grammar.
A large corpus of training examples is used to learn the
statistical distributions of the geometric parameters used in
the grammar, resulting in a statistical model. Composite
objects are defined hierarchically in terms of lower-level,
single-stroke symbols, which are recognized using Rubine’s
method [19].

Many recognition approaches rely on template matching.
Gross’s [26] approach relies on a 3 x 3 grid inscribed in the
symbol’s bounding box. The sequence of grid cells visited
by the pen distinguishes each symbol. Kara and Stahovich’s
image-based recognizer [27] represents symbols with 48 x 48
bitmap image templates. To recognize an unknown symbol,
it is converted into a template and compared to all of the
templates in the training set. The training template with the
best match to the unknown symbol is used to classify it.
Ouyang and Davis [28] developed a more efficient template-
based method that encodes information such as shape and
pen trajectory. To reduce recognition time, agglomerative
hierarchical clustering is used. The hierarchy is used with
branch and bound search to reduce recognition time.

The Dollar Recognizer [29] is a popular method for
recognizing single-stroke gestures. It represents a shape with
a template of equally-spaced points sampled from the original
pen stroke. An unknown shape is compared to a definition
template by computing the sum of the distances between
corresponding points.

Kara and Stahovich [6] have developed a special-purpose
recognizer for arrows. The corners defining an arrowhead
are detected as points of minimum pen speed. These points
are used to define a set of line segments. The angles between
these segments are compared to a set of empirical thresholds
to identify arrowheads. This technique was designed to
identify arrows with arbitrary shafts. In their user studies, this
recognizer achieved between 65% and 70% accuracy.

de Silva et al. [5] used inverse curvature to distinguish
arrows from alphabetic characters. The pen stroke to be
classified is sampled to 36 points, and the inverse curvature
is computed for each point. These 36 values are passed to a
neural network for classification. Because of the fixed number
of sample points, the approach is designed for arrows with
a consistent aspect ratio. In our experiments, we found this
technique to be unsuitable for the wide range of aspect ratios
encountered in our domain.

Our arrow recognizer builds upon the technique in [6]
in that we also identify arrows by identifying their heads.
However, we use inverse curvature to identify the location
of a candidate arrowhead, rather than pen speed. Unlike the
technique in [5], we use inverse curvature only to locate a
candidate arrowhead. We then use a bitmap representation
and a neural network, rather than angles, to classify candi-
date arrowheads. The techniques in [6] and [5] are limited
to single-stroke arrows. Our technique can handle arrows
drawn with multiple strokes. Additionally, while the method
in [6] can handle arrows with arbitrary shafts, it is limited to
arrows drawn from tail to head. Our technique can handle
arrows which are drawn in either sense, head to tail or tail to
head, and which may have a head at each end.

There has been extensive research in interpreting hand-
written mathematical expressions [30]. For example, Mat-
sakis [31] and LaViola Jr. [32] have both created interactive
systems for interpreting such expressions. To achieve high
accuracy, these systems rely on accurate character recogni-
tion. Matsakis’s system uses Gaussian models constructed
from a small set of examples symbols. LaViola's MathPad® sys-
tem combines multiple recognizers to achieve high accuracy.
In particular, the system combines Microsoft’s handwriting
recognizer [33] with a set of features computed from the pen
strokes.

Despite advances in character recognizers, recognition
errors cannot be completely eliminated. As a remedy, Mat-
sakis’s system provides a convenient interface for manually
correcting errors. MathPad® uses a set of heuristics that
can replace 5in with sin, for example. Kirchhoft’s Pen [5]
employs a similar approach based on domain knowledge
for electrical circuit equations. Our HMM technique in
PaperCAD provides a more principled approach to error
correction in that it is based on a grammar and statistics about
recognition accuracy. Our work is complementary to existing
work on interpreting handwritten mathematical expressions
[30-32] in that our automated error correction techniques
could be integrated with other recognition approaches.

HMMs have been used for other sketch interpretation
tasks. For example, Sezgin and Davis [34] use an HMM
approach to recognize objects in hand-drawn sketches. A
separate HMM is trained to recognize each kind of shape
in the domain. A global optimization of the probability is
used to determine the overall interpretation of a sketch.
Kosmala et al. [35] describe a similar approach for recogniz-
ing mathematical expressions. Their approach, however, does
not make use of a grammar to improve recognition accuracy.
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FIGURE 2: Typical dimensions.

3. System Overview

For a technical drawing to be complete, the size and location
of every feature must be specified. However, even when a
drawing is fully dimensioned, it is still frequently necessary
to compute additional geometric information. For example,
the diameter and location of a circular hole may be specified,
but it may be necessary to determine the distance between the
hole and the edge of the part.

PaperCAD enables a user to measure arbitrary dimen-
sions from paper drawings by simply dimensioning them.
Figure 2 shows typical examples of dimensions. Dimensions
can span directly between edges of the geometric model (A)
or can span between extension lines (B). (An extension line
is a short line segment that is parallel or perpendicular to a
coordinate axis or model edge and is drawn near a model
vertex.) Linear dimensions can be aligned with a model edge
(B) or a coordinate axis (A). A pair of arrows can be used
to construct gap dimensions (C). Curved arrows are used to
dimension angles (Q). Radii are dimensioned with single-
headed arrows (R) and diameters with double-headed arrows.
Areas are measured by tracing their boundary.

The user must write a symbolic label, specifically an
uppercase letter, for each dimension. Labels serve as a handle
for retrieving dimensions; tapping on a label causes the
system to announce the value of the dimension. Labels
can also be used in equations. PaperCAD has the ability
to interpret and evaluate handwritten algebraic equations
containing labels, numbers, mathematical operators, and the
sine and cosine functions.

Drawings for use with PaperCAD must be printed on
dot-patterned pages. Each page has an equation area at the
bottom and a row of buttons at the top (Figurel). The
“Verbose Off/On” button allows the user to toggle between
concise and verbose audio feedback. The system defaults to
verbose mode, in which synthesized speech is used to provide
interpretive feedback for all objects. In concise mode, the
system plays “success” and “failure” tones to indicate whether
or not objects have been recognized. Even in concise mode,
however, synthesized speech is still used to report the values
of dimensions. The “Help” button provides guidance for using
the system and assistance with errors. The “Abort” button is
used to cancel operations.

PaperCAD provides several methods for correcting inter-
pretation errors. The “Interpretation” button allows the user
to select an alternative interpretation for misrecognized
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FIGURE 3: PaperCAD system including the FLY smartpen, paper
drawing, Nokia N800, and PC. The latter is used to emulate
smartpen functionality; users do not see the PC. (The devices are
shown at different scales.)

graphical objects. For example, if an extension line is mis-
recognized as a dimension arrow, the user can tap the
“Interpretation” button until the extension line interpretation
is selected. Interpretation errors for labels and equations can
be corrected by drawing a cross-out gesture (“\”) through the
symbol or symbols and rewriting them. Additional terms can
be added to an equation by drawing a caret (“A”) and writing
the new terms.

PaperCAD relies on a draw-and-pause paradigm in
which the user pauses after drawing each object to receive
interpretive audio feedback. For example, once the user has
completed drawing a dimension arrow, the system announces
the type of dimension, such as model-aligned, and its value.
It is important that interpretive feedback be provided after
each object is drawn, because otherwise it would be difficult
to associate the feedback with individual objects.

In addition to audio feedback, PaperCAD also provides
visual feedback via a PDA, although the latter is not required
for use of the system. After the user draws on the paper, the
beautified ink and CAD drawing in the neighborhood of the
pen stroke are displayed on the PDA. To view a specific part
of the drawing on the PDA, the user taps it with the smartpen.

To facilitate efficient development, we implemented our
prototype software system using a combination of actual
hardware and simulated hardware capabilities. The hardware
used (Figure 3) includes a LeapFrog FLY smartpen, a Nokia
N800 PDA, and a traditional PC. The smartpen streams
ink data to the PC via a debugging cable. The data is then
processed by our prototype application running on the host
PC, which the user does not see. The application produces
audio feedback via a text to speech converter; the audio is
played through the PC’s speakers. The N800 communicates
with the host PC via a simple web server integrated into our
prototype application. The application dynamically generates
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a web page comprised of the text of the most recent audio
message and an image of the appropriate region of the digital
paper. The web page is regenerated each time a drawing event
occurs or an audio message is played. The N800’s web browser
refreshes its view of the page at a frequency of one Hz.

This development environment enabled us to focus on
issues related to user interface design and the recognition of
hand-drawn input, rather than issues related to developing
applications for small mobile computing devices. However,
as work in [18] has shown, it would be possible to implement
this software directly on a smartpen.

4. System Details

Each time the user pauses, PaperCAD attempts to recognize
the ink, which can represent extension lines, dimension
arrows, text labels, editing gestures, and equations. If ink
drawn in the drawing area of the page represents a recog-
nizable object, the system reports its identity. Alternatively,
if the ink is unrecognizable, the system announces that the
input is invalid. In the equation area, if the ink can be
interpreted as an editing gesture, it is processed immediately.
Otherwise, the system delays processing until an equal sign is
detected, at which time the ink is interpreted as an equation.
The following sections describe the various interpretation
algorithms in detail.

4.1. Extension Line Recognizer. An extension line is a straight
line segment that is parallel or perpendicular to a coordinate
axis or model edge and that is drawn near a model vertex.
Extension lines serve as datums for measuring dimensions.
A linear least squares line fit is used to determine if a
candidate pen stroke is a straight line. Specifically, if the
average perpendicular distance from the stroke’s data points
to the least squares line is less than or equal to 1.5% of the
stroke length, the stroke is considered to be a straight line. An
extension line is considered to be near a model vertex if one
of its endpoints is within a threshold distance to the vertex.
We use a tolerance equal to 5% of the average of the height
and width of the model’s bounding box.

The intended orientation of an extension line is deter-
mined by considering the local context. If an extension line is
within 14° (i.e., 4% of 360°) of being parallel or perpendicular
to a model edge or coordinate direction, then the program
hypothesizes that user may have intended it to be parallel
or perpendicular, respectively. If an extension line is nearly
parallel or perpendicular to multiple model edges and/or
coordinate directions, multiple hypotheses are generated. For
example, in Figure 4, three hypotheses are generated: the
extension line could be perpendicular to edge AB, perpen-
dicular to edge BC, or parallel to the y-axis. The program will
maintain all three hypotheses until the extension line is used
as a datum, at which time additional contextual information
is used to determine the intended orientation. For example,
if a dimension line is drawn between this extension line and
another that is vertical, this extension line will be interpreted
as a vertical one, and the dimension will be reported as a
horizontal distance.

FIGURE 4: Ambiguous extension line.

4.2. Arrow Recognizer. Dimension arrows are challenging
to recognize because the aspect ratio varies greatly. For
short arrows, the arrowhead width may be comparable to
the shaft length, whereas for long arrows the width may
be comparatively insignificant. In fact, for long arrows, the
arrowhead can be confused with the kind of hooking that
often occurs at the ends of digitized pen strokes. To avoid
these difficulties, we have developed an arrow recognizer that
first decomposes a candidate arrow into a shaft region and
head regions. In so doing, the program is able to examine the
arrowhead at an appropriate scale regardless of the length of
the shaft.

Arrows can be drawn with multiple pen strokes. When
this occurs, the strokes are combined into a single equivalent
pen stroke prior to recognition. To begin, the stroke that
was drawn second is added to the first stroke by joining
them at their closest ends with a straight line segment, thus
producing a combined stroke. Subsequent strokes are added
to the evolving combined stroke until a single combined
stroke is produced. We have found that people often draw
the shaft of an arrow first. Thus, this procedure effectively
attaches the arrowheads to the shaft. Interestingly, however,
the approach has proven to work even when the shaft is not
drawn first.

Once all of the pen strokes have been combined, the
equivalent single pen stroke is resampled to produce 100
evenly spaced points. A line segment is then constructed
between each pair of consecutive points. Next, the cosine
of the angle between adjacent segments is computed. The
cosine is inversely related to the curvature. For example, if two
consecutive segments are nearly collinear, the cosine is close
to 1.0. If there is a large discontinuity, such as a 90° bend, the
cosine is close to 0.0. For this reason, the cosine of the angle
between adjacent segments is called “inverse curvature”

The shaft of an arrow is identified as the largest set of
consecutive data points for which the inverse curvature is
greater than zero. For example, Figure 5 shows a double-
headed arrow and its inverse curvature representation. In
this case, the shaft extends from data point 28 to 81. Data
points that precede and follow the shaft are considered to
be potential arrowheads. To facilitate recognition of the
arrowheads, it is desirable for the candidate arrowheads to
contain a small piece of the shaft. Thus, candidate arrowheads
are augmented with eight data points from the appropriate
end of the shaft. Augmenting the arrowheads in this fashion
also ensures that each candidate arrow has two candidate
arrowheads.
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FIGURE 5: The inverse curvature of a double-headed arrow.

Once the two candidate arrowheads have been located,
we use a bitmap representation and a neural network clas-
sifier to determine if the candidate arrowheads actually are
arrowheads. To begin, a candidate arrowhead is uniformly
scaled and sampled to produce a 17 x 17 binary bitmap. The
bitmap is then transformed into a sort of distance map. Black
pixels in the binary bitmap are represented by a +1 in the
distance map. Nonblack pixels that neighbor black pixels are
represented by a 0 in the map. All other pixels are represented
by a —1. The map is essentially a gray-scale image in which
three shades of gray (black, gray, and white) are used to blur
the original image. We have found that using this form of
gray-scale image results in higher recognition accuracy than
the binary bitmaps.

The gray-scale bitmaps are classified with a neural net-
work consisting of an input layer with 289 units, a hidden
layer with 20 units, and an output layer with 12 units. Each
input unit corresponds to a pixel in the 17 x 17 gray-scale
image. Each output unit corresponds to a particular arrow-
head orientation or to a particular type of nonarrowhead.
The network classifies arrowheads as having an orientation of
0°, 45°, 90°, 135°, 180°, 225°, 270°, or 315°. The nonarrowhead
classifications include horizontal line, vertical line, diagonal
line with positive slope, and diagonal line with negative slope.

If both candidate arrowheads from a candidate arrow are
classified as arrowheads, the candidate arrow is a double-
headed arrow. Likewise, if only one candidate arrowhead is
classified as such, the candidate arrow is a single-headed
arrow. Otherwise, the candidate arrow is not an arrow.
Double-headed arrows are further classified as curved arrows
for measuring angles and straight arrows for measuring linear
dimensions. The distinction is based on the straightness of the
shaft. If the shaft is a straight line according to the definition
of straight used for extension lines (see Section 4.1), the arrow
is assumed to be straight, and otherwise it is curved.

To train the neural network, we collected sample arrows
from seven engineering students. Each subject was asked
to provide 211 arrows that varied in length and orientation.
To ensure systematic data collection, subjects were provided

Advances in Human-Computer Interaction

with “targets” for the arrows. For example, subjects were pro-
vided with boxes with various lengths and orientations and
were asked to draw arrows that spanned them. In this fashion,
subjects provided double-headed arrows with lengths of 2,
4, 8, and 16 cm and orientations that varied in 45° incre-
ments. Using a similar approach, subjects provided examples
of single-headed arrows, radial dimensions (single-headed
arrow), diametral dimensions (double-headed arrows), and
angular dimensions (curved double-headed arrows). Finally,
to obtain additional variety in the data, each test subject was
asked to draw 10 arbitrary linear dimensions, each comprised
of a pair of extension lines and a double-headed arrow.

As the neural network classifies only the arrowhead por-
tion of an arrow, it was necessary to extract the arrowheads
from the sample arrows prior to training the network. This
was done using the inverse curvature approach described
above. As part of the training process, we used a cross
validation approach to determine the optimal number of
nodes in the hidden layer of the network. The network was
trained on data from six subjects and was tested on data from
the seventh. (The curved arrows were not used for training
but were used for testing.) We determined that 20 is the
optimal number of nodes. For this network topology, the
average classification accuracy for the seven iterations of cross
validation was 96.8%. Here, accuracy is defined in terms of
the number of correctly classified arrows. For an arrow to be
correctly classified, both of its candidate arrowheads must be
correctly classified.

4.3. Interpreting Dimensions. Once a dimension arrow has
been recognized, PaperCAD must determine which dimen-
sion it represents. The program searches for suitable datums
near the ends of the arrow. Datums include extension lines,
model edges, and crosses at the centers of arcs. If the arrow
spans between compatible datums, the program reports the
appropriate dimension. For example, if the tail of a single-
headed arrow is at the cross of an arc, and the head is on the
arc itself, the program reports the radial dimension. Likewise,
if a double-headed arrow connects two parallel extension
lines, the program reports the distance between them. Recall
that the program may maintain multiple interpretations for
the orientation of an extension line. When an ambiguous
extension line is related to another datum via an arrow, the
program uses the additional context to identify the intended
orientation of the extension line. The program selects an
orientation that is consistent with the orientation of both the
other datum and the arrow.

Context is also used to correct errors from the arrow
recognizer. For example, if both ends of a single-headed
arrow touch parallel datums, such as two extension lines, the
program assumes that the arrow was misrecognized and was
intended to be a double-headed arrow. Similarly, if the two
ends of a straight double-headed arrow touch datums that
intersect one another, the program assumes that the arrow
was intended to be an angular dimension (curved arrow).
Similar reasoning is used to correct other interpretation
errors.
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4.4. Tracing Gesture Recognizer. A user can query the area
of a bounded region by tracing its perimeter with one or
more pen strokes. PaperCAD identifies tracing gestures by
first identifying the set of model edges that are near the ink.
To facilitate this, the model edges are sampled. Each line
is sampled with 100 equally spaced points, and each arc is
sampled with 180 equally spaced points. If 80% of the sample
points of an edge are near ink data points, we assume the edge
was traced. The threshold for “nearness” is the same as used
with extension lines (i.e., 5% of the average of the height and
width of the model’s bounding box). The value of 80% was
selected as a compromise to allow some amount of sloppiness,
without a high risk of false positives. If the set of traced edges
forms a closed polygon, the gesture is assumed to be a tracing
gesture.

4.5. Text Label and Edit Gesture Recognizer. PaperCAD
requires the user to provide a symbolic label for each dimen-
sion arrow and traced area. To increase recognition accuracy,
labels are restricted to single uppercase letters. Labels are
recognized using Microsoft’s handwriting recognizer [33].
This recognizer is also used to recognized the cross-out
gesture (“\”) and the caret gesture (“A”) used for inserting
new terms into an equation.

5. Equation Interpretation

Equations are interpreted using a three-step process. First,
the ink is segmented into individual characters. Then, the
Microsoft handwriting recognizer is used to classify each of
the characters. The resulting interpretation is often unreliable.
Thus, the final step is an error correction process in which a
hidden Markov model (HMM) is used to correct interpreta-
tion errors.

A simple approach to segmenting an equation into char-
acters is to group stokes with overlapping bounding boxes as
shown in Figure 6(a). However, if characters are drawing too
close together or are slanted, this simple approach can fail. For
example, in Figure 6(a), “W” and “)” are incorrectly clustered
together. We have found that we can obtain more accurate
clustering results by rotating the characters a small amount
prior to the bounding box calculation. This minimizes the
effect of slanting. Empirically, we have found that rotating the
entire equation 11° counter-clockwise produces the optimal
result. For example, when the equation in Figure 6(a) is
rotated by 11°, “W” and “)” are correctly clustered as shown
in Figure 6(b). After the clustering is computed, the equation
is rotated 11° clockwise so that the characters are not distorted
when they are sent to the character recognizer. Note that
because the two strokes of an equal sign are disconnected,
they are treated as a special case during clustering.

Once an equation has been segmented, each cluster is
classified with the Microsoft handwriting recognizer. To
improve accuracy, the recognizer is biased to return one of
44 legal characters which include capital letters, numerical
digits, “(%, )% “+7 “=7 “x7 </« and “=”

The Microsoft handwriting recognizer is intended
for cursive rather than printed characters. Consequently

FIGURE 6: (a) Simple bounding box approach to clustering. (b)
Rotating the equation 11° counter-clockwise before constructing
bounding boxes results in more accurate clustering.

the recognition results are somewhat unreliable. Some
common errors can be easily identified and repaired. For
example, equal signs are often interpreted as a pair of minus
signs. Thus, our program reinterprets a pair of consecutive
minus signs as an equal sign. However, most errors are
more difficult to identify. For example, the term “COS”
may be interpreted as “C05% “(OS”, and so forth. We use an
HMM to correct these sorts of errors. With this approach,
the output of the handwriting recognizer constitutes a
sequence of observations (e.g., “C” - “0” - “57), and the
correct interpretation of the clusters constitutes a sequence
of hidden states (e.g., “C” - “O” - “S”). We use the Viterbi
algorithm [36] to find the most probable sequence of states
that could have produced the sequence of observations. This
is an instance of the most probable path problem.

An HMM can be represented as a three-tuple:
/\(A,-j, B j(k),ni). Here, A;; is the state transition probability
distribution, describing the probability of transitioning
from state i to state j; B;(k) is the observation probability
distribution, describing the probability of observing symbol
k in state j; 71; is the initial state probability distribution,
describing the probability of state i being the first state in a
sequence. (For a detailed overview of HMMs, see [36].)

Our HMM has 49 states which include the 44 legal
characters (see above) as well as 5 special states. The latter
include the space character and four “compound” states that
include “SI”, “SIN”, “CO”, and “COS”. The compound states
help the system to identify “SIN” and “COS”. For example,
if the sequence of observations is “S” - “I” - “N”; the most
probable sequence of states is “S” - “SI” - “SIN”. Our HMM has
49 observation symbols corresponding to the 49 states. The
most likely observation for most states is the same as the state
itself. The compound states are the exception. For example,
the most likely observation for state “SIN” is “N”.

We computed the A;; matrix based on a simple grammar
for legal equations (Tablel). Specifically, equations may
contain single-letter variables, decimal numbers, “SIN”, and
“COS”. Furthermore, multiplication must be explicit (e.g., X *
Y, rather than XY), the arguments to “SIN” and “COS” must
be enclosed in parentheses, and equations must end with
an equal sign. From the complete grammar, we generated
the set of legal state transitions. We computed the complete
A;; matrix by assuming that all legal transitions from a
state were equally likely, with the total probability of such
transition summing to 99%. Similarly, we assumed that all
illegal transitions from a state were equally likely, with the
total probability of such transitions summing to 1%. For
example, the probability that any particular digit follows



TABLE 1: Legal state transitions for equation HMM. digit = digits
from “0” to “9”; alpha = all uppercase letters; alpha_cs = all uppercase

letters except “C” and “S”; op = “+7, “=7, “*”, and /.
Si Si+1
op digit, alpha
“ digit, alpha, “+7, “=",
“ op, “=
digit
digit digit, op, “=", )~
alpha_cs op, “=" )"
“‘C” op, “=",)", “CO”
“S” op, “=",) “SI”
“Co” “Cos”
“Sr° “SIN”
“SIN’, “COS” “

a decimal point is 0.99 * (1/10), whereas the probability
that any particular nondigit follows a decimal point is 0.01 *
(1/39). The pi; matrix was derived from the grammar in a
similar fashion.

The B j(k) matrix was obtained from experimental data.
Several subjects provided examples of both individual sym-
bols and complete equations. These were processed with the
Microsoft handwriting recognizer to produce a confusion
matrix. This was then used to estimate the Bj(k). Because
the confusion matrix was relatively sparse, the B j(k) matrix
contained many zero probability entries. To make the HMM
more robust, we added 10% to every value in the B j(k) matrix
and then renormalized each row to 100%. This enabled the
system to tolerate recognition errors not observed in the
training data.

We have found that our HMM significantly improves
recognition accuracy. For example, in one experiment, we
evaluated the system’s performance on the set of equations
used to train the B;(k) matrix. We compared the interpre-
tation accuracy both with and without the HMM. Here,
accuracy is defined in terms of the edit distance, which
is the minimum number of character changes needed to
transform the interpretation result into the correct string.
Without the HMM, the average edit distance was 2.81; with
the HMM, it was 1.58. The equations contained, on average,
13.17 characters. Thus, without the HMM, on average only
78.6% of each equation was correctly recognized, while, with
the HMM, 88.0% was correct. While this 43% reduction in
errors is a significant increase in accuracy, there is still room
for improvement.

6. User Study

We conducted a user study to evaluate the performance
and usability of PaperCAD. The study included 10 volunteer
subjects, none of whom had provided any training data for
the system. All of the subjects were mechanical engineering
students at our university. Subjects were compensated with
a $15 gift certificate. Each session involved a single student
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FIGURE 7: Drawings from user study.

and lasted about an hour. Sessions were videotaped with an
overhead camera, and all digital data, such as pen strokes and
button clicks, was logged to a hard disk.

Each session began with a warm-up exercise in which the
subject practiced using the smartpen to operate a calculator
application. This provided experience with the feel of the
device and the draw-and-pause user interaction paradigm.
Next, the subject viewed a brief slide presentation illustrating
how the system is used to make measurements on a drawing
and evaluate equations. Finally, each subject was provided
with a one-sheet reference guide for the system. The guide
provided examples of typical types of dimensions, a list of
editing gestures, and tips for writing equations. With the
guide in hand, each subject was asked to perform a set of
tasks. In some cases, the subjects were asked to complete
tasks using either concise or verbose audio, without the
LCD display on the PDA. In other cases, they were asked
to use the LCD display combined with audio feedback. In
the remainder of the cases, the subjects were allowed to use
whichever feedback modalities they preferred. The complete
experimental protocol is as follows.

(1) Using verbose audio without the LCD: measure the
height and width of a rectangular plate with a quarter-
circle cutout at one corner (Figure 7(a)). Measure the
angle of one corner of the plate. Measure the area of
the plate with a tracing gesture. Write an equation to
determine the area of the quarter-circle cutout.

(2) Using verbose audio without the LCD: measure the
linear and angular dimensions of a triangle and its
area. Construct equations to compute the perimeter
and area.

(3) Using concise audio without the LCD: repeat step (2)
for another triangle.

(4) Using the LCD and audio: repeat step (2) for a
parallelogram.

(5) Using desired feedback methods: for a rectangle with
a triangular hole (Figure 7(b)), measure the distance
from the triangle’s vertices to the edges of the rectan-
gle. Compute the area bounded by the rectangle and
triangle.

(6) Using desired feedback methods: compute the area
and perimeter of a hexagon. Measure the area of the
hexagon.

(7) Using desired feedback methods: measure the radius,
diameter, and area of two circles. Determine
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the difference between the diameters of two

concentric circles.

(8) Using desired feedback methods:measure the height
and width of the notch in the part in Figure 7(c), and
determine the area of the part excluding the hole.

7. Results

The log files that the PaperCAD system captured during
the user study enabled us to perform a detailed analysis
of the system’s performance and usability. Table 2 presents
accuracy data for the interpretation of extension lines. Of
the 450 extension lines drawn during the study, 375 (83%)
were correctly interpreted by the system. Forty-five of the
75 interpretation errors were caused by the system. Another
28 errors were a result of user error. For example, in nine
cases, the user drew the intended extension line in the wrong
location, while in five cases the user failed to pause before
drawing the next extension line. Two of the interpretation
errors were caused by the digital pen failing to capture all of
the ink that was written.

Tables 3, 4, and 5 present accuracy data for the inter-
pretation of arrows. The system correctly interpreted 83% of
the single-headed arrows. The misinterpreted single-headed
arrows were confused with extension lines. The system cor-
rectly interpreted 77% of the double-headed arrows. About
half of the interpretation errors were caused by the system.
The remaining errors were a result of user error. For example,
13 of the interpretation errors resulted from the user failing
to complete the arrow before the timeout, while 11 were a
result of failing to draw a necessary extension line before
drawing the arrow. The system correctly interpreted 85% of
the curved arrows. Again, about half the interpretation errors
were caused by the system, while the rest were caused by user
error. Most of the user errors were due to a failure to complete
drawing before the system timeout or a failure to pause before
drawing another object.

The PaperCAD system successfully used contextual infor-
mation to overcome some of the errors in interpreting arrows.
The results in Tables 3, 4, and 5 reflect this. Table 6 provides
a more detailed view of the effectiveness of our context-
based correction process. Contextual information was used
to change the initial interpretation of 26 arrows. Eighty-one
percent of these changes resulted in the correct interpretation.

The system performed well at interpreting tracing ges-
tures (Table 7). The system correctly interpreted 94% of the
108 tracing gestures. Only one of the six errors was caused by
the system, while five were caused by user error.

Interpretation of text proved to be the biggest challenge
for the system. The system correctly interpreted all of the
characters in 56% of the equations (Table 8). The equations
contained a total of 925 characters, with an average of
6.4 characters per equation. The handwriting recognizers
(the Microsoft handwriting recognizer and our “=” recog-
nizer) incorrectly interpreted 114 of the 925 characters. Our
HMM reduced this to 88 misinterpretations, which is a 23%
reduction in errors. Using the HMM, the system correctly
interpreted 90% of the characters. However, as equations have
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TABLE 2: Interpretation of extension lines.
Event Correct  Incorrect
Correctly interpreted 375
Ink capture failure (H) 2
Drawn in wrong direction, not 3
parallel/perpendicular to anything (U)
Drawn in wrong location (U) 9
Drawn incorrectly, over-stroked (U) 2
Drawn incorrectly, tapped first (U) 3
Drawn on the perimeter of a circle (U) 1
Drawn too far from the drawing (U) 5
No pause before drawing another (U) 5
Not recognized (S) 29
Angle misinterpreted (S) 1
Location misinterpreted (S) 8
Misinterpreted as a single arrow (S)
Misinterpreted as a tap (S) 4
Total 375 75
H: hardware error; U: user error; S: system error.
TaBLE 3: Interpretation of single-headed arrows.
Event Correct Incorrect
Correctly interpreted 24
Misinterpreted as an extension line (S)
Total 24
S: system error.
TABLE 4: Interpretation of double-headed arrows.

Event Correct  Incorrect
Correctly interpreted 233
Did not complete before timeout (U) 13
Did not pause before writing label (U) 1
Missing one arrowhead (U) 1
Not perpendicular to the datums (U) 1
Extension lines not parallel (U) 3
Did not draw extension line (U) 11
Did not realize that previously drawn 2
extension line was not valid (U)
Datums not perpendicular (U) 5
Not recognized (S) 1
Extension line misinterpreted (S) 3
Misinterpreted as a single arrow (S) 15
Misinterpreted as missing a datum (S) 1
Misinterpreted as not perpendicular to 14
datums (S)
Total 233 71

U: user error; S: system error.

multiple characters, and thus multiple opportunities for inter-
pretation errors, only 56% of the equations were interpreted
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TABLE 5: Interpretation of curved arrows. TaBLE 9: Equation Editing.
Event Correct Incorrect Event Correct Incorrect
Correctly interpreted 68 New term correctly interpreted 38
Did not complete drawing the arrow before 3 Did not complete before timeout (U) 1
timeout (U) Did not realize cross-out failure and 1
Forgot to pause and attempted to draw 1 continued to write a new term (U)
another arrow (U) Misinterpreted (S) 15
Missing one arrowhead (U) Total 38 17
Misinterpreted as a single arrow (S) 6 U: user error; : system error.
Misinterpreted as missing a datum (S)
Total 68 12
TaBLE 10: Interpretation of labels.
U: user error; S: system error.
Event Correct Incorrect
TaBLE 6: Context-based error correction. Correctly interpreted 443
Event Correct Incorrect Ink capture failure (H)
Single arrow corrected to a curved arrow 4 Did not complete before timeout (U) 4
Single arrow corrected to a double arrow 17 Did not realize cross-out failure and 3
. . continued to write label (U)
Single arrow incorrectly changed to curved 3
arrow Invalid Label (U) 5
Double incorrectly changed to curved arrow Misinterpreted (S) 42
Total 21 Total 443 58
H: hardware error; U: user error; S: system error.
TABLE 7: Interpretation of traces.
Event Correct  Incorrect TABLE 11: Interpretation of cross-outs.
Correctly interpreted 102 Event Correct Incorrect
Did not complete before timeout (U) Correctly interpreted 83
Drawn too far from the drawing (U) Ink capture failure (H)
Misinterpreted as not forming a closed 1 Drew “/” instead of “\” (U) 4
contour (S) Did not pause before writing new label or term 6
Total 102 6 (U)
U: user error; S: system error. Did not realize the ink was not a valid label or 8
term (U)
TABLE 8: Interpretation of equations. Terms were not yet processed by the system (U) 2
Event Correct Incorrect Not recognized (S)
- Location misinterpreted (S) 4
Correctly interpreted 93
. Total 83 26
Ink capture failure (H) 3
. . . H: hardware error; U: user error; S: system error.
Not written in the equation area (U) 1
Forgot to tap abort before writing new 4
equation (U) ) ) ) ) )
s to edit equations. As shown in Table 9, just over two-thirds of
Incorrect division operator (U) .. .
o the editing operations were successful. Most of the problems
Incorrect multiplication operator (U) were again due to errors in character recognition.
Misinterpreted because of timeout (U) Character recognition errors also occurred when rec-
Written correctly but at least one character 50 ognizing text labels (Table10). The character recognizer
misrecognized (S) achieved 88% accuracy on labels. Because the labels comprise
Total 93 74 single-characters, the HMM could not improve this result.

H: hardware error; U: user error; S: system error.

perfectly. While most interpretation errors were caused by the
system, there were some user errors. For example, some users
drew the wrong symbols for multiplication or division (e.g.,

w _» .

x” instead of “s”). The PaperCAD system enables the user

When the characters in equations and labels were mis-
interpreted, the users crossed them out and rewrote them.
As shown in Table1l, 76% of the cross-out gestures were
successful. The majority of errors were user errors. These
included, for example, failing to pause before writing the
new character and crossing-out text before the system had
processed it.
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TABLE 12: Perceived ease of drawing correctly recognized objects and
equations. 10 = easy; 1 = hard.

Mean Std. dev.
Extension lines 9.2 0.8
Arrows 9.6 0.7
Area tracing 9.8 0.4
Labels 9.1 17
Equations 8.3 1.7

TABLE 13: Perceived usability.

Mean Std. dev.
Equation interpretation accuracy 8.4 1.2
Ease of correcting labels/equations 8.7 13
Ease of using reinterpretation 9.1 1.0
Clear feedback 9.9 0.3
Prefer concise audio mode 5.3 3.6
Usefulness of LCD 5.8 3.8
Ease of using LCD 9.7 0.7
Ease of learning the system 9.7 0.7
Overall usability 9.6 0.7
Similarity to paper and pencil 8.9 1.1
Prefer pen-based to WIMP 8.8 13

8. User’s Perceptions

The participants in our study completed a survey evaluating
the usability of the system. Nine of the users reported
similar experiences, while the tenth subject was an outlier.
Specifically, on most survey questions, the tenth subject’s
answers differed from the mean by several standard errors
of the mean. For this reason, we excluded this subject from
our statistics. Background questions revealed that this was
the only subject who had not had a course in engineering
drawing.

Table 12 summarizes survey results about the ease of
drawing various objects, such as arrows and equations. The
data suggests that study participants perceived little difficulty
in drawing with PaperCAD. Ease of equation writing is rated
highly, but slightly lower than the ease of drawing other
objects.

Table 13 summarizes results related to usability. Partic-
ipants found equation interpretation accuracy to be good.
Likewise, they found it easy to correct equations and labels
and to use the reinterpretation button. Participants perceived
that the system provided clear instructions and interpre-
tive feedback. Interestingly, however, there was no strong
preference for concise audio feedback versus verbose audio.
Similarly, while participants found the LCD to be easy to use,
they perceived it to be only mildly useful. Participants found
the system to be easy to learn and, overall, very usable. Finally,
they found the system to be very similar to paper and pencil,
and they strongly preferred this system to systems based on a
traditional WIMP interface.

As described in Table 14, the study participants’ over-
all reaction to PaperCAD was quite positive. Participants
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TABLE 14: Overall reaction to PaperCAD.
Mean Std. dev.
Wonderful = 10, terrible = 1 9.2 0.7
Easy =10, difficult =1 9.4 0.7
Satisfying = 10, frustrating = 1 9.2 0.8
Stimulating = 10, dull = 1 9.7 0.7

considered the system to be near “wonderful” on a scale

of “wonderful” versus “terrible,” near “easy” on a scale of

€ « » gt oot €t

easy” versus “hard,” near “satisfying” on a scale of “satisfying
{9 : » <« . . »

versus “frustrating,” and near “stimulating” on a scale of

“stimulating” versus “dull”

9. Discussion and Future Work

Our arrow recognizer had an overall accuracy for all types of
arrows of 79%. When user errors are excluded, the accuracy
is 88%. This is substantially more accurate than the 65% to
70% accuracy of the arrow recognizer reported in [6]. Note
that the latter technique cannot be applied to our data, as it is
limited to single-stroke arrows drawn from tail to head.

Our results indicate that the Microsoft handwriting rec-
ognizer is not well-suited for our task. This recognizer is typi-
cally used to recognize words written in cursive handwriting,
and thus it is not optimized for interpreting equations and
labels. We may be able to improve recognition accuracy using
an image-based symbol recognizer such as those in [27, 28].
Alternatively, we could employ the approach used in LaViola’s
MathPad?® [32]. His system uses the output of Microsoft's
handwriting recognizer as just one feature in a more powerful
classifier.

Our HMM-based technique for correcting interpretation
errors in handwritten equations has proven to be effective. On
the dataset we used to develop our technique, the technique
reduced interpretation errors by 43%. In our user study
(Section 7), the technique reduced errors by 22%. While this
is a substantial improvement, there is clearly a need for a
more accurate handwriting recognizer. The high error rate of
the current handwriting recognizer is difficult to completely
overcome, even with an effective error correction technique.

The generality of our error correction technique makes it
suitable for other equation interpretation problems. Because
the technique relies on a grammar for legal equations, the
technique would be particularly useful in domains in which
conventions constrain the content of equations.

Many of the interpretation errors were the result of user
errors. For the 1803 drawing events in our user study, there
were 123 (6.8%) user errors. For example, users sometimes
forgot to pause after drawing objects or failed to complete an
object before the timeout. Additionally, sometimes users did
not follow the system’s conventions such as drawing needed
extension lines before drawing a dimension arrow. While we
refer to such errors as “user” errors, they imply the need
for additional improvement to our user interface design.
Our system needs additional flexibility to accommodate
variations in the way users draw.
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Despite these errors, the survey results from our user
study suggest that users are quite satisfied with PaperCAD’s
interpretation accuracy and user interface design. However,
additional studies are needed to fully evaluate the system.
For example, it would be useful to consider more complex
drawings typical of those used in industry. Future studies
should involve subjects who ordinarily use paper technical
drawings such as construction workers and machinists. Also,
we used letter-size drawings in our user study because of
the limited size of our printer. To evaluate the system for
its intended application, it is necessary to use large-format
drawings.

We were surprised that study participants did not find the
LCD to be more useful. Further investigation is needed to
understand why. This could be a result of the study design: all
participants were asked to use the audio-only feedback mode
prior to trying the LCD. In retrospect, it would have been
useful for half of the participants to use LCD feedback first.
It is also possible that the LCD was considered redundant
because audio feedback was simultaneously provided. Future
studies should consider the use of an LCD-only mode and
an audio-only mode. Finally, it is possible that the slow 1Hz
refresh rate of the display may have been a hindrance. This
issue should also be explored in future studies.

We were also surprised that there was no strong prefer-
ence for concise versus verbose audio. It is possible that the
concise audio was insufficiently concise. It is also possible
that novice users prefer verbose audio feedback, and more
experienced users prefer concise feedback. Again, additional
studies will be needed to investigate these issues.

10. Conclusion

We have presented a prototype user interface for augmenting
the display of a smartphone, or other PDA, using interactive
paper. Specifically, we present a prototype interface that
enables a user to interactively interrogate technical drawings
using a PDA and an Anoto-based smartpen. Our software
system, called PaperCAD, enables users to query geometric
information from CAD drawings printed on Anoto dot-
patterned paper.

In addition to advances in user interface design, Paper-
CAD also entails advances in techniques for interpreting pen
input. We developed an arrow recognition technique suitable
for recognizing arrows with widely varying aspect ratios. An
inverse curvature representation is used to locate candidate
arrowheads, and a gray-scale bitmap representation and
neural network are used to classify them. We also developed
techniques that use context to disambiguate sketched dimen-
sions. Finally, we developed a technique, based on a hidden
Markov model (HMM), to correct interpretation errors in
handwritten equations. The HMM is based on a grammar for
legal equations and the confusion matrix for the handwriting
recognizer.

We conducted a user study to evaluate the performance
and usability of our interface. Participants in the study were
asked to measure various dimensions from a set of draw-
ings and to write equations to compute various geometric
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properties. The study evaluated PaperCAD’s two methods for
providing feedback: audio feedback with an adjustable level
of conciseness and a PDA that provides a video display of the
portion of the drawing near the pen tip.

Our user study suggests that PaperCAD’s interface and
our techniques for interpreting pen input are effective,
although there is a need for additional flexibility to accommo-
date variations in the way users draw. Survey results indicate
that users are quite satisfied with the interface and find it
easy to use. While PaperCAD is a limited prototype, and
additional studies are needed to further evaluate its design,
this work is an important step toward the ultimate goal of
bridging between the paper and digital worlds.
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