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In this paper, a trial function method is employed to find exact solutions to the nonlinear Schrödinger equations with high-order
time-dependent coefficients. This system might be used to describe the propagation of ultrashort optical pulses in nonlinear optical
fibers, with self-steepening and self-frequency shift effects. The new general solutions are found for the general case a0 ≠ 0 including
the Jacobi elliptic function solutions, solitary wave solutions, and rational function solutions which are presented in comparison
with the previous ones obtained by Triki and Wazwaz, who only studied the special case a0 = 0.

1. Introduction

It is well known that many physical phenomena can be
described by a nonlinear Schrödinger equation (NLSE),
which is found in many diverse fields such as plasma physics
[1], fluid dynamics [2], nonlinear optics [3], quantum
mechanics [4], hydrodynamics [5], and biology. Thus, find-
ing the exact solutions to the NLSE has an important theoret-
ical and practical significance in understanding the physical
phenomena described by the NLSE.

Recently, some useful and powerful methods have been
proposed to explore its exact solutions. For example, these
methods include the homogeneous balance method [6], the
tan h function expansion method and its extension [7], the
sine-cosine methods [7], the exp-function method [7], the
multiple exp-function method [8], the first integral method
[9], the Jacobi elliptic function expansion method [10], the
sub-ODE method [11], the ðG′/GÞ-expansion method [12],
the modified simple equation method [13], the extended
auxiliary equation method [14], the exp ð−ϕðξÞÞ-expan-
sion method [15], and the trial function method and its
generalization [16].

It should be recognized that most of the methods men-
tioned above are related to constant coefficient models.
Undoubtedly, it becomes more difficult than those constant
coefficient counterparts when we study the NLSE with
time-dependent coefficients. Up to now, considerable atten-
tion has been paid to the varying coefficient NLSE, and many
authors put forward different approaches [16–22]. Among
them, Liu [21] proposed a trial function method to deal with
both real and complex equations with varying coefficients. In
this paper, we are going to apply Liu’s method to find the
exact solutions of the following cubic-quintic NLSE with
time-dependent coefficients:

iqt + f tð Þqxx + g tð Þ qj j2 + σ qj j4� �
q = ih tð Þ qj j2q� �

x
+ ip tð Þ qj j2� �

x
q:

ð1Þ

qðx, tÞ will represent a different physical quantity when
using it to describe different systems. For example, when
the present equation with high-order dispersion and nonlin-
ear terms describes the pulse transmission in the femtosec-
ond state and considers the loss in the transmission process
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Figure 1: Continued.
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[17, 22], qðx, tÞ denotes the complex envelope of the electric
field, x and t are the distance along the direction of propaga-
tion and time, respectively, f ðtÞ is the dispersion coefficient,
hðtÞ is the self-steepening coefficient, pðtÞ is the self-
frequency shift coefficient, and σ is a constant. Green and
Biswas [22] studied Equation (1) by using the ansatz method
[23] and obtained the exact soliton solutions under some
constraints on the parameters. Recently, one of the present

authors has obtained analytical traveling-wave solutions to
a generalized Gross-Pitaevskii (GP) equation [22] with some
new time- and space-varying coefficients and external fields
[24] because of their possible applications to the BECs [25–
29]. Obviously, the current cubic-quintic NLSE is more com-
plicated than the GP equation. It should be pointed out that
all kinds of NLSEs with varying coefficients mentioned above
[16–22] are different from Equation (1) except for reference
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Figure 1: (a–c) The 3D wave shapes of jqj: (a) f ðtÞ = 1, (b) f ðtÞ = t, and (c) f ðtÞ = 1/ð1 + tÞ. (d) The wave propagates along the x-axis.
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[17], in which the authors only studied the particular case
a0 = 0 using the direct but complicated integral approach.

This paper is organized as follows. In “Exact Solutions,”
we first apply the trial function method to obtain its exact
solutions by using a suitable transformation, and then, we
illustrate the shapes of the wave amplitude of different
solutions by taking appropriate parameters for those varying
coefficients. Finally, in “Concluding Remarks,” we summa-
rize the results found in this work.

2. Exact Solutions

Assume that the solution to Equation (1) is given by

q x, tð Þ = u ξð Þei η, ξ = k tð Þx +w tð Þ, η = s tð Þx + r tð Þ, ð2Þ

where kðtÞ, wðtÞ, sðtÞ, and rðtÞ are undetermined parameters
related to time. Substituting them into (1) and separating the
real and the imaginary parts, one finds
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Figure 2: (a–c) The 3D wave shapes of jqj: (a) fðtÞ = 1, (b) fðtÞ = t, and (c) fðtÞ = 1/ð1 + tÞ. (d) The wave propagates along the x-axis.
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k′ tð Þx +w′ tð Þ + 2f tð Þs tð Þk tð Þ
h i

u′ − 3h tð Þ + 2p tð Þ½ �k tð Þu2u′ = 0,

ð3Þ

f tð Þk2 tð Þu″ − s′ tð Þx + r′ tð Þ + f tð Þs2 tð Þ
h i

u

+ g tð Þ + h tð Þs tð Þ½ �u3 + σ g tð Þu5 = 0:
ð4Þ

If the solution satisfies

u′
� �2

= F ξð Þ = 〠
m

i=0
aiu

i, ð5Þ

where aiði = 0,⋯,mÞ are constants and m is an integer to be
determined (the value of m in Eq. (5) is determined as
m = 6 when using the homogeneous balance theory), then
substituting (5) into (4) and setting each coefficient of u′,
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Figure 3: (a–c) The 3D wave shapes of jqj: (a) f ðtÞ = 1, (b) f ðtÞ = t, and (c) f ðtÞ = 1/ð1 + tÞ. (d) The wave propagates along the x-axis.
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u2u′ in (3), and uiði = 1, 3, 5Þ in (4) to zero allow us to obtain
a set of algebraic equations as follows:

k′ tð Þx +w′ tð Þ + 2f tð Þs tð Þk tð Þ = 0,
3h tð Þ + 2p tð Þ½ �k tð Þ = 0, a1 = a3 = a5 = 0,

a2 =
s′ tð Þx + r′ tð Þ + f tð Þs2 tð Þ

f tð Þk2 tð Þ ,

a4 = −
g tð Þ + h tð Þs tð Þ
2f tð Þk2 tð Þ ,

a6 = −
σg tð Þ

3f tð Þk2 tð Þ
: ð6Þ

Set

k tð Þ = k ≠ 0, s tð Þ = s ≠ 0, r tð Þ = c1

ð
f tð Þdt, g tð Þ

= c2k
2 f tð Þ, h tð Þ = c3k

2 f tð Þ, a0 = c4,
ð7Þ

where k, s, c1, c2, c3, and c4 are arbitrary constants, f ðtÞ is an
arbitrary function. In this work, we only consider three dif-
ferent cases, f ðtÞ = 1, f ðtÞ = t, and f ðtÞ = 1/ð1 + tÞ, for sim-

plicity. The other coefficients can be determined by the
following forms:

p tð Þ = −
3
2 c3k

2 f tð Þ,

w tð Þ = −2sk
ð
f tð Þd t,

ð8Þ

a1 = a3 = a5 = 0,

a2 =
c1 + s2

k2
,

a4 = −
c2 + sc3

2 ,

a6 = −
σc2
3 :

ð9Þ

In terms of these coefficients (8), Equation (5) withm = 6
is thus simplified as

u′
� �2

= a0 + a2u
2 + a4u

4 + a6u
6: ð10Þ

Before studying the general case a0 ≠ 0, let us first
show the soliton solutions q = uðξÞeiη for the special case
a0 = 0 [17]:

How to find the exact solution to the general case a0 ≠ 0
becomes the main purpose of this work. Applying a transfor-
mation φ = u−2 to Equation (10) enables us to obtain

φ′ = ±2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0G φð Þ

p
,G φð Þ = φ3 + a2

a0
φ2 + a4

a0
φ + a6

a0
: ð12Þ

It is found that Equation (12) can be divided into three dif-
ferent cases depending on the factor Δ = B2 − 4AC by the
Shengjin discrimination method, where the parameters A, B,
and C are given by

A = a22 − 3a0a4
a20

,

B = a2a4 − 9a0a6
a20

,

C = a24 − 3a2a6
a20

: ð13Þ

Case 1. Δ < 0

q =

2a2
ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a24 − 4a2a6

p
cos h 2 ffiffiffiffiffi

a2
p

ξ
� �

− a4

" #1/2
⋅ eiη, a24 − 4a2a6 > 0, a2 > 0, bright soliton solution,

2a2
ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2a6 − a24

p
sin h 2 ffiffiffiffiffi

a2
p

ξ
� �

− a4

" #1/2
⋅ eiη, a24 − 4a2a6 < 0, a2 > 0, singular soliton solution,

−
a2
a4

1 + ε tan h
ffiffiffiffiffi
a2

p
2 ξ

� �� �	 
1/2
⋅ eiη, a24 − 4a2a6 = 0, a2 > 0, dark soliton solution,

−a2a4 sec h2
ffiffiffiffiffi
a2

p
ξ

� �
a24 − a2a6 1 + ε tan h

ffiffiffiffiffi
a2

p
ξ

� �� �2
" #1/2

⋅ eiη, a2 > 0, ε = ±1, bright soliton‐like solution:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð11Þ
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Figure 4: Continued.
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In this case, GðφÞ = 0 has three unequal roots, φ1 < φ2 <
φ3: φ1 = −a2/3a0 − 2

ffiffiffiffi
A

p
cos ðθ/3Þ/3 and φ2,3 = −a2/3a0 +ffiffiffiffi

A
p ½cos ðθ/3Þ ± ffiffiffi

3
p

sin ðθ/3Þ�/3, where θ = arccos ðð2Aa2 − 3
a0BÞ/2a0

ffiffiffiffiffi
A3

p
Þ. In terms of them, Equation (12) can be

expressed as φ′ = ±2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ðφ − φ1Þðφ − φ2Þðφ − φ3Þ

p
. Accord-

ing to the relation φ = u−2, a periodic wave solution qðx, tÞ
= uðξÞei η of Equation (1) is found as

q =

1

ϕ1cn2 ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 ϕ3 − ϕ1ð Þp

ξ,m1
� �

+ ϕ2sn2 ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 ϕ3 − ϕ1ð Þp

ξ,m1
� �h i1/2 ⋅ eiη, a0 > 0,

sn ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a0 ϕ3 − ϕ1ð Þp

ξ,m2
� �

ϕ1 − ϕ3cn2 ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a0 ϕ3 − ϕ1ð Þp

ξ,m2
� �h i1/2 ⋅ eiη, a0 < 0,

8>>>>>>><
>>>>>>>:

ð14Þ

where
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m1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ2 − ϕ1
ϕ3 − ϕ1

s
,

m2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ3 − ϕ2
ϕ3 − ϕ1

s
:

ð15Þ

To understand these solutions, we illustrate the shapes of
the wave amplitude for three different cases, f ðtÞ = 1, f ðtÞ = t,
and f ðtÞ = 1/ð1 + tÞ, which are all periodic waves (k = s = 1,
a0 = 1, a2 = −6, a4 = 11, a6 = −6).

Case 2. Δ > 0
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GðφÞ = 0 has a single root ϕ1 = −a2/3a0 − ð ffiffiffiffiffiffi
Y1

3
p + ffiffiffiffiffiffi

Y2
3
p Þ/3,

where Y1,2 = Aa2/a0 + 3ð−B ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
Þ/2. One has

ϕ′ = ±2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ðϕ − ϕ1Þðϕ2 + αϕ + βÞp

, where two parameters α
and β are given by α = 2a2/3a0 − ð ffiffiffiffiffiffi

Y1
3
p + ffiffiffiffiffiffi

Y2
3
p Þ/3 and

β = ð ffiffiffiffiffiffi
Y1

3
p + ffiffiffiffiffiffi

Y2
3
p

− 2a2/a0Þ2/36 + ð ffiffiffiffiffiffi
Y1

3
p

−
ffiffiffiffiffiffi
Y2

3
p Þ2/12, respec-

tively. The periodic solutions including an elliptic function
are explicitly expressed as

where

m3 =
1
2 2 − 2φ1 + αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φ2
1 + αφ1 + β

p
 !1/2

,

m4 =
1
2 2 + 2φ1 + αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φ2
1 + αφ1 + β

p
 !1/2

:

ð17Þ

In similar way, the corresponding shapes of the wave
amplitude are plotted in Figure 1 (the parameters k = s = 1,
a0 = 1, a2 = −1, a4 = −1, and a6 = −2 are chosen here). Notice
that these sharp shapes are slightly different from those in
Figure 2.

Case 3. Δ = 0
A ≠ 0
GðφÞ = 0 has two roots, φ1 = −B/2A and φ2 = −a2/a0 + B

/A. It is known that Equation (12) can be transformed into

ϕ′ = ±2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ðϕ − ϕ1Þ2ðϕ − ϕ2Þ

q
, from which we are able to

obtain the exact solutions to Equation (1).

q = 1

ϕ2 sec2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 ϕ2 − ϕ1ð Þp

ξ
� �

− ϕ1 tan2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 ϕ2 − ϕ1ð Þp

ξ
� �h i1/2 ⋅ eiη, a0ϕ1 < a0ϕ2,

ð18Þ

q = 1

ϕ2 sec h2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 ϕ1 − ϕ2ð Þp

ξ
� �

+ ϕ1 tan h2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 ϕ1 − ϕ2ð Þp

ξ
� �h i1/2 ⋅ eiη,a0ϕ1 > a0ϕ2:

ð19Þ
For the case a0φ1 < a0φ2, the shapes of the periodic wave

amplitude are shown in Figure 3 (k = s = 1, a0 = 1, a2 = −4,
a4 = 5, and a6 = −2), which is very similar to those in
Figure 1. For the case a0φ1 > a0φ2 (a0 > 0), the shapes of the
wave amplitude are displayed in Figure 4 (k = s = 1, a0 = 1,
a2 = −5, a4 = 8, and a6 = −4), which corresponds to a bright
soliton wave. However, the case a0 < 0 generates a dark soli-

ton wave as shown in Figure 5 (k = s = 1, a0 = −1, a2 = 4, a4
= −5, and a6 = 2). These new and interesting phenomena
do not appear in other cases due to the different signs of
the parameter a0.

A = 0 and B = 0, i.e., a4 = a22/3a0, a6 = a32/27a20
GðφÞ = 0 has three equal roots, φ1 = −a2/3a0. The relation

φ′ = ±2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0ðφ − φ1Þ3

q
enables us to obtain a rational function

solution

q = 3a0ξ2

3 − a2ξ
2

 !1/2

⋅ eiη, ð20Þ

which represents a singular solitary wave. The corresponding
shapes of the wave amplitude are illustrated in Figure 6
(k = s = 1, a0 = 1, a2 = 3, a4 = 3, and a6 = 1).

Before ending this section, we give a useful remark on
these graphics. Comparing Figures 2(a)–2(c), it is found that
the amplitude is the same. This implies that the variable coef-
ficient f ðtÞ has no effect on the amplitude. We have the same
conclusion for Figures 1 and 3–5, but the amplitude in
Figure 6 is changed.

3. Concluding Remarks

In this paper, we investigated a kind of nonlinear Schrödin-
ger equation with high-order time-dependent coefficients,
which describes the propagation of ultrashort optical pulses
in nonlinear optical fibers. The trial function method has
been used to find general solutions such as the periodic solu-
tions (14) and (16) including the Jacobi elliptic function, the
periodic wave solutions (18) involving the trigonometric
function, solitary wave solutions (19), and rational function
solutions (20). To describe the properties of the solutions,
three different functions, f ðtÞ = 1, f ðtÞ = t, and f ðtÞ = 1/ð1
+ tÞ, are chosen to show the shapes of the wave amplitudes.
We summarize the main results as follows:

q =

1 + cn 2ε ffiffiffiffiffi
a0

p
ϕ21 + αϕ1 + β
� �1/4

ξ,m3
� �

ϕ1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ21 + αϕ1 + β

q� �
+ ϕ1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕ21 + αϕ1 + β

q� �
cn 2ε ffiffiffiffiffi

a0
p

ϕ21 + αϕ1 + β
� �1/4

ξ,m3
� �

2
664

3
775
1/2

⋅ eiη, a0 > 0,

1 + cn 2ε ffiffiffiffiffiffiffi−a0
p

ϕ21 + αϕ1 + β
� �1/4

ξ,m4
� �

ϕ1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(1) For f ðtÞ = 1, Figures 1(a), 2(a), and 3(a) show the
shapes of the wave amplitude of the periodic wave
solutions (14)-(18), respectively. Figures 4(a) and
5(a) display the case of the solitary wave solutions
(19); Figure 4(a) shows the case of a bright soliton
(a0 > 0), but Figure 5(a) illustrates the case of a dark
soliton (a0 < 0). Figure 6(a) shows the wave shapes
of the rational function solutions (20). By observing
Figures 1(a), 2(a), 3(a), 4(a), 5(a), and 6(a), it is found
that the velocity of the pulse remains constant during
propagation because f ðtÞ is a real constant

(2) For the case f ðtÞ = t, the shapes of the wave ampli-
tude of the periodic wave solutions (14)–(18) are
shown in Figures 1(b), 2(b), and 3(b), respectively.
The case of the solitary wave solutions (19) is plotted
in Figures 4(b) and 5(b). For example, Figure 4(b)
describes a bright soliton wave (a0 > 0), while
Figure 5(b) corresponds to a dark soliton wave
(a0 < 0). The shape of the wave amplitude of the
rational function solutions (20) is illustrated in
Figure 6(b). It can be found that the pulse propaga-
tion velocity has a parabolic feature by observing
Figures 1(b), 2(b), 3(b), 4(b), 5(b), and 6(b).

(3) For f ðtÞ = 1/ð1 + tÞ, Figures 1(c), 2(c), and 3(c)
describe the periodic wave solutions (14)–(18),
respectively. Figures 4(c) and 5(c) show the case of
the solitary wave solutions (19). For instance,
Figure 4(c) represents a bright soliton wave (a0 > 0),
but Figure 5(c) corresponds to a dark soliton wave
(a0 < 0). Figure 6(c) shows the shapes of the wave
amplitude of the rational function solutions (20). It
is seen from Figures 1(c), 2(c), 3(c), 4(c), 5(c), and
6(c) that the pulse propagation has the feature of a
logarithmic function.

Before ending this work, we will make three useful
remarks. First, it should be mentioned that the specific
expressions of various exact solutions of the NLSE with vary-
ing coefficients also reflect the diversity of the solitary wave
solutions. The existence of solitary wave solutions implies a
perfect balance between the nonlinear effect and the disper-
sion effect, which usually requires peculiar conditions. With-
out doubt, this work will help us understand the physical
phenomena described by Equation (1). Second, it is believed
that the results such as optical solitons presented here will
make a major impact in the area of nonlinear optics. The
model which was used in this work for mathematical analysis
gave the characteristics of stable solitary waves in the system.
This confirms that the optical fiber described by the system
can be transmitted stably for a long time. Third, the trial
function method is also an effective and practical method
for solving other kinds of nonlinear equations with varying
coefficients.
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