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This article is devoted to exploring the Rényi holographic dark energy model in the theory of Chern-Simons modified gravity. We
studied the deceleration parameter, equation of state, and cosmological plane considering the Amended FRWmodal. Modified field
equations of -gravity theory gave two independent solutions. In the first case, this model provided the transitional change from
deceleration to acceleration compatible with collected observational data. However, it supported a decelerating phase of
expansion only in the second case. It was noted that the Equation of State advocated the dominance era under the influence of
dark energy in the first case and the second predicted the influence of ΛCDM. In both cases, ω < 0, ω′ < 0 voted that the
universe is in a freezing region and its cosmic expansion is more rapidly accelerated in the background of Chern-Simons
modified gravity.

1. Introduction

Among the biggest challenges faced by cosmological commu-
nities, one is the authentic solution to the current accelerated
expansion of the universe. The collected observational data
[1–3] prodded the quest for hypothetical models to clarify
the expansion issues. These models that drive this accelera-
tion is an intriguing, nonglowing, negative pressure medium,
and it contributes roughly two-thirds of the energy contents
of the present universe. This is called dark energy (DE) [4,
5], and it is considered one of the existing theoretical possi-
bilities, including modifications of gravity theories [6].

One of the reknown and most fascinating extensions of
the Einstein gravity theory is four-dimensional Chern-
Simons modified gravity (CSMG) [7] permitting the actuali-
zation of the CPT and Lorentz symmetry breaking within the
gravity theory. Another fundamental component of this
modification comprises the way that it normally includes
higher-order derivatives of the metric change. In a dynamical
variant, this theory has a (genuine) scalar field, with an
axionic-type coupling with the Pontryagin density [8]. The

CS-modified gravity was first studied in the nondynamic
composition, which does not have a kinetic expression of
the scalar field during the operation and assumes a predeter-
mined space-time function. Chern-Simons, in a couple of
decades, much attention has been paid to the dynamical
CSMG [9], a more sophisticated form in which the scalar
field is assumed as a dynamical.

In recent studies [10–13], the HDE model has been
studied broadly and analyzed as ρ∝Λ4 using the connec-
tions between IR, UV cut-off, and the entropy such that Λ3

L3 ≤ S3/4. Working on the same lines, the relation of IR cut-
offs and entropy gives rise to the energy density of the HDE
model, which is related to the Bekenstein-Hawking term S =
A/4G. The vacuum energy density is related to UV cut-off
Ricci scalar, Hubble horizon, event horizon, etc., i.e., large-
scale structures of the universe are related with the infrared
(IR) cut-off. The HDE model perseveres through the choice
of IR cut-offmodel. Enough literature is available on the inves-
tigations of a huge number of IR cut-offs in [14–20].

In ongoing investigations to comprehend the nature of
the universe, a huge number of DE models have been built
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on holographic principle and known as holographic dark
energy (HDE) models [18, 21, 22]. Adabi et al. [23] recon-
structed the potential and dynamics for the Chaplygin scalar
field model according to the evolutionary behavior of ghost
DE in the context of Einstein’s theory phantom accelerated
expansion of the universe. The evolution equation and EoS
parameters for the nonflat FRW universe are elaborated
using the HDE model with Granda-Oliveros cut-off in [24].
Pasqua et al. [25] investigated HDE and modified the Ricci
HDE model in the context of CSMG theory. Ali and Amir
[26] discussed the Ricci DE model using the Amended
FRW metric in the framework of CSMG theory. Further,
[27] also investigated the cosmological analysis of the
MHRDE model and reconstructed different models such as
dilation, K-essence, quintessence, and tachyon modal in the
context of CSMG theory.

The study of entropies like Tsallis [28], Rényi [29], and
Sharma-Mittal [30] HDE models have been carried out for
the cosmological and gravitational incidences. The holo-
graphic entanglement entropy has been developed by Chen
[16] and varying from regular HDE models with Bekenstein
entropy, such models have evolved late-time acceleration of
the universe. It is tracked down that the Rényi model
displayed stable behavior if there is an occurrence of nonin-
teracting universe [29]. Some models like Tsallis, Rényi,
and Sharma-Mittal entropies have been investigated by
Younus et al. [31], and they concluded the quintessence-
like nature of the universe. On these inspirations, we worked
on the Rényi HDE utilizing the Amended FRWmetric in the
context of CSMG theory.

This article is coordinated as follows: in Section 2, the
formalism of CSMG theory and its modified field equation
for FRW metric is introduced. In Section 3, we examined
Rényi HDE model considering the red-shift parameter.
Universe evolution is examined in Section 4. Results and
conclusions are discussed at the end.

2. Formalism of Chern-Simons
Modified Gravity

A very promising modification of General Relativity is
CSMG theory which is developed based on leading-order
gravitational parity violation. The terminologies of this
theory are very standardized to those of peculiarity cancella-
tion widely used in particle physics and string theory. The
Einstein Hilbert action is modified as

S = SEH + SCS + SΘ + Smat, ð1Þ

The Einstein Hilbert term SEH, CS term SCS, the scalar field
SΘ, and an additional undefined matter contributions Smat are
Mathematically represented as κ

Ð
v d

4x
ffiffiffiffiffiffi−gp

R, α1/4Ð v d4xffiffiffiffiffiffi−gp
Θ∗RR, β1/2

Ð
v d

4x
ffiffiffiffiffiffi−gp ½gabð∇χΘÞð∇ψΘÞ + 2VðΘÞ�, andÐ

v d
4x

ffiffiffiffiffiffi−gp
£mat, respectively. It is mentioned here that the

Pontryagin density ∗RR is expressed as ∗RR = ReR= ∗Racd
b

Rb
acd, and other parameters κ = 1/16πG, the determinant of

metric is g, ∇χ represent covariant derivative ofΘ, R is a Ricci

scalar, and integrals denoted the volume executed anywhere
on the manifold ν and £mat stands for some matter Lagrangian
density executed on ν.

Taking variation of action of Eq. (1) w.r.t to gχψ along
with scalar field Θ, a system of field equations for CSMG
theory arose in the following form

Gχψ + αCχψ = −
1
2κ Tm

χψ + Tθ
χψ

� �
, ð2Þ

gχψ∇χ∇ψΘ = −
κα

4
∗RR, ð3Þ

where Gχψ is Einstein tensor, α coupling constant, and Cχψ is
Cotton tensor defined as

Cχψ = −
1

2 ffiffiffiffiffiffi−gp υζε
ζμυη∇υR

ν
η +

1
2 υζλε

ζνυηRλμ
υη

� �
, ð4Þ

where υζ = ∇ζΘ and υζλ = ∇ζ∇λΘ. The tensor Tχψ consists on
matter and scalar field, mathematically described as

Tm
χψ = ρ + pð ÞUχUψ − pgχψ, ð5Þ

TΘ
χψ = η ∂χΘ

� �
∂ψΘ
� �

−
η

2 gχψ ∂αΘð Þ ∂αΘð Þ: ð6Þ

3. Amended FRWModel in CS Modified Gravity

FRW model is used to calculate the homogeneous, isotropic,
and expanding universe. Cosmologists are agreed that the
FRWmodel is the best choice for the approximation of homo-
geneous, isotropic, and expanding universe. There are some
equivalent formalism of FRW metric also found in literature
to refer the spacetimes that are useful in the followingmanner:

ds2 = dt2 − a2 tð Þf 2 rð Þ dr2 + r2dΦ2	 

≡ a2 tð Þ dt2 − f 2 rð Þ dr2 + r2dΦ2� �	 

≡ dt2 − a2 tð Þ f 2 rð Þdr2 + r2dΦ2	 

≡ a2 tð Þdt2 − f 2 rð Þ dr2 − r2dΦ2	 

≡ dt2 − a2 tð Þ dr2 + f 2 rð ÞdΦ2	 

≡ a2 tð Þ dt2 − dr2 − f 2 rð ÞdΦ2	 


:

ð7Þ

These equivalent forms are among the most popular
models in the context of cosmological studies. Here, we use
one of them which is named the Amended FRWmetric [32].

ds2 = −a2 tð Þdt2 + a2 tð Þ dr2
1 − kr2 + r2 dθ2 + sin2θdϕ2

� �� �
: ð8Þ

Dimensionless parameter aðtÞ is a key tool to analyze
the accelerated expansion of the current universe called
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the scale factor. It is found that the Cotton tensor vanishes
identically for the AFRW metric such that C00 = 0. The
energy-momentum tensor TΘ

00 is calculated using Eq. (6)

TΘ
00 =

Θ
: 2

2 : ð9Þ

It is worth mentioning here that for a metric to be a
solution of EFEs, the Pontryagin term ∗RR must be zero as a
necessary condition, and the same has been evaluated for the
Amended FRW metric identically. So, Eq. (3) reduces to

gχψ∇χ∇ψΘ = gχψ ∂χ∂ψΘ − Γ
ρ
χψ∂ρΘ

h i
= 0: ð10Þ

It is noted that the external field is a function of space-
time coordinates, and for the sake of simplicity, we opt Θ a
function of temporal coordinate only which reduced Eq.
(10) as given below.

€Θ + 2 a
:

a
Θ
:

= 0: ð11Þ

Applying the separation method of variables from differ-
ential equations, Eq. (11) gives

Θ
:
= Ia−2, ð12Þ

The parameter I is integration constant. Substituting Eq.
(12) in Eq. (9), one arrives at

ρΘ = TΘ
00 =

I2a−4

2 : ð13Þ

4. Rényi HDE Model

The mysterious nature and dynamics of DE is a crucial issue
in cosmological studies. A considerable number of models
are presented to resolve, HDE model is one of them.
According to this model ρHDE = 3d2M2

pL
−2, the event horizon

L = ½A/4π�1/2 =H−1, d stand for numerical factor, and Mp is
reduced Planck’s mass. TheRényi HDEmodel is given by [33].

ρR =
3K2H2

8π 1 + πδ/H2� �� �
 !

: ð14Þ

Since the conservation law of energy density is expressed as

ρ
:

d + 3H ρd + Pdð Þ = 0: ð15Þ

Taking into account the dust case, it turned out to be

ρd = ρ0a
−3: ð16Þ

In the context of flat AFRW metric, CSMG equations are
evaluated as

H2 = 8πG
3 ρM + ρR + ρΘð Þ, ð17Þ

H2 + 2
3H

:
= −

8πG
3 Pdð Þ: ð18Þ

Where G is gravitational constant considered G = 1. Now,
we use the values of ρM , ρR, and ρΘ in Eq. (17) and get

H2 = 8π
3 ρ0a

−3 + K2H2

1 + πδ/H2� � + 4π
3 ρΘa

−4: ð19Þ

Let us considerHðzÞ = ΞðzÞH0 and using redshift parame-
ter a = 1/z + 1 in Eq. (19) which yields

Ξ2 zð Þ = z + 1½ �3 ρ0
3H2

0/8π

� �
+ K2Ξ2 zð Þ

1 + πδ/Ξ2 zð ÞH2
0

� �� � + ρΘ
3H2

0/4π

� �
z + 1½ �4:

ð20Þ

Making it convenient to find analytic solution, we consider
ðρ0/3H2

0/8πÞ =ΩM and ðρΘ/3H2
0/4πÞ =ΩΘ; therefore, Eq. (25)

gets the form

Ξ2 zð Þ =ΩM z + 1½ �3 + K2Ξ2 zð Þ
1 + πδ/Ξ2 zð ÞH2

0
� �� � +ΩΘ z + 1½ �4:

ð21Þ

Obviously, it is fourth-order equation inΞðzÞ which can be
reduced in quadratic form by substituting 3:16δ/H2

0 = Yz,
Ξ2ðzÞ = FðzÞ, and βz =ΩM½z + 1�3 +ΩΘ½z + 1�4in Eq. (27)

F2 zð Þ 1 − K2� �
+ F zð Þ Yz − Xz½ � − YzXz = 0: ð22Þ

This is a quadratic equation in FðzÞ and two solutions
arise here such that

F zð Þ =
Xz − Yzð Þ ± Yz + Xzð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4YzXzK

2/ Yz + Xzð Þ2
q

2 1 − K2� � :

ð23Þ

Using binomial theorem on
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4YzXzK

2/ðYz + XzÞ2Þ
q

and neglecting the higher-order terms, one arrives at

Ξ2 zð Þ = Xz − Yzð Þ ± Yz + Xzð Þ 1 − 2YzXzK
2/ Yz + Xzð Þ2� �

2 1 − K2� � :

ð24Þ

Now, we will discuss these two solutions that arise in Eq.
(30), separately.
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4.1. Case 1. Let us consider the positive root as the first case
such that

Ξ2 zð Þ = Xz

1 − K2
Yz + Xz − YzK

2

Yz + Xz

� �
: ð25Þ

On backward substitution, Eq. (25) can be evaluated as

Ξ zð Þ = ΩM z + 1½ �3 +ΩΘ z + 1½ �4
1 − K2 :

3:16δ/H2
0

� �
1 − K2� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4
3:16δ/H2

0
� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4
" #1

2

:

ð26Þ

Further, taking first-order derivative of Eq. (27) and
simplifying, one arrives at

d
dzΞ zð Þ = 3:16δ/Hð Þ2 3ΩM z + 1½ �2 + 4ΩΘ z + 1½ �3	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − K2
p

2 3:16δ/H2
0

� �
+ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �3/2

+ ΩM z + 1½ �3 +ΩΘ z + 1½ �43ΩM z + 1½ �2 + 4ΩΘ z + 1½ �3 3:16δ/H2
0

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p
3:16δ/H2

0
� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �3/2
+ ΩM z + 1½ �3 +ΩΘ z + 1½ �4
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − K2

p
3:16δ/H2

0
� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �3/2 :
ð27Þ

Using Eqs. (27) and (28), we explored two important
cosmological parameters deceleration parameter (DP) q
and equation of state (EoS) to study the nature of universe.

4.1.1. Deceleration Parameter.DP is a dimensionless quantity
which explains the expansions of the universe which slows
down due to self-gravity. In terms of FRWmetric, the expan-
sion of the universe given by q = −€aa/a:2 where a:2 represent
the derivative w.r.t. to temporal coordinate t. An expression
for DP, also found in term of derivative of Hubble parameter,
can be mathematically written as

q = −1 − H
:

H2 : ð28Þ

Substituting HðzÞ = ΞðzÞH0andH: =H0ðd/dzÞΞðzÞ in
Eq. (29), it reduces to

q = −1 + z + 1½ �
Ξ zð Þ :

d
d zð ÞΞ zð Þ: ð29Þ

Using Eqs. (27) and (28) in Eq. (30), one explores

q = 1
2

3ΩM + 4ΩΘ z + 1½ �
ΩM +ΩΘ z + 1½ �

� �
+ 1

2
K23:16δ/H0
� �

3ΩM + 4ΩΘ z + 1½ �
z + 1½ �3 3:16δ/H2

0
� �

+ΩM +ΩΘ z + 1½ �	 
2
" #

× 1
3:16δ/H2

0
� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4
" #

:

ð30Þ

To investigate q using Rényi HDE in CSMG theory, we
plotted a graph shown in Figure 1.

We opted the restrictions on parameters ΩM0
= 0:23,

ΩΘ0
= 0:23,0:25,0:27, C = 2, and H0 = 71Km/s/Mpc. The

graph illustrated decelerated phase q < 0 at low redshift and
transit to accelerated phase q > 0 at high redshift. It is observed
that the behavior of DP is very similar in all three cases and our
graphical representation advocated the transition from deceler-
ation to acceleration which is also predicted in [31, 34, 35, 36].

4.1.2. Equation of State. The EoS for perfect fluid is
denoted by dimensionless parameter ω, is a ratio between
pressure and energy density of the fluid, mathematically
represented as

ω = P
ρ
: ð31Þ

In terms of different energy components, it is expressed as

ω = Pd

ρd + ρM + ρΘ

� �
: ð32Þ

The EOS can be represented in term of DP such that

ω = 2
3 q −

1
2

� �
: ð33Þ

Substituting the value of DP q from Eq. (31) in Eq. (34),

𝛺𝜃: = {0.23, 0.25, 0.27}
𝛿: = {–90, –80, –70,}
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Figure 1: q versus Redshift z.
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one arrives at

ω = 1
3

3ΩM + 4ΩΘ z + 1½ �
ΩM +ΩΘ z + 1½ �

� �
+ 1 + z

2

� K23:16δ/H0
� �

3ΩM z + 1½ �2 + 4ΩΘ z + 1½ �3
3:16δ/H2

0
� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �2
" #

:

ð34Þ

Eq. (35) represents that EoS ω is a function of z along-with
dependence on some cosmological parameters. To investigate
the cosmological evaluation of the universe, we plotted a graph
given in Figure 2.

The particular restrictions are imposed on the parameters
such as ΩM0

= 0:23, ΩΘ0
= 0:2,0:3,0:4, C = 3, H0 = 71Km/s/

Mpc. Actually, different values of EoS illustrates the dominance
era of the universe by different components. For instance, ω =
0, ω = 1/3, and ω = 1 indicate that the universe is influenced
by dust, radiation, and stiff fluid, respectively. On the other
hand, (ω = −1/3,ω = −1, andω < −1) are conditions of quintes-

sence DE, ΛCDM, and Phantom eras, respectively. The graph-
ical behavior showed that the universe is under the influence of
DE as the EoS predicted accelerated expansion phase.

4.1.3. ω −ω′ Plane. Caldwell and Linder [37] introduced ω
− ω′ plane to explore the cosmic evolution of the quintessence
DE model. They found a result which support the assumption
that any region occupied by a DE model is subdivided into
freezing (ω < 0, ω′ < 0) and thawing (ω < 0, ω′ > 0) regions,
respectively. It is also found that the cosmic expansion is more
accelerating in the freezing region as compared to thawing.

Taking first order derivative of Eq. (39), we obtained

ω′ = 2 z + 1½ �4 Ω2
M z − 8ð Þ + 3ΩMΩΘ z + 1½ �2 − 8 z + 1½ � − 14Ω2

Θ z + 1½ �2� �
ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �2

" #
:

ð35Þ

Derivative of (EOS) representing that ω′ is a function of
redshift z.

For the particular values of parameters ΩM0
= 0:23,

ΩΘ0
= 0:25, K2 = 3, H0 = 71Km/s/Mpc, and three different

values of δ, a graph of ω′ is plotted in Figure 3.

The graphical representation ω < 0, ω′ < 0 advocated that
the Rényi HDE model is in freezing region and cosmic expan-
sion is more accelerating in the context of CSMG theory.

–1.0 –0.5 0.0 0.5 1.0

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0.0

0.1

EO
S

z
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Figure 2: The evaluation of EoS ω versus Redshift z.
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Figure 3: ω′ versus Redshift z.
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4.2. Case 2. Taking into account the other root of the equa-
tion, we worked on same lines to explore the relations for
DP and EOS in the context of CSMG theory.

Ξ2 zð Þ = Xz − Yzð Þ − Yz + Xzð Þ − 2YzXzK
2/ Yz + Xzð Þ

2 1 − K2� � : ð37Þ

Putting values of Yz and Xz in Eq. (42) and simplifying

we obtained the value of ΞðzÞ in terms of redshift z:

Ξ zð Þ = 3:16δ/H2
0

� �
1 − K2

K2 ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
ΩM z + 1½ �3 +ΩΘ z + 1½ �4 + 3:16δ/H2

0
� �

" #1
2

:

ð38Þ
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Figure 4: The evaluation of DP q versus Redshift z.

ω − ω′ = 1 + z
3

3ΩM z + 1½ �2 + 4 z + 1½ �3
ΩM z + 1½ �3 +ΩΘ z + 1½ �4
" #

+ 1 + z
2

K23:16δ/H0
� �

3ΩM z + 1½ �2 + 4 z + 1½ �3
3:16δ/H2

0
� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
" #

× 1
3:16δ/H2

0
� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4�� �
" #

−
2 z + 1½ �4 Ω2

M z − 8ð Þ + 3ΩMΩΘ z + 1½ �2 − 8 z + 1½ � − 14Ω2
Θ z + 1½ �2� �

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �2
" #

−
z + 1½ �5 3:16δ/H2

0
� �

K2 Ω2
M + 16Ω2

Θ z + 1½ �2� �
+ 8ΩMΩΘ z + 1½ �	 


3:16δ/H2
0

� �
+ΩM z + 1½ �3 +ΩΘ z + 1½ �4�

3:16δ/H2
0

� �
1 − K2� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
" #

+ 2 z + 1½ � 3:16δ/H2
0

� �
K2ΩM + 2ΩΘ z + 1½ �

3:16δ/H2
0

� �
+ΩM z + 1½ �3 +ΩΘ z + 1½ �4�

3:16δ/H2
0

� �
1 − K2� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
" #

−
z + 1½ �5
3

3:16δ/H2
0

� �
K2 9Ω2

M + 16Ω2
Θ z + 1½ �2 + 24 z + 1½ �� �

3:16δ/H2
0

� �
+ΩM z + 1½ �3 +ΩΘ z + 1½ �4�

3:16δ/H2
0

� �
1 − K2� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
" #

+ z + 1½ �4
3

3ΩM + 4 z + 1½ �
ΩM z + 1½ �3 +ΩΘ z + 1½ �4
" #

+ z + 1½ �4
3

3:16δ/H2
0

� �
K2 3ΩM + 4ΩΘ z + 1½ �ð Þ

3:16δ/H2
0

� �
+ΩM z + 1½ �3 +ΩΘ z + 1½ �4�

3:16δ/H2
0

� �
1 − K2� �

+ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
" #

:

ð36Þ
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Substituting Eq. (43) in Eq. (35) is evaluated as

To investigate q using Rényi HDE in CSMG theory, we
plotted a graph shown in Figure 4. We opted the restrictions
on parameters ΩM0

= 0:23,ΩΘ0
= 0:23,0:25,0:27, C = 3, and

H0 = 67Km/s/Mpc.
It is noted that q is negative for an accelerating universe

and positive for a decelerating universe. Figure 4 represented
a flip of sign for q from negative to positive which gives the

best match with the observational data collected by Riess
et al. [1], Perlmutter et al. [2], and [20, 26, 38]. It is concluded
that Rényi HDEmodel predicts a deceleration to acceleration
transition compatible with observational data.

Furthermore, in Eq. (39), it is obvious that the EoS ω is a
function of z along with dependence on some cosmological
parameters.

To understand about the cosmological evaluation of the
universe, we plotted a graph given in Figure 5.

Particular restrictions are imposed on the parameters
such as ΩM0

= 0:23, ΩΘ0
= 0:2,0:3,0:4, C = 3, and H0 = 71

Km/s/Mpc. The graphical representation shown that the
universe is under the influence of DE as the EoS predicted
accelerated expansion phase.

q = −
−2c4 3:16δ/H0ð Þ z + 1½ �3Ω2

M + z + 1½ �ΩΘ −2ð Þ 3:16δ/H0ð Þ + z + 1½ �3 ΩM + 2 z + 1½ �ΩΘð Þ
2 c2 3:16δ/H0ð ÞΩM + z + 1½ �ΩΘ½ � 3:16δ/H0ð Þ + z + 1½ �3 1 − c2ð ÞΩMð Þ + z + 1½ �4ΩΘ

	 

+ c2ΩM − 3:16δ/H0ð Þ2 − z + 1½ �4ΩΘ + 3:16δ/H0ð Þ z + 1½ �3 2ΩM + 3 z + 1½ �ΩΘð Þ	 

2 c2 3:16δ/H0ð ÞΩM + z + 1½ �ΩΘ½ � 3:16δ/H0ð Þ + z + 1½ �3 1 − c2ð ÞΩMð Þ + z + 1½ �4ΩΘ

	 
 :
ð39Þ

ω = 2
3 −

−2c4 3:16δ/H0ð Þ z + 1½ �3Ω2
M + z + 1½ �ΩΘ −2ð Þ 3:16δ/H0ð Þ + z + 1½ �4 ΩM + 2 z + 1½ �ΩΘð Þ

2 c2 3:16δ/H0ð ÞΩM + z + 1½ �ΩΘ½ � 3:16δ/H0ð Þ + z + 1½ �3 1 − c2ð ÞΩMð Þ + z + 1½ �4ΩΘ

	 

"

+ c2ΩM − 3:16δ/H0ð Þ2 − z + 1½ �4ΩΘ + 3:16δ/H0ð Þ z + 1½ �3 2ΩM + 3 z + 1½ �ΩΘð Þ	 

2 c2 3:16δ/H0ð ÞΩM + z + 1½ �ΩΘ½ � 3:16δ/H0ð Þ + z + 1½ �3 1 − c2ð ÞΩMð Þ + z + 1½ �4ΩΘ

	 
 − 1
2

�
:

ð40Þ

ω′ = 2 z + 1½ � 6ΩM + 12ΩΘ z + 1½ �4� �
+ 3ΩM z + 1½ �2 + 4ΩΘ z + 1½ �3

3 K2 − 1
� �

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
�
ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �

− 3:16δ/H2
0
�

" #

−
2 K2 − 1
� �

z + 1½ �3 3ΩM + 4ΩΘ z + 1½ �2� �2
3 K2 − 1
� �

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
� �2

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
�

" #

−
2 z + 1½ �5 3ΩM + 4ΩΘ z + 1½ �3� �2

3 K2 − 1
� �

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
� �2

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
�

" #
:

ω − ω′ = −1 + 2 z + 1½ �3 3ΩM + 4ΩΘ z + 1½ �ð Þ
ΩM z + 1½ �3 +ΩΘ z + 1½ �4 + 3:16δ/H2

0
� �

" #

× 1
3 K2 − 1
� �

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0

" #

−
2 z + 1½ � 6ΩM + 12ΩΘ z + 1½ �4� �

+ 3ΩM z + 1½ �2 + 4ΩΘ z + 1½ �3
3 K2 − 1
� �

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
�
ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �

− 3:16δ/H2
0
�

" #

−
2 K2 − 1
� �

z + 1½ �3 3ΩM + 4ΩΘ z + 1½ �2� �2
3 K2 − 1
� �

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
� �2

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
�

" #

−
2 z + 1½ �5 3ΩM + 4ΩΘ z + 1½ �3� �2

3 K2 − 1
� �

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
� �2

ΩM z + 1½ �3 +ΩΘ z + 1½ �4� �
− 3:16δ/H2

0
�

" #
:

ð41Þ
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The graph of Eq. (41) is plotted under the restrictions on
parameters ΩM0

= 0:23,ΩΘ0
= 0:25, K2 = 20, H0 = 71Km/s/

Mpc, and δ shown in Figure 6. In this case, ω < 0, ω′ < 0 indi-
cated that the Rényi HDEmodel is also in freezing region and
cosmic expansion will be more accelerating in the context of
CSMG theory.

5. Conclusions

This article is devoted to studying the Rényi HDE model
considering the Amended FRW model in the background
of CSMG theory. We explored the EoS, DP, and cosmological
plane in interacting scenarios. There were two different solu-
tions evaluated and discussed separately. In the first case,
Figure 1 illustrated the decelerated phase q > 0 at low redshift
and transit to accelerated phase q < 0 at high redshift. Also, it
is observed that the behavior of DP is very similar for all
values of δ of Rényi HDE model and our graphical represen-
tation advocated the transition from deceleration to acceler-
ation phase of the universe which is fully consistent with
the observational data [34, 35] [31]. In fact, EoS illustrates
the era of dominance of the universe by different compo-
nents. For example, ω = 0, ω = 1/3, and ω = 1 indicate that

the universe is influenced by dust, radiation, and stiff fluid,
respectively. On the other hand, (ω = −1/3, ω = −1, and ω <
−1) stand for quintessence DE, ΛCDM, and Phantom eras,
respectively. The graphical behavior showed that the
universe is under the influence of DE as the EoS predicted
accelerated expansion phase Figure 2. The graphical behavior
of Figure 3 ω < 0, ω′ < 0 indicated that the Rényi HDE model
is in freezing region, and cosmic expansion is more accelerat-
ing in the context of CSMG theory. In the second case,
Figure 4 represents that the universe is in a decelerated phase
of expansion as q < 0 for each value of the redshift parameter
z. Further, EoS predicted that the universe is under the influ-
ence ofΛCDM. Finally, ω − ω′ plane indicated that the Rényi
HDE model is also in the freezing region and cosmic expan-
sion will be more accelerating in the context of CSMG theory.
At the end, it is concluded that the Rényi HDE model is
supported by the results of general relativity in the frame-
work of CSMG theory.

Data Availability

No data is available.
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