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In this paper, we study the challenge of image-to-video retrieval, which uses the query image to search relevant frames from a large
collection of videos. A novel framework based on convolutional neural networks (CNNs) is proposed to perform large-scale video
retrieval with low storage cost and high search efficiency. Our framework consists of the key-frame extraction algorithm and the
feature aggregation strategy. Specifically, the key-frame extraction algorithm takes advantage of the clustering idea so that
redundant information is removed in video data and storage cost is greatly reduced. ,e feature aggregation strategy adopts
average pooling to encode deep local convolutional features followed by coarse-to-fine retrieval, which allows rapid retrieval in the
large-scale video database. ,e results from extensive experiments on two publicly available datasets demonstrate that the
proposed method achieves superior efficiency as well as accuracy over other state-of-the-art visual search methods.

1. Introduction

Enormous images and videos are generated and uploaded
onto the Internet. With a large amount of publicly available
data, visual search has become an important frontier topic in
the field of information retrieval. ,ere exist several kinds of
visual search tasks, including image-to-image (I2I) search
[1, 2], video-to-video (V2V) search [3, 4], and image-to-
video (I2V) search [5, 6]. Specifically, the well-known I2I
visual search can be used for product search, in which
relevant images are retrieved by the query image. ,e V2V
search is commonly used for copyright protection, in which
video clips are found via a relevant video. ,e I2V search
addresses the problem of retrieving relevant video frames or
specific timestamps from a large database via the query
image. ,is technology is relevant for numerous applica-
tions, such as brand monitoring, searching film using slides,
and searching lecture videos using screenshots.

In this work, we study the specific task of I2V search,
which is especially challenging because of the asymmetry
between the query image and the video data. Video data can

be divided into four hierarchical structures: video, scene,
shot, and frame.When considering only the visual content, a
video is a sequence of frames displayed at a certain rate (as
shown in Figure 1). For example, a video with a frame rate of
30 fps is equivalent to 30 images in one second.,e structure
of a video means that adjacent frames are highly correlated
with each other. To perform large-scale retrieval, we should
select representative frames of a video frame sequence to
reduce redundant information for further processes. Key-
frame extraction, which could represent the salient content
and information of the video, is the technique employed to
remove redundant or duplicate frames. In this work, we
propose a cluster-based key-frame extraction algorithm to
summarize the video sequences.

Inspired by the advances in content-based image re-
trieval (CBIR), we propose to take advantage of the image
retrieval techniques to image-to-video search. In CBIR, one
of the most challenging issues is the association of pixel-level
information with human-perceived semantics. Although
some hand-crafted features have been proposed to represent
images, the performance of these descriptors is not
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satisfactory. Recently, the CNN-based descriptors have
shown excellent performance on various computer vision
tasks, such as image classification, instant search, and target
tracking. Encouraged by the advances in the deep con-
volutional neural network, our works share similarities with
other CNN-based methods extracting features of the frame
via pretrained CNNs.

In visual search tasks, search efficiency plays an essential
role. Due to the high computational cost, high-dimensional
CNN features are not appropriate for large-scale I2V re-
trieval. To aggregate these high-dimensional features into a
lower-dimensional space, we propose a mechanism with two
pooling layers for coarse-to-fine search. Specifically, the low-
dimensional frame index generated from the second pooling
layer is used for the coarse-level search, which could quickly
narrow down the matches. And, the high-dimensional frame
descriptor generated from the first pooling layer is used for
the fine-level search to improve the retrieval accuracy.

,is work presents three contributions:

(i) We proposed a cluster-based key-frame extraction
algorithm to remove a large amount of redundant
information in the video, which could greatly re-
duce storage cost.

(ii) We took advantage of an aggregation method based
on average pooling to encode deep local convolu-
tional features, which allows rapid retrieval in the
large-scale video database. To further improve ef-
ficiency, we introduced a coarse-to-fine strategy
performing the search in two steps.

(iii) An extensive set of experiments on two publicly
available datasets demonstrated that the proposed
method outperforms several state-of-the-art visual
search methods.

2. Related Work

Key-frame extraction is an essential part in video analysis
and management, providing a suitable video summarization
for video indexing, browsing, and retrieval.,e existing key-
frame extraction methods are roughly divided into three
categories. Early works [7, 8] focused on sampling video

sequences uniformly or randomly to obtain key frames,
which is easy to implement. However, it ignores the contents
of the frames andmay result in repeated frames or missing of
the important frames. A second generation of works [9, 10]
reported significant gains in key-frame extraction based on
shot segmentation which selects the key frames from shot
fragments. ,e extracted key frames via this method are
representative. However, the neglected correlation between
different shots may result in information redundancy. In
response to the above problems, cluster-based key-frame
extraction [11, 12] has emerged. ,is method divides the
video frame into clusters based on frame contents and then
extracts several representative frames from each cluster. ,e
key frames extracted by this method faithfully reflect the
original video content. In this paper, we propose a key-frame
extraction method based on the k-means clustering algo-
rithm for further processes.

In the image-to-video task, frame representation plays a
critical role. In the early 1990s, images were indexed by the
hand-crafted features, like color, texture, and spatial. A
straightforward strategy for image representation is to ex-
tract global descriptors. However, global signatures may fail
the invariance expectation to image changes such as illu-
mination, occlusion, and translation. ,e performance of
these visual descriptors was still limited until the break-
through of local descriptors. In 2003, with the introduction
of the Bag-of-Words (BoW) model in the image retrieval
community, the majority of the traditional methods were
not used any further. For more than a decade, the retrieval
community has witnessed the superiority of the BoWmodel,
and many improvements [13, 14] were proposed. In 2012,
Krizhevsky et al. [15] proposed AlexNet, which achieved the
state-of-the-art recognition accuracy in ILSRVC 2012. In-
spired by the advances of deep convolutional neural net-
works, many works have focused on deep learning-based
methods, especially the CNNs. Early works [16, 17] elabo-
rated that features from fully connected layers of a pre-
trained CNN network perform much better than traditional
hand-crafted descriptors. However, several works [18, 19]
reported that local features from the last convolutional layer
usually yield superior accuracy compared to the global
features from the fully connected layer. Our works share
similarities with the former methods that extract convolu-
tional features from pretrained CNNs.

However, to perform large-scale retrieval, it is necessary
to compress the high-dimensional features to reduce the
storage cost and speed up the retrieval. Several works have
tried to encode features from CNNs via BoW [20], VLAD
[21], and FV [22], which are commonly used to generate
hand-crafted descriptors. Although these methods perform
well in some visual search tasks, they require a large code
book trained offline, which is difficult to achieve in the large-
scale database. Additionally, some information will be lost in
the feature encoding stage using these methods. Apart from
the aggregation strategies mentioned above, average pooling
mechanism was able to generate discriminative descriptors.
Lin et al. [23] elaborated the reasons why pooling is effective
in encoding deep local convolutional features. Firstly, the
mean pooling strategy could largely prevent overfitting.

Video sequence

Scene 1 Scene 2 Scene 3

Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Shot 6

Frame Frame Frame Frame Frame Frame

Figure 1: ,e structure of video data.
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Secondly, it sums up the spatial information, resulting in a
more robust spatial transformation of the query image.
Inspired by the excellent performance of average pooling, we
propose a simple aggregation method to generate compact
and discriminative frame representations.

3. Approach

Our method includes three main components: key-frame
extraction, frame representation, and coarse-to-fine re-
trieval, as shown in Figure 2. ,e first component is a key
preprocess to summarize the video data. Subsequently, the
feature representation of the key frame is learned by the
pretrained deep convolutional neural networks. Ultimately,
relevant frames to the query image are retrieved after feature
aggregation.

,e focus of our work is shown in Figure 2. Figure 2(a)
shows the process of indexing and extracting the descriptors
for an image, and note that the length of the index is much
smaller than that of the descriptor. For large-scale retrieval
tasks, it is very important to quickly narrow down the search
using the image index. Figure 2(b) shows the process of
coarse-to-fine search. In the coarse-level search, the query
image’s index is compared to the indices of key frames (DB
of the index) which are extracted from video frames to
generate m candidates. ,en, the descriptor of the query
image, which contains more information than the index, is
compared to the descriptors (DB of the descriptor) of m
candidates in the fine-level search using Euclidean distance.
,e smaller the Euclidean distance is, the higher the level of
similarity of the two images is. Each candidate is ranked in
an ascending order by similarity; hence, top n ranked frames
are selected as the final result.

3.1. Key-Frame Extraction. Key-frame extraction is the basis
of video analysis and content-based video retrieval. As
mentioned in the previous section, a video is a sequence of
frames displayed at a certain rate, and adjacent frames are
highly correlated with each other. Key-frame extraction
chooses frames to summarize the video while removing
redundant information. In this work, we adopt the cluster-
based algorithm to extract representative frames.

,e main idea of the cluster-based algorithm is to divide
the frame sequences into several clusters according to the
frame features, and then the frame closest to the cluster
center would be selected as a key frame. However, this al-
gorithm requires a prespecified experimental parameter, the
number of clusters, which directly affects the result of key-
frame extraction. It is very difficult to compute the number
of clusters in the case where the video content is uncertain.
To address this issue, we propose an improved key-frame
extraction algorithm. ,e specific steps are represented in
Algorithm 1, in which steps from (1) to (5) are responsible
for computing the number of clusters, while steps from (6) to
(9) perform the task of dividing the frame sequences into
several clusters and selecting a key-frame sequence.

3.2. Frame Representation. Our approach is similar to for-
mer works which extracted convolutional features from
pretrained CNNs. However, we discard the softmax and
fully connected layers of the original network while keeping
convolutional layers to obtain local features. Our work fo-
cuses on local features due to the problem that global de-
scriptors may fail the invariance expectation to image
changes [24].

In this work, we choose the popular deep neural
network named VGG16 to extract frame features, which
was trained on the ILSVRC dataset. ,e network consists
of a stacked 3 × 3 convolutional kernel and max-pooling
layers, followed by three fully connected and softmax
layers. Table 1 shows the output size of convolutional
layers in VGG16. Given a pretrained VGG16 network, an
input frame is first rescaled to a predefined image side
and then is passed through the network in a forward pass.
Finally, we obtain features with size 7 × 7 × 512 from the
last max-pooling layer.

3.3. Coarse-to-Fine Retrieval with Aggregated Features.
Deep convolutional neural networks have shown their
promise as a universal representation for recognition.
However, the signatures are high-dimensional vectors that
are inefficient in large-scale video retrieval. To facilitate
efficient video retrieval, a practical way to reduce the
computational cost is to aggregate the CNN features.

Given a frame, we denote the feature map from the last
max-pooling layer as f. Assume that f takes the size of
k × w × h, where k denotes the number of channels and w

and h are the width and height of each channel. Assume that
p represents the output of mean pooling and
s × t(s≤w, t≤ h) is the pooling window size. ,en, we exert
mean pooling steps on the local CNN features:

p �
1

s × t
􏽘 f(i), i � 1, 2, . . . , k. (1)

Figure 3 depicts the example of encoding the features
extracted from the last max-pooling layer before the fully
connected layer of the VGG16 network. ,e given features
sized 512 × 7 × 7, and after the first mean pooling process
with pooling window sized 7 × 7, we get the feature de-
scriptor sized 512 × 1 × 1. ,en, after the second mean
pooling process with pooling window sized 8 × 1, the feature
descriptor is resized to 64 × 1 × 1.

For large-scale retrieval tasks, it is very important to
quickly narrow down the search using the feature index.
,e initial search is computed using the Euclidean dis-
tance of the feature index between the query image and
the key frames in the database. After that, the top m
frames are selected as candidates based on the distance
score. ,en, to ensure search accuracy, the fine-level
search is performed by calculating the distance of the
feature descriptor between the query image and the
candidates. Finally, top n key frames, a subset of can-
didates, are picked out.
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4. Experiment

In this section, we demonstrate the benefits of our method.
We start with introducing the datasets, evaluation metrics,
and parameter setting. ,en, we present our experimental
results with performance comparison with several existing
visual search approaches.

4.1. Experimental Preparation

4.1.1. Datasets. We consider 2 datasets.,e NTU video object
instance dataset (NTU) [25] and the 2001 TREC video retrieval
test collection (2001 TREC) [26]. ,e NTU consists of 146
video clips from YouTube or mobile cameras. ,e total size of
these clips is 274MB, and the average duration is 10.54 seconds.

Video Key frame Conv layer5 CNN features

Mean
pooling

Mean
pooling

Frame descriptor Frame index

Feature aggregationFrame representationKey-frame extraction

(a)

Query image Query index Candidates

1

...

m

Query-to-
key frames

DB of
indexCoarse-level search

Query descriptor

Fine-level search

Query-to-
candidates

DB of
descriptor

Final result

Frames

1

...

n

(b)

Figure 2: Block diagram of our proposed retrieval approach which searches video databases by images. (a) ,e process of indexing and
extracting the descriptors for an image. (b) ,e process of coarse-to-fine search.

Input: the original video sequence
Output: a key frame sequence (k1, k2, . . . , km)

(1) Split video data into a set of frame sequences (f1, f2, . . . , fn)
(2) Calculate the Euclidean distance (D1,D2, . . . ,Dn−1) between adjacent frames according to the color histogram
(3) Calculate the mean distance Dave � (D1,D2, . . . , Dn−1)/(n − 1)

(4) Assuming the number of key frames is m, affected by the values of parameters θ and Dave
(5) for j� 1, . . ., n− 1 do

if (Dj > θ × Dave) then
m+� 1

end if
end for

(6) Select m cluster centers randomly
Repeat
(7) Extract deep convolutional features (F1,F2, . . . , Fn−1) of video frames via VGG16
(8) Calculate the distance between each frame and the cluster center via the deep convolutional features
(9) Reclassify the corresponding frames according to the minimum distance criterion
(10) Recalculate the cluster center of each class
Until the objects in each cluster no longer change
(11) ,e cluster center of each class is available, and the frame closest to the cluster center is selected as a key frame

ALGORITHM 1: Key-frame extraction based on the K-means cluster.
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,e second dataset consists of 11 hours of the publicly available
MPEG-1 video provided by the TREC conference series. We
experiment with 2G video clips, a subset of 2001 TREC, to
evaluate the performance of our approach.

4.1.2. Evaluation Metric. Query images for retrieval are
captured by OpenCV, an open source library for computer
vision. For evaluation, it is considered a visual match on
condition that the query image and the retrieved frame are
from the same video clip. Performance is measured in terms
of accuracy:

Acc �
no.(visualmatches)
no.(retrieved frames)

. (2)

In order to show the performance variation, we test
different parameter settings for our key-frame extraction
algorithm. ,ere is one parameter to be tuned in our
proposedmodel: θ.,e compression ratio is used tomeasure
the compactness of the extracted key-frame sequence, which
is defined as

compression ratio � 1 −
no.(key frames)
no.(frames)

. (3)

4.1.3. Parameter Setting. Figure 4 shows the compression
ratio and retrieval accuracy variations with varying θ. When
the value of θ is less than 2, the compression ratio improves
dramatically with the increase in θ. After that, the com-
pression ratio keeps steady and infinitely close but no more
than 1. ,e higher the compression ratio, the more the
redundant frames are lost and the more the storage space is
saved. ,e accuracy keeps steady when the value of θ is less
than 1.4. After that, the accuracy drops dramatically with the
increase in θ.

,e accuracy is based on smaller θ. However, it also leads
to a lower compression ratio, which will decrease the

memory efficiency. We set the final value of θ to 1.4 by
making a tradeoff between accuracy and efficiency. ,e
summary of the information for the two datasets is shown in
Table 2.

4.2. Experimental Results. To evaluate the performance of
our proposed coarse-to-fine search method, we compare
with several existing visual search approaches, which are
briefly described as follows:

(i) Deep Feature-Based Method (DF). Babenko et al.
[16] introduced features of pretrained CNN for
image classification to replace traditional hand-
crafted descriptors. We use the deep convolutional
features from the last convolutional layer of VGG16
as a baseline method.

(ii) Deep Feature Spatial Encoding (DFSE). Perronnin
et al. [27] focused on encoding the deep convolu-
tional features of CNN using the FV to generate
frame descriptors.

(iii) Deep Feature Temporal Aggregation (DFTA). Noa
et al. [28] proposed to aggregate the deep con-
volutional features of all frames within one shot via
max-pooling. In DFTA, features in the same shot
are aggregated into a single feature to reduce re-
dundant information between adjacent frames.

(iv) Local Binary Temporal Tracking (LBTT). LBTT [28]
is based on the summarization of hand-crafted local
binary features, which encode the pixel intensity
value of frames into 256-dimensional binary
vectors.

(v) Deep Feature Spatial Pooling (DFSP). To evaluate
the performance of the pooling strategy, we used the
64-dimensional index of the frame for retrieval,
which is generated after two pooling layers.

All the experiments are implemented on a computer
which has Inter Core i5 2.3GHz 2 processors, 8 GB RAM,
and macOS 10. Tables 3 and 4 show the examples of our
retrieval results on the two datasets.

4.2.1. Results on the NTU Dataset. We first test different
methods on the NTU. ,e accuracy, search time, and frame
descriptors’ dimension of different methods are presented in
Table 5. Our method involves a coarse-to-fine retrieval
process. In the coarse search, the dimension is 64, and in the
fine search, the dimension is 512, which are described in the
first line in Table 5. ,e proposed method achieves the best
results in terms of accuracy, improving the performance by
0.05 compared to DF. DFSP and DFSE consume the shortest
time without taking into account the time spent in offline
training.,is is probably because these frame descriptors are
64-dimensional, lower than that of the other methods. To
further test the impact of the frame descriptors’ dimension
on the retrieval speed, we experiment on the large-scale
dataset, 2001 TREC. ,e results of different methods are
shown in Table 6.

Table 1: Structure of VGG16.

Layer Output size
Conv3-64 224× 224× 64
Conv3-64 224× 224× 64
Max-pooling 112×112× 64
Conv3-128 112×112×128
Conv3-128 112×112×128
Max-pooling 56× 56×128
Conv3-256 56× 56× 256
Conv3-256 56× 56× 256
Conv3-256 56× 56× 256
Max-pooling 28× 28× 256
Conv3-512 28× 28× 512
Conv3-512 28× 28× 512
Conv3-512 28× 28× 512
Max-pooling 14×14× 512
Conv3-512 14×14× 512
Conv3-512 14×14× 512
Conv3-512 14×14× 512
Max-pooling 7× 7× 512
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512 × 7 × 7
local CNN features

512 × 1 × 1
descriptor

64 × 1 × 1
index

Mean pooling Mean pooling
............ ......

Figure 3: ,e process of feature encoding.
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Figure 4: ,e compression ratio variations of different θ.

Table 2: ,e information of two datasets used for experiments.

Dataset ,e NTU ,e 2001 TREC
Size 274MB 2G
Average duration 10.54 seconds 2.86 minutes
Number of frames 12359 544275
Number of key frames 440 19275
Compression ratio 96.44% 96.45%

Table 3: Example of the top 12 similar frames for the query image on the NTU.

Query image Top 12 similar frames

,e NTU
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4.2.2. Results on the 2001 TREC Dataset. From Table 6, we
can see that the accuracy of all methods is slightly reduced
and search time is much longer compared to Table 5. ,e
meaning of the dimension in Table 6 is similar to that in
Table 5. For example, the dimensions in our method are 64
and 512, respectively. Our proposed method achieves the
best results in terms of accuracy and outperforms other
methods by large margins. Note that the accuracy for the
proposed method is 0.9153 while that for DFTA is 0.7856.
,e search time of our method is slightly longer than that of
DFSP because it takes time for fine-level search. Although
the retrieval speed is slightly reduced, the retrieval accuracy
is greatly improved. ,erefore, we believe that our proposed
coarse-to-fine search is effective.,e accuracy of DF is worse
than that of DF and DFSP. Furthermore, its search time is
about 2-3 times longer than DFSP. ,is shows that the
pooling strategy is effective in encoding deep local con-
volutional features. However, the accuracy of DFSE and
DFTA is worse than DF although the search time is shorter.
,is indicates that although high-dimensional descriptors
could be encoded into a lower-dimensional space via these
two methods, they could lose a lot of feature information
during the encoding process.

5. Conclusion and Future Work

In this paper, we proposed a method based on deep local
features to solve the problem of image-to-video retrieval. ,e
models presented in this work are based on key-frame ex-
traction and feature representation. ,e experimental results
demonstrated that our method achieved competitive perfor-
mancewith respect to other CNN-based representations, as well
as performed excellent in the cost of indexing and search time.

However, the proposed method appears to be more
appropriate for tasks in which query images are from the
original video frames. ,e quality problem of the query

image caused by geometric transformations and occlusion
might affect the search accuracy. In future work, we aim to
explore an effective method to reduce the impact of image
quality issues.

Data Availability

All data generated or analyzed during this study are included
in this paper. ,e datasets used in this paper, the NTU video
object instance dataset, and the 2001 TREC video retrieval
test collection can be downloaded from https://sites.google.
com/site/jingjingmengsite/research/ntu-voi/data and
https://open-video.org//.

Table 4: Example of the top 12 similar frames for the query image on the 2001 TREC.

Query image Top 12 similar frames

,e 2001 TREC

Table 5: Comparison with existing visual search approaches on the
NTU.

Method Acc Time (s) Dimension
Ours 0.9691 1.67 64, 512
DFSP 0.9516 1.613 64
DF [16] 0.9198 1.892 25088
DFSE [27] 0.8441 1.606 64
DFTA [28] 0.8254 1.739 512
LBTT [28] 0.9096 1.693 256

Table 6: Comparison with existing visual search approaches on the
2001 TREC dataset.

Method Acc Time (s) Dimension
Ours 0.9213 5.302 64, 512
DFSP 0.8841 5.164 64
DF [16] 0.8313 14.305 25088
DFSE [27] 0.8106 5.201 64
DFTA [28] 0.8027 8.132 512
LBTT [28] 0.8174 6.764 256
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