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&is paper proposes and evaluates the LFrWF, a novel lifting-based architecture to compute the discrete wavelet transform (DWT)
of images using the fractional wavelet filter (FrWF). In order to reduce the memory requirement of the proposed architecture, only
one image line is read into a buffer at a time. Aside from an LFrWF version with multipliers, i.e., the LFrWFm, we develop a
multiplier-less LFrWF version, i.e., the LFrWFml, which reduces the critical path delay (CPD) to the delay Ta of an adder. &e
proposed LFrWFm and LFrWFml architectures are compared in terms of the required adders, multipliers, memory, and critical
path delay with state-of-the-art DWTarchitectures. Moreover, the proposed LFrWFm and LFrWFml architectures, along with the
state-of-the-art FrWF architectures (with multipliers (FrWFm) and without multipliers (FrWFml)) are compared through
implementation on the same FPGA board.&e LFrWFm requires 22% less look-up tables (LUT), 34% less flip-flops (FF), and 50%
less compute cycles (CC) and consumes 65% less energy than the FrWFm. Also, the proposed LFrWFml architecture requires 50%
less CC and consumes 43% less energy than the FrWFml. &us, the proposed LFrWFm and LFrWFml architectures appear suitable
for computing the DWT of images on wearable sensors.

1. Introduction

1.1. Motivation. &e availability of low-cost small-sized
cameras attached to wearable sensors and portable imaging
devices has opened up a wide range of imaging-oriented
applications, including assisted living, smart healthcare,
traffic monitoring, virtual sports experiences, and posture
recognition [1–12]. An interconnection of visual sensor
nodes (sensor nodes with attached camera) is known as
visual sensor network (VSN) [13, 14] or as wireless multi-
media sensor network (WMSN) [15, 16]. Wearable visual
sensors may also be a part of the Internet of things (IoT)
[17–21]. Low-cost IoT wearable sensors [22] enable a wide
range of activities for the benefit of society, e.g., hazard
avoidance systems for worker safety [23], navigation aids for

visually impaired individuals [24], activity monitoring [25],
smart irrigation [26], and sports [27].

In many visual applications of wearable sensors and
portable imaging devices, images captured by the camera
need to be transmitted wirelessly to a body-worn or nearby
hub device. &e wearable sensors and portable imaging
devices have limited resources, and the wireless links have
narrow bandwidth [28], making it impossible to directly
send the raw (uncompressed) images.&us, there is a need to
compress the images before transmission [29]. &erefore, an
image coder is needed in order to compress the images. In an
image coder, an image is generally first transformed using
the discrete cosine transform (DCT) [30] or discrete wavelet
transform (DWT) [31, 32] and then it is quantized and
entropy coded. &e DWT, which is also used in JPEG 2000
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[33], is popular in a wide variety of applications, including
activity monitoring [34], fault detection in inverter circuits
[35], medical imaging [36], image denoising [37], image
recognition [38], image reconstruction [39], watermarking
[40], computer graphics, and real-time processing [41] due
to its multiresolution feature and excellent energy com-
paction properties [42, 43].

&e hardware architectures for wearable visual sensors
and portable imaging devices in the IoT and wireless
multimedia sensor networks should require minimal
hardware resources and consume low energy for a small
form factor and long battery life [44, 45]. Generally, the
computational capabilities of visual sensor nodes have been
increasing in recent years [46]. Nevertheless, due to the
economic pressures on visual sensor designs and despite the
emergence of specialized hardware acceleration, e.g., FPGA
and, components [47–49], the computational resources of
visual sensors will likely remain scarce. Emerging computing
and communication paradigms, such as mobile ad hoc cloud
computing [50, 51], expect the nodes to not only transmit
sensed images but also to participate in some service
computing functions, e.g., for localized image analysis and
decision making, which can be orchestrated through soft-
ware-defined networking and control structures [52–54]. In
order to make the economical functioning of wearable visual
sensors in such networked systems feasible, the resource
usage of the image coding and transform must be very low.
In particular, as the DWT is an important component of an
image coder for visual sensors, the DWT hardware archi-
tecture should have minimal area and energy consumption.

1.2. Related Work. &e conventional convolution-based
DWT computation of an image requires a huge amount of
memory due to its row- and column-wise scanning [55, 56],
making it unsuitable for memory-constrained wearable
sensors. &e different low-memory architectures reported in
the literature for computation of DWTcan be categorized as
line-based architectures [57], stripe-based architectures
[58, 59], block-based architectures [60, 61], and the frac-
tional wavelet filter (FrWF) architecture [62]. For an image
of dimension J × J pixels, the line, stripe, and block-based
architectures require random access memory (which we
refer to as RAM or memory for brevity) in the range of 3J to
5.5J words, while the FrWF architecture requires 2J + 22
words of RAM [62].

Another low-memory pipeline-based architecture has
been proposed in [63]. However, the design in [63] is based
on the nonseparable DWT computation approach, which is
unpopular because of its higher computational requirements
than the conventional separable approach. It is a well-known
fact that at a particular throughput, the separable 2D DWT
computation approach is computationally more efficient
than the nonseparable approach [64]. A dual data scanning-
based DWT architecture is reported in [65]. In this archi-
tecture, several 2D DWT units are combined into a parallel
multilevel architecture for computing up to six DWT levels.
However, this architecture needs 13J words of memory. An
architecture based on an interlaced read scan algorithm

(IRSA) is proposed in [66] in conjunction with a lifting-
based approach with a 5/3 filter-bank which requires 2J

words of memory. However, the long critical path delay
(CPD) of 2Tm + 4Ta (where Tm is the multiplier delay and
Ta is the adder delay) of the architecture in [66] may limit its
use in real-time applications.

An LUT-based lifting architecture for computing the
DWT has been reported in [67].&e design [67] has low area
and power requirements. However, it has a long CPD equal
to TLUT + (W/4 − 1)TFA + 2Ta (where TLUT is the look-up
table (LUT) delay, W � 16 bits is the word length, and TFA is
the full adder delay). A lifting-based architecture for com-
puting both the 1D and 2DDWT has been presented in [68].
However, this design uses a transpose buffer of size J2. An
energy-efficient block-based DWT architecture has been
proposed in [61]. However, this architecture requires a large
number of multipliers, namely, 16 and 36 multipliers for 5/3
and 9/7 filters, respectively. Another energy-efficient lifting-
based reconfigurable DWT architecture has been proposed
in [69], mainly for medical applications. However, the
frequency of operation of this architecture is limited to
20MHz. An energy-efficient lifting-based configurable
DWT architecture for neural sensing applications has been
proposed in [70], requiring 12 adders and 12 multipliers.
However, its operating frequency is limited to only 400KHz
and 80KHz for the gating and interleaving architectures
used in the main architecture, respectively.

A power-efficient modified form of the DWT architec-
ture has been presented in [71], using Radix-8 booth
multipliers. &is architecture uses bit truncation to reduce
the area and power. However, bit truncation degrades the
quality of the reconstructed image when the inverse DWT is
applied. &ere have been some DWT implementations on
graphics processing units (GPUs) [72–78]; however, GPUs
are relatively expensive for low-cost sensing platforms.

&e recently proposed FrWF architecture requires only
2J + 22 words of memory and has a CPD equal to the delay
of a multiplier Tm [62]. A multiplier-less FrWF architecture
was also reported in [62] which reduces the CPD to the delay
of an adder, Ta, Ta <Tm. However, the FrWF architecture
(with and without multipliers) has high energy consumption
owing to its large number of compute cycles. &e high
energy consumption of the FrWF architecture may be
prohibitive for wearable sensors and portable imaging de-
vices with tight memory and energy constraints [79].

1.3. Contributions and Structure of 7is Article. &is paper
proposes the LFrWFm, a novel lifting-based energy-efficient
architecture to compute the DWT coefficients of an image
with a 5/3 filter-bank. At the core of the proposed LFrWFm
architecture is a novel basic Lift_block that computes the H

and L subband coefficients with only two two-input adders
and one multiplier (plus two pipeline registers), thus greatly
reducing the hardware requirements compared to prior
convolution architectures. Moreover, a multiplier-less
implementation of the proposed architecture, denoted by
LFrWFml, is designed. &e multiplier-less LFrWFml has a
shorter CPD than the proposed multiplier-based LFrWFm
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architecture. &e proposed LFrWFm and LFrWFml archi-
tectures are not only efficient in terms of energy but also
require fewer adders, multipliers, and registers than the
state-of-the-art FrWF architectures (with multipliers
(FrWFm) and without multipliers (FrWFml)). We compare
the proposed architectures with state-of-the-art DWT
computation architectures in terms of the required adders,
multipliers, memory, and critical path delay. We also im-
plement the proposed architectures and the state-of-the-art
FrWF architectures on the same FPGA board. Experimental
results demonstrate that the proposed LFrWFm and
LFrWFml architectures have lower hardware resource re-
quirements and energy consumption than the state-of-the-
art FrWFm and FrWFml architectures.

&e remaining part of the paper is arranged as follows.
Section 2 gives a brief overview of the DWT and FrWF
techniques. &e proposed lifting-based LFrWF architecture
is described in detail in Section 3 along with its memory
requirement. &e evaluation results along with related
discussions are presented in Section 4. Finally, Section 5
concludes the paper.

2. Background

&is section briefly reviews the DWT and FrWF techniques
along with FrWF architecture. &e main notations used in
this article are summarized in Table 1.

2.1. Discrete Wavelet Transform (DWT). &e most popular
approach for computing the two-dimensional (2D) DWTof
an image is the separable approach, in which the rows are
filtered first, followed by column-wise filtering of the
resulting coefficients.When a row is convolved (filtered) by a
low-pass filter (LPF) and a high-pass filter (HPF), followed
by downsampling by a factor of two, the results are known as
approximation and detail coefficients, respectively. For a 1D
signal of dimension J, which we consider as a preliminary
step for computing the 2D DWT, there are J/2 approxi-
mation coefficients and J/2 detail coefficients. Combining
the downsampling with the convolution operation, the
approximation coefficients a(i) and the detail coefficients
d(i) for i � 0, 1, . . . , J/2 − 1 can be expressed mathematically
as [55]

a(i) � 􏽘

j�⌊f1/2⌋

j�−⌊f1/2⌋
x2i+jlj, i � 0, 1, . . . ,

J

2
− 1,

d(i) � 􏽘

j�⌊f2/2⌋

j�−⌊f2/2⌋
x2i+j+1hj, i � 0, 1, . . . ,

J

2
− 1,

(1)

respectively, whereby lj and hj denote the jth LPF and HPF
coefficient, respectively, x2i+j denotes the (2i + j)th signal
sample, while f1 and f2 are the number of LPF and HPF
coefficients, respectively. &e largest integer less than or
equal to x is denoted by the symbol ⌊x⌋.

In the separable approach, all image rows are first
convolved separately by a HPF and a LPF, followed by
downsampling with a factor of two, resulting in the H and L

subbands. &en, the columns of the H and L subbands are
convolved by a HPF and a LPF, followed by downsampling
with a factor of two, resulting in the HH, HL, LH, and LL
subbands [80]. However, this approach needs to save the
entire J × J image in the RAM on the sensor (board) system.
&us, this DWT computation approach requires a huge
amount of memory, making this approach unsuitable for
low-cost wearable sensors and portable imaging devices with
limited RAM [55, 56].

&e lifting scheme [81] computes the DWT of images
using inplace computations which save memory. Moreover,
the lifting scheme uses predict and update steps for com-
puting the subbands. In particular, the low-pass filtered
coefficients are predicted using the high-pass filtered coef-
ficients. &us, the lifting scheme reduces the convolution
operations needed by the LPF coefficients. Hence, the lifting
scheme reduces the number of arithmetic computations
required for computing the image DWT [82].

&e lifting scheme for a 5/3 filter-bank is shown in
Figure 1. In this figure, x0, x1, . . . , x6 are the input signal
samples. Among these samples, x0, x2, x4, and x6 are the
even-indexed samples, while x1, x3, and x5 are the odd-
indexed samples. Also, α and β are the high-frequency and
low-frequency lifting parameters, respectively; G0 and G1 are
the scaling parameters, whereby α � −0.5, β � 0.25, and
G0 � G1 � 1 [66]; d0, d1, and d2 are the high-frequency
wavelet coefficients; while a0, a1, a2, and a3 are the low-
frequency wavelet coefficients. &e high- and low-frequency
wavelet coefficients are computed following the diagram in
Figure 1; for instance,

d0 � x0 + x2( 􏼁α + x1􏼂 􏼃G0,

a1 � d0 + d1( 􏼁β + x2􏼂 􏼃G1.
(2)

It should be noted that the arrows without an associated
symbol in Figure 1 have the unit multiplication factor, i.e., 1.

2.2. Fractional Wavelet Filter (FrWF). &e FrWF is a low-
memory DWT computation technique [56]. It uses a specific
image data scanning technique in order to reduce the memory
required for computing the DWT. It selects a vertical filter area
(VFA), scanning f1 rows of the image from an SD-card (where
f1 is the number of LPF coefficients). &e rows in a VFA are
read in raster scan order. Once the reading of all the image rows
in a VFA is complete, the VFA is shifted by two lines in the
vertical direction. &is shifting of the VFA is done in order to
incorporate the dyadic downsampling. One line of the
HH,HL, LH, and LL subbands is computed from one VFA. All
the image lines are covered by shifting the VFA. &e VFA will

Table 1: Summary of main notations.

J × J Image size in pixels
G Number of segments per image line
Tm Delay of a multiplier
Ta Delay of an adder
f1 Number of low-pass filter coefficients
f2 Number of high-pass filter coefficients
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be shifted J/2 times for an image of dimension J × J.&e FrWF
has been combinedwith a low-memory image coding algorithm
to design an efficient image coder for WMSNs in [83].

An FPGA architecture for the FrWF with a 5/3 filter-
bank has been proposed in [62]. &is FrWF architecture,
which follows the FrWF data scanning order, requires 2J +

22 words of memory and a total of 5J2/2 compute cycles.&e
large number of compute cycles results in a high energy
consumption, which may be prohibitive for resource-con-
strained wearable visual sensors and portable imaging de-
vices. &e proposed LFrWF focuses on reducing the energy
consumption for computing the DWT of images.

3. Proposed LFrWF Low Energy Architecture

&is section presents the proposed LFrWF lifting-based
architecture to compute the DWT of an image using the
FrWF approach with a 5/3 filter-bank.

3.1. Data Scanning Order. &e proposed lifting-based ar-
chitecture follows the data scanning order of the FrWF
algorithm [56]. It is assumed (as is common for low-memory
implementations of the DWTcomputation) that the original
image is stored on an SD-card; throughout, the SD accesses
are appropriately buffered to compensate for the latencies of
the SD-card accesses. Initially, a vertical filter area which
spans f1 image lines (f1 is the number of LPF coefficients) is
marked in the SD-card. &e rows of the image are read in
raster scan order from the VFA, one line at a time into the
RAM buffer P_store (as shown in Figure 2). After the
processing of all the rows of the VFA is completed, the VFA
is shifted down by two lines and the new rows are again read
into buffer P_store in raster scan order. &e complete image
is read by repeatedly shifting the VFA downwards by two
lines until all the rows are read. In the proposed architecture,
one complete line is read at a time and scanned in raster
order; in contrast, the FrWF architecture in [62] reads only 5
coefficients of an image line at a time.

3.2. Proposed Lifting-Based LFrWF Architecture. &is sub-
section describes the proposed lifting-based DWT archi-
tecture in detail.

3.2.1. Top-Level Architecture. Figure 2 shows the top-level
block diagram of the proposed LFrWF architecture.&e LFrWF
architecture works as follows. First, the input image pixels of a
line are read into the register P_store. &is P_store register

stores the original image pixels of 8 bits each. &e pixels of the
image from P_store are sent to the Lift_block (as detailed in
Figure 3) to compute the H and L subband coefficients using
the lifting scheme.&e generated H and L subband coefficients
are saved in the register 1D_store.&e contents of the 1D_store
register are used as inputs for the Conv_block (as shown in
Figure 4), which generates intermediate coefficients that are
saved in the HH_store, HL_store, LH_store, and LL_store
registers. &ese intermediate values are successively updated by
the next image lines. &e intermediate values in the registers
HH_store, HL_store, LH_store, and LL_store, after updating,
will give the values of the HH,HL, LH, and LL subbands,
respectively. Once the final subband coefficients of the
HH,HL, LH, and LL subbands are computed, they are trans-
ferred and saved in an external SD-card.&e functioning of the
different blocks leading to the computation of the subbands is
described next.

3.2.2. Lifting Block. In the lifting schemewith a 5/3 filter-bank,
two previous high-pass filtered coefficients are used to predict a
low-pass filtered coefficient. For the efficient implementation of
the lifting scheme, we introduce a novel basic Lift_block. As
illustrated in Figure 3, the basic Lift_block computes two H

subband coefficients and one L subband coefficient from a
group of five input pixels in three steps. &e inputs (Input1,
Input2, Input3, and Liftpar) and output (Out1) of the adders and
multiplier to be used in Figure 3 for the different steps are
shown in Table 2.&e first two steps compute two coefficients of
theH subband and the third step computes a coefficient of theL

subband. In Table 2, P0, P1, P2, P3, and P4 are the first five
pixels of an image line. H0 and H1 are the first two high-pass
filtered coefficients which are stored as the first two elements of
the register 1D_store. L0 is the first low-pass filtered coefficient
and is stored as the third element of the register 1D_store. &e
high-pass filtered coefficients (H0 and H1) and the low-pass
filtered coefficient (L0) are computed as

H0 � P0 + P2( 􏼁α + P1, (3)

H1 � P2 + P4( 􏼁α + P3, (4)

L0 � H0 + H1( 􏼁β + P2. (5)

G1

x0 x1 x2 x3 x4 x5 x6

α α α α α α

β β β β β β 

d0 d1 d2

a0 a1 a2 a3

G0

Figure 1: Lifting steps for 5/3 filter-bank [66].
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Figure 2: Block diagram of top-level structure of the proposed
lifting-based LFrWF architecture; the novel Lift_block is displayed
in detail in Figure 3, while the Conv_block is displayed in detail in
Figure 4.
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where α � −0.5 and β � 0.25 are lifting parameters [66].
Once the five pixels (P0, P1, P2, P3, and P4) are processed, the
first two pixels are discarded and two new pixels are read
along with the previous last three pixels. &e same proce-
dure, in equations (3)–(5), is repeated on these new pixels to
compute the H and L subband coefficients.

&e basic Lift_block in Figure 3 requires two two-input
adders and one multiplier. &e functionality of this basic
Lift_block essentially replaces the functionality of the con-
volution stage-1 block in the FrWFm architecture, as shown
in Figure 3 in [62] and elaborated in Figures 4–7 in [62]. For
an LPF length of f1 and an HPF length of f2, the FrWFm

convolution stage-1 block in [62] requires f1 − 1 two-input
adders and f1 multipliers for the low-pass filtering as well as
f2 − 1 two-input adders and f2 multipliers for the high-pass
filtering. &us, for a 5/3 filter, the FrWFm convolution stage-
1 block requires six adders as well as eight multipliers.

3.2.3. Convolution Block. In the Conv_block in Figure 4, the
H subband coefficients from the 1D_store register are
multiplied by a suitable HPF and LPF coefficient (as de-
termined by a multiplexer) and then added/stored with the
previous value in the registers HH_store and HL_store,
respectively. Similarly, the L subband coefficient in the
1D_store register is multiplied by a suitable HPF and LPF
coefficient (as determined by a multiplexer) and then added/
stored with the previous value in the registers LH_store and
LL_store, respectively. &e values in the registers HH_store,
HL_store, LH_store, and LL_store are updated to compute
the coefficients of the HH,HL, LH, and LL subbands,
respectively.

We note that the Conv_block in Figure 4 is essentially
equivalent to the aggregation of the FrWF convolution
stage-2 blocks in Figures 4–7 in [62]. &e Conv_block in
Figure 4 requires four two-input adders and four multipliers.
On the other hand, the aggregation of the FrWF convolution
stage-2 blocks in Figures 4–7 in [62] requires two two-input
adders and two multipliers.

3.2.4. Pipeline Registers. &e Lift_block and the Conv_block
use two and four pipeline registers, respectively, to tem-
porarily save the intermediate results after each compute
cycle. &rough the use of the pipeline registers, the critical
path delay (CPD) of the proposed LFrWF architecture
becomes the multiplier delay Tm.

Overall, for a 5/3 filter, considering both the basic
Lift_block (Figure 3) and the Conv_block (Figure 4), the
proposed LFrWFm requires six two-input adders and five
multipliers compared to eight two-input adders and ten
multipliers of the FrWFm architecture (Figures 4–7 in [62]).
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Figure 3: Schematic representation of the novel basic Lift_block
employed in the proposed LFrWF architecture.
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Figure 4: Schematic representation of Conv_block for computing
subbands in the proposed LFrWF.

Table 2: Input and output to be used in the lift block in Figure 3.

Input1 Input2 Input3 Liftpar Out1
Step 1 P0 P2 P1 α H0
Step 2 P2 P4 P3 α H1
Step 3 H0 H1 P2 β L0
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&e proposed LFrWF architecture stores the original
image and the subbands in the SD-card.&us, higher wavelet
decomposition levels can be computed with the same ar-
chitecture, whereby the LL subband coefficients are taken as
input.

3.3. Proposed Multiplier-less LFrWFml Implementation.
&e 5/3 filter-bank coefficients (shown in Table 3) and the 5/3
filter-bank lifting parameters involve integer division and
multiplication. &us, they can be implemented using the shift
and add method. More specifically, the convolution with the
5/3 filter-bank requires only integer multiplication and di-
vision and can therefore be implemented with only shift and
add operations. For example, z · 0.25 � z · 2− 2, i.e., shifting
the number z two times to the right is equivalent to dividing z

by 4. &e shift and add concept, as applied to the 5/3 filter
coefficients, operates as follows:

(1) &e filter coefficient l−2 � l2 � −1/8 � −1/23 can be
implemented by three right shift operations, fol-
lowed by a complement operation

(2) &e filter coefficient l−1 � l1 � 2/8 � 1/22 can be
implemented by two right shift operations

(3) &e filter coefficient l0 � 6/8 � 1/22 + 1/2 can be
implemented by two right shift operations, followed
by addition with one right shift

(4) &e filter coefficient h0 � h2 � −1/2 can be imple-
mented by one right shift operation, followed by a
complement operation

(5) &e coefficient h1 � 1, thus, no shifting is required

With these specified shifting operations, the convolution
block can be simplified and implemented using only shifters
and adders. Multiplier-less computation blocks for the 5/3
LPF and HPF coefficients are given in Figures 5 and 6,
respectively. One benefit of the multiplier-less imple-
mentation over the multiplier-based architecture in Section
3.2 is that the multiplier-less implementation reduces the
CPD from the multiplier delay Tm down to the adder delay
Ta.

3.4. Memory Requirement. In order to compute the DWT
coefficients, the proposed LFrWF architecture uses four
registers (HH_store, HL_store, LH_store, and LL_store),
two register arrays (P_store and 1D_store), and six pipeline
registers. &e register array P_store (of size J words) is used
to store an image line. &e H and L subband coefficients
computed by the Lift_block are saved in the register array
1D_store of 3 words.&e four registers HH_store, HL_store,
LH_store, and LL_store are of J/2 words each. &e total
memory requirement of the proposed architecture is equal
to the sum of all registers, i.e.,

MemLFrWF � 3J + 9words. (6)

3.5. Line Segmentation. Equation (6) indicates that LFrWF
memory requirement grows with the image dimension J and

thus will be significantly greater than the FrWF memory
requirement of 2J + 22 words for large images. In order to
reduce the memory requirement of the proposed LFrWF
architectures, each image line may be segmented, as illus-
trated in Figure 7, with overlapping of 􏼄f1/2􏼅 coefficients at
both boundaries of the second to the last, but one segment
(the first and last segments only require overlapping at one
boundary) (Appendix E in reference [88]). In this approach,
only one line segment needs to be read into the register array
P_store. &us, the memory requirement of the LFrWF with
G line segments is

MemLFrWF seg �
J

G
+ 2J + 2⌊

f1

2
⌋ + 9words. (7)

For the 5/3 filter-bank with a VFA of f1 � 5 lines, the
memory requirement is

Mem5/3 filt.
LFrWF seg �

J

G
+ 2J + 13words. (8)

&e other resource requirements are independent of line
segmentation and remain unchanged.

&e line segmentation reduces the memory requirement
of the proposed LFrWF architectures so that their memory
requirement can be reduced below the memory required by
FrWF architectures of [62]. &e FrWF architecture does not
include a line segmentation provision; therefore, its memory
requirement cannot be reduced further. We observe from
Table 4 that the memory requirements of the proposed
LFrWF architectures are greater than the FrWF memory
requirements. However, by incorporating the line seg-
mentation approach, the memory requirement of the
LFrWF architectures can be reduced below that of the FrWF
architectures. In case of the 5/3 filter-bank, we observe from
Table 4 that the memory requirement of the FrWF archi-
tectures is 2J + 22, while the memory requirement of LFrWF
architecture with G line segments is J/G + 2J + 13, see
equation (8). &erefore, the LFrWF memory requirement is
less than the FrWF memory requirement if G> J/9.

4. Results and Discussion

&is section presents the implementation of the proposed
LFrWF architecture and its comparison with state-of-the-art
architectures. First, we compare the proposed LFrWF ar-
chitecture with several state-of-the-art architectures in terms
of the required numbers of adders and multipliers, as well as
the critical path delay (CPD) and required memory. Next,
the postimplementation results of the proposed LFrWF
architectures are compared with the state-of-the-art FrWF

Table 3: Coefficients of 5/3 filter-bank [84].

LPF coeff. Value HPF coeff. Value
l−2 −1/8 h−2 0
l−1 2/8 h−1 0
l0 6/8 h0 −1/2
l1 2/8 h1 1
l2 −1/8 h2 −1/2
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architecture [62] by implementing both architectures on the
Xilinx Artix-7 FPGA platform.

4.1. Adders, Multipliers, CPD, and Memory. Table 4 com-
pares the numbers of required adders andmultipliers, as well
as the CPD and the required RAM of the proposed LFrWF
architectures with state-of-the-art architectures. &e

numbers of adders and multipliers of the existing state-of-
the-art architectures shown in Table 4 have been taken from
the corresponding papers. We observe from Table 4 that the
proposed LFrWFm architecture requires the least number of
adders (namely, only six adders, see Figures 3 and 4) among
the state-of-the-art architectures. While the proposed
LFrWFm reduces the number of required adders only by two
compared to the FrWFm architecture, the proposed LFrWFm
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To RAM
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Three shift and 
complement (l–2)

Two shift (l–1)

One shift + two shift 
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and
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p4

p5

Figure 5: Multiplier-less block for LPF.
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reduces the number of adders down to less than half of the
other prior architectures. Among the architectures using
multipliers, the proposed LFrWFm architecture also requires
the least number of multipliers, namely, only five multi-
pliers, see Figures 3 and 4. Only the RMA [85] has a similarly
lowmultiplier requirement with six multipliers (but requires
approximately twice the memory compared to LFrWF). &e
other prior architectures require twice or more multipliers
than the proposed LFrWFm architecture.

We also observe from Table 4 that the CPD of the
proposed LFrWFm architecture and the FrWFm architecture
[62] are Tm, which is less than the architectures in [85, 86].
We note from Table 4 that the multiplier-less LFrWFml and
FrWFml have reduced the CPD to Ta, which is less than the
CPD of other state-of-the-art architectures. &e CPD of Ta

achieved by the proposed LFrWFml architecture cuts the
shortest CPD of any existing architecture of 2Ta achieved by
the Aziz architecture [87] down to half. Note that the shifter
delay Ts is commonly larger than the adder delay Ta, i.e.,
Ts >Ta; thus, the PMA architecture [85] has a longer CPD
than the Aziz architecture. &e benefit of the reduction in
CPD is that the architectures can be operated at higher
frequencies, since maximum operations frequency� 1/CPD.
As the CPD decreases, the maximum operating frequency
increases.

Table 4 furthermore indicates that the FrWF architecture
has the lowest memory requirement. However, the memory
requirement of the proposed LFrWF architecture is less than
the memory requirement of the other state-of-the-art ar-
chitectures in Table 4. As noted in Section 4.3, with seg-
mentation of a line of J words (pixels) into G segments (of
J/G words each), the LFrWF memory requirement drops
below the FrWF memory requirement if more than J/9
segments are used.

4.2. FPGA Implementation. &e proposed LFrWF archi-
tecture computes the DWT coefficients of images based on
lifting while following the FrWF approach. As observed
from Table 4, the FrWF architecture [62] requires the least
memory among the state-of-the-art architectures. &us, we
implemented the FrWF architectures [62] and the proposed
LFrWF architectures (initially without segmentation, i.e.,
G � 1) on an Artix-7 FPGA (family: Artix-7, device: xc7a15t,
package: csg324, speed: −2L). &e implementations used

identical multipliers, adders, and other components pro-
vided by the Xilinx Artix-7 FPGA family. All architectures
used an input pixel width of 8 bits and a data-path width of
16 bits. Table 5 summarizes the FPGA implementation
comparison. We report averages for evaluations with seven
popular 512 × 512 (8 bits/pixel) test images, namely, “lena,”
“barbara,” “goldhill,” “boat,” “mandrill,” “peppers,” and
“zelda,” obtained from the Waterloo Repertoire (http://
links.uwaterloo.ca). &e energy consumption is evaluated by
multiplying the number of compute cycles with the average
power consumption and the compute (clock) cycle dura-
tions of 5.0 ns and 1.5 ns for the architectures with multi-
pliers and without multipliers, respectively.&ese clock cycle
durations have been selected to satisfy the CPD constraint, as
given in Table 5, namely, a CPD of 4.8 ns for the design with
multipliers and a CPD of 1.45 ns for the multiplier-less
design. &e number of compute cycles and the average
power consumption were evaluated by simulation with the
Xilinx Vivado software suite, version 2018.2.

We observe from Table 5 that the proposed LFrWFm
architecture requires approximately 22% less LUTs, 34% less
FFs, and 50% less compute cycles, and consumes 65% less
energy than the FrWFm architecture. Due to the reduced
number of hardware components (LUTs and FFs), the area
occupied by the LFrWFm architecture will be less than the
area of the corresponding FrWFm architecture. Moreover,
the proposed multiplier-less LFrWFml architecture requires
2.6% less FFs and 50% less cycles and consumes 43% less
energy than the multiplier-less FrWFml architecture [62].
&e proposed LFrWFml architecture requires slightly more
LUTs than the multiplier-less FrWFml architecture.

We also observe from Table 5 that the proposed LFrWF
reduces the number of required compute cycles to roughly
half the compute cycles required by the FrWF. More spe-
cifically, while the FrWF requires on the order of 10 million
compute cycles for a 512 × 512 image, the proposed LFrWF
requires only a little more than 5 million compute cycles.
&is substantial reduction is primarily due to the compu-
tational efficiency of the novel Lift_block (see Section 3.2.2)
for computing the decomposition subband coefficients.

Moreover, we observe from Table 5 that the power
consumption of the proposed LFrWF architecture with
multipliers is less than the power consumption of the
corresponding FrWF architecture with multipliers, while the
multiplier-less LFrWF and FrWF have approximately the
same power consumption. &e energy consumption is
evaluated by multiplying clock cycle duration (which is
based on the CPD) with the number of clock cycles and the
consumed power. Due to the reduced (almost half ) number
of compute cycles and the lower (or same) power con-
sumption, the energy consumption levels of the proposed
LFrWF architectures are substantially lower than the energy
consumption levels of the FrWF architectures. We further
observe from Table 5 that compared to the designs with
multipliers, the multiplier-less designs of both the LFrWF
and the FrWF have the same numbers of clock cycles, but
shorter CPD and (slightly) reduced power levels; thus, the
multiplier-less designs have substantially reduced energy
consumption levels.

Table 4: Comparison of required adders and multipliers, as well as
critical path delay and required RAM of proposed LFrWFm and
LFrWFml vs. state-of-the-art architectures for one wavelet de-
composition level with 5/3 filter-bank. (S � number of parallel proc.
units; Ts � delay of shifter).

Architecture Add. Mul. CPD Mem.
PMA [85] 56 28 Ta + Ts 4.8J

RMA [85] 12 6 2Ta + Tm 6.5J

Savic and Rajovic [86] 22 17 Tm + Ta 4J

Aziz [87] 20 10 2Ta 4J

FrWFm [62] 8 10 Tm 2J + 22
FrWFml [62] 10 0 Ta 2J + 22
LFrWFm 6 5 Tm 3J + 9
LFrWFml 11 0 Ta 3J + 9
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We also observe from Table 5 that both architectures
have the same CPD. We note that the numbers of hardware
components, e.g., adders, multipliers, LUT, and FF, and
other parameters, such as the number of clock cycles,
memory, and CPD (Tm or Ta), are independent of the
platform on which the design is implemented and the test
image. Among the results presented in Tables 4–6, only the
energy consumption, the power consumption, and the en-
ergy delay product (EDP) depend on the platform and
image.

4.3. Line Segmentation. We observe from Table 6 that in-
creasing the number of line segments G reduces the memory
requirement while increasing the number of compute cycles
and the energy consumption. &e compute cycle and energy
consumption increases are mainly due to the overlapping of
􏼄f1/2􏼅 coefficients at the line segment boundaries which
need to be read twice. However, for all line segmentations
(G � 2, 4, 8), the number of compute cycles and energy
consumption are less than for the corresponding FrWF
architectures, see Table 5. We observe from Tables 5 and 6
that even with G � 8 segments per line, the number of
compute cycles and the energy consumption of the proposed
LFrWF architectures are less than those for the corre-
sponding FrWF architectures. Since the FrWF architectures
of [62] read only 5 pixels at a time, the segmentation ap-
proach cannot be incorporated into the FrWF architecture.
Hence, the memory of the FrWF architectures cannot be
further reduced by incorporating line segmentation.

&e EDPs of the LFrWF and FrWF architectures with
and without multipliers are compared in Figures 8 and 9,
respectively. &e EDP, which characterizes both the con-
sumed energy and the computational performance, is
evaluated by multiplying the consumed energy with the
corresponding clock cycle duration. We observe from Fig-
ures 8 and 9 that the EDPs of the proposed LFrWF archi-
tectures (with and without multipliers) are less than the
EDPs of the corresponding FrWF architectures (with and
without multipliers). &e EDP of the proposed LFrWFm

architecture with multipliers (G � 1) is approximately 65%
less than that for the FrWF architecture withmultipliers, and
the EDP of the proposed LFrWFml multiplier-less archi-
tecture (G � 1) is approximately 43% less than that for the
multiplier-less FrWF architecture. We observe from

Figures 8 and 9 that the EDPs of the proposed LFrWF
architectures increase with the number G of segments.
However, even with G � 8 segments per image line, the
EDPs of the proposed LFrWF architectures are less than
those for the corresponding FrWF architectures.

5. Conclusion

&is paper proposed and evaluated a lifting-based archi-
tecture to compute the DWT coefficients of an image based
on the FrWF approach with a 5/3 filter-bank. &e proposed
architecture requires fewer adders and multipliers than
state-of-the-art architectures. &e proposed architecture

Table 5: Comparison of FPGA implementation resource utiliza-
tion of proposed LFrWF vs. FrWF [62] with 5/3 filter-bank for one
wavelet decomposition level for 512 × 512 image.

Param. FrWFm LFrWFm
Multiplier-less

FrWFml LFrWFml

LUT 215 168 119 135
FF 305 201 190 185
CC 10,485,760 5,242,880 10,485,760 5,242,880
CPD (ns) 4.80 4.80 1.45 1.45
Power (W) 0.162 0.114 0.110 0.109
Energy (mJ) 8.545 3.014 1.741 0.860
LUT, look-up tables; FF, flip-flops; CC, compute cycles.

Table 6: Line segmentation evaluation: memory requirement and
number of compute cycles for proposed LFrWF as well as energy
consumption of proposed LFrWFm and LFrWFml for different line
segment numbers G with 5/3 filter-bank for 512 × 512 image.

Parameters G � 1 G � 2 G � 4 G � 8
Memory (words) 1545 1293 1165 1101
# cycles 5242880 5243904 5244928 5245952
E. (mJ) LFrWFm 3.014 3.040 3.073 3.122
E. (mJ) LFrWFml 0.990 0.997 1.006 1.017
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with multipliers (LFrWFm) and without multipliers
(LFrWFml) and the state-of-the-art FrWF architecture (with
and without multipliers) [62] have been implemented on the
same FPGA board and compared.

&e experimental results show that the proposed
LFrWFm architecture requires less hardware components
(and thus less area) and consumes 65% less energy than the
FrWFm architecture. Moreover, the proposed LFrWFml
architecture consumes 43% less energy with only a slight
increase in area compared to the FrWFml architecture. &e
lower energy consumption with minimal area overhead
makes the proposed architectures promising candidates for
computing the DWT of images on resource-constrained
wearable sensors.

An important direction for future research is to integrate
the LFrWF architecture with efficient architectures of state-
of-the-art wavelet-based image coding algorithms to design
FPGA-based image coders for real-time applications on
wearable visual sensors and IoT platforms. Another inter-
esting future research direction is the examination of the use
of our proposed approach in the context of compressive
sensing [15, 89].
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