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While the reconstruction of 3D objects is increasingly used today, the simplification of 3D point cloud, however, becomes a
substantial phase in this process of reconstruction. *is is due to the huge amounts of dense 3D point cloud produced by 3D
scanning devices. In this paper, a new approach is proposed to simplify 3D point cloud based on k-nearest neighbor (k-NN) and
clustering algorithm. Initially, 3D point cloud is divided into clusters using k-means algorithm. *en, an entropy estimation is
performed for each cluster to remove the ones that have minimal entropy. In this paper, MATLAB is used to carry out the
simulation, and the performance of our method is testified by test dataset. Numerous experiments demonstrate the effectiveness of
the proposed simplification method of 3D point cloud.

1. Introduction

*e simplification of a 3D point cloud, obtained from the
digitization of a real object, is a primordial and important
step in the field of 3D reconstruction. *is step ensures the
optimization of the number of points that constitute the 3D
point cloud [1]. *e scanning of a real object is facilitated by
a device called 3D scanner [2]. *is device may be broken
down into three primary sorts: contact, active noncontact,
and passive noncontact.

Simplification of a 3D set of points can be defined as
follows: being given an original surface S presented by a
point cloud X such that |X| � N, simplification of X consists
of calculating a point cloud X′ such that |X| � M, knowing
that |.| is a cardinality. After simplification, we obtain a
simplified point cloud such that |X′|≤ |X|. It should be
noted that X′ samples a surface S′ close to the original
surface S that is sampled by X.

Several scientific articles have studied and presented
simplification methods. Pauly et al. [3] proposed a method
based on hierarchical decomposition of the sample of points,
calculated by binary partition of space. *e cutting planes

are defined by the centre and the main direction of each
region. *e partitioning criterion depends both on a max-
imum number of points and on variations in local geometry
in a region. Due to the spatial nature of this approach, it is
difficult to control the quality of the distribution of points on
the sampled surface. Wu and Kobbelt [4] computed an
optimal set of splats to cover a sampled surface.*e first step
of the method consists in locally approximating the surface
at each point of the sample by a circular or elliptical plane
surface element called a splat. In the second step, the re-
dundant splats are eliminated during a filtering process of
the surface expansion type. To guarantee the recovery of the
entire sampled surface, the algorithm proceeds as follows.
For each splat processed, the points it covers are projected
onto its plane, and then only the splats associated with the
points projected inside the convex envelope of the projected
points are eliminated. During this process, the regularity of
the distribution is not checked. A relaxation phase can be
applied to determine an optimal position for the remaining
splats.*ismethodmakes it possible to generate high quality
splat covers for smooth surfaces, by filtering noise. However,
this method is penalized by the cost of its initialization and
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that of the relaxation phase for large point samples. Linsen
[5] presented a technique that associates a scalar value with
each point locally measuring the average variation of certain
information, such as the proximity of neighbors or the
direction of normal. *e points with the weakest mea-
surement are removed iteratively. *e algorithm has the
disadvantage of not giving any guarantee on the density of
the resulting set of points. Dey et al. [6] used an approxi-
mation of the LFS (local feature size) of the sampled area.
*is approximation is calculated from the Delaunay trian-
gulation of the sample of input points, which has the
drawback of very large samples. Alexa et al. [7] estimated the
local geometrical properties of the sampled surface using a
Moving Least Squares (MLS) model of the underlying
surface, which requires having oriented normal in a con-
sistent manner. *ey calculate the contribution of a point to
this surface by projecting it onto an MLS surface estimated
from neighboring points. *e distance between the position
of the point and its projection on the surface provides a
measure of error. *e points for which this distance is the
smallest are removed. *is method does not guarantee the
density of the resulting sample points. To compensate, Alexa
et al. [7] proposed to enrich the sample in the undersampled
regions by considering the projection of these on a plan.
*ey calculated the plane Voronoi diagram of the projected
points so as to insert new points equidistant from the first.
*ese new points are then raised to the surface using the
projection operator. *e process is repeated until the Eu-
clidean distance between the next point to be added and the
nearest existing point becomes less than a certain threshold.
While this method achieves quality results, the intensive use
of the MLS projection operator makes it expensive for very
large samples. Pauly et al. [3] have directly extended the
mesh simplification technique of Garland and Heckbert [8]
for point samples by considering the relations of nearest
neighbors as connectivity relations. Pairs of nearest neigh-
bors are thus contracted, replacing two points with a new
point calculated as a weighted average of the first.*e cost of
each contraction operation is measured by adapting the
error measure proposed by Garland and Heckbert, whose
idea is to approximate the surface locally by a set of tangent
planes and to estimate the geometric deviation of a point,
with respect to the surface represented by the sum of the
distances squared to these planes. *is method has the
advantage of controlling the distribution of the simplified
sample, which also has the property of preserving the details.
However, its initialization cost is high, and it requires the
maintenance of an overall priority queue, which is a dis-
advantage for large samples of points. Xuan et al. [9] pro-
posed a progressive point cloud simplification technique,
founded on the theory of the information entropy and
normal angle. *e fundamental of this technique is to find
the importance of points using the information entropy of
the normal angle. Calculation of the normal angle is based
on the normal vectors. *e simplification operation is
carried out by removing the less relevant points.

Leal et al. [10] proposed a simplification technique
comprised of three stages. First, to cluster point cloud, the
expectation maximization algorithm is used. Second, the

point cloud to be removed using curvature is selected.*ird,
linear programming is used to simplify point cloud. Ji et al.
[11] proposed a simplification technique named detail
feature points simplified algorithm. In this technique, a rule
of k neighborhood and an octree structure are used to reduce
point cloud.

*e first key interest of this paper is point cloud sim-
plification. *e extraordinary simplification point cloud
strategies reviewed in the literature may be classified into
three categories: subsampling algorithms, resampling algo-
rithms, and a mixture of them [12]. A first strategy for
simplifying a sample of points is to break it down into small
regions, each of which is represented by a single point in the
simplified sample, while the resampling algorithms rely on
estimating the properties of the sampled surface to compute
new relevant points. In the literature, these principles have
been applied according to three main simplification schemes:
simplification by selection or calculation of points repre-
senting subsets of the initial sample [3], iterative simplifica-
tion [6], and simplification by incremental sampling [13].

*e second key interest of this paper is the clustering
notion. Clustering is a statistical analysis method used to
organize raw data into homogeneous groups. Within each
cluster, the data are grouped according to a common
characteristic. *e scheduling tool is an algorithm that
measures the proximity between each element based on
defined criteria. Clustering is an integrated concept in
several areas such as pattern recognition [14], machine
learning [15], and 3D point cloud simplification [12, 16]. In
the literature, there are many clustering techniques [17]. *e
work in this article is based on clustering to optimize the
number of points constituting an original 3D point cloud in
order to obtain another simplified 3D point cloud close to
the original.

*e third key interest of this paper is generally infor-
mation theory and particularly the concept of Shannon’s
entropy [18]. *is work is based on this concept to select the
set of points grouped into cluster in order to simplify the
original point cloud. Information theory is presented in
different areas such as data processing [19, 20], data clus-
tering [21], and 3D point cloud simplification [1, 9].

In this work, we are inspired by the work of Wang et al.
[22] in order to provide a robust method of simplifying the
point cloud.*is technique is based on the notion of entropy
[18] and clustering algorithm [17].

*is paper is organized as follows. In Section 2, we evoke
the density function estimator and entropy definition. *en,
in Section 3, we present clustering algorithm used in our
method. In Section 4, we demonstrate how to evaluate
simplified meshes. Afterwards, in Section 5, we lay out our
3D point cloud simplification algorithm based on the
Shannon’s entropy [18]. Section 6 lays out the experimental
results and the validation of the proposed technique. Finally,
we wrap up with a conclusion.

2. Clustering Algorithm

*e k-means clustering [23] is a type of unsupervised
learning and analysis. *e goal of this algorithm is to find
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groups in data, with the number of groups represented by
the variable K, in which each goal belongs to the group with
the closest average.*e k-means clustering will be thought of
as the foremost important unsupervised learning approach,
which is widely used in pattern recognition and machine
intelligence. *e details of k-means clustering algorithm are
presented in [17].

3. Density Estimation and Entropy Definition

In this 3D point cloud simplification work, we use the concept
of entropy to simplify point clouds. *e calculation of the
entropy requires the estimation of the density function.
Multitudes density estimation approaches exist in literature,
such as parametric and nonparametric methods. *e first
category makes it possible to estimate a parameterized model
of a density function such as the maximum likelihood esti-
mator method [24]. *e nonparametric category includes the
kernel density estimator, also known as the Parzen-Rosenblatt
method [25, 26], the k-nearest neighbor estimator (k-NN),
and a combination of them [27]. Each type has its advantages
and disadvantages. For Parzen estimator, the bandwidth
choice has strong impact on the quality of the estimated
density [28]. In other words, the main motivation stems from
the fact that k-NN estimator represents a solution to adapt the
amount of smoothing to the local density of the data [21, 27].
*e parametric approach has the main disadvantage of re-
quiring prior knowledge of the probability law of the random
phenomenon under study. *e nonparametric approach
estimates the probability density directly from the available
information on the set of observations. We are interested here
rather in the nonparametric category, specifically the k-NN
estimator.

3.1. Density Estimation Using k-NN Approach. In this work,
an unstructured approach, so called nonparametric esti-
mation, was used to estimate density function. *ere are two
kinds of nonparametric estimation methods: one is the
Parzen density estimator [25] the other is the k-nearest
neighbor (k-NN) density estimator [27]. In this paper we use
k-NN technique to estimate density function. In the liter-
ature, the k-NN concept is used in several fields related to
classification as in articles [29–31].

*e level of the estimator is defined by k, which is an
integer number of the nearest neighbors, generally pro-
portional to the size of the sample N. Definition of the
density estimate is done for any point x. *e distances
between objects of the sample and points x are as follows:

R1(x)< · · · <Rk− 1(x)<Rk(x)< · · · <RN(x), (1)

where Ri with i � 1, . . . , N are distances sorted in ascending
order.

*e k-nearest neighbor estimator in d dimension can be
defined as follows:

pknn(x) � N
− 1

Rk(x)
− d

􏽘

N

i�1
K Rk(x)

− 1
x − Xi( 􏼁􏽨 􏽩, (2)

where Rk(x) is the distance from x to the kth nearest point
and K(u) is the Gaussian kernel:

K(u) � (2π)
− (d/2) exp −

1
2
u

T
u􏼒 􏼓. (3)

*en, we obtain
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pknn(x) �
k

N · Vk(x)
�

k

N · Cd · Rk(x)
, (5)

where Vk(x) is the volume of a sphere of radius Rk(x) and
Cd is the volume of the unit sphere in d dimension.

Equation (5) is the special case of (2) when K is the
uniform kernel. *e later function is defined as follows:

K(x) �
1, if |x|≤ 1

0, otherwise.
􏼨 (6)

3.2. Shannon’s Entropy. Shannon’s entropy [18] is a math-
ematical function, developed by Claude Shannon in 1948,
that corresponds intuitively to the amount of information
contained or delivered by an information source. *is latter
can be a text, an electrical signal, or any numerical file. For a
source, which is a discrete random variable x with n symbols,
each symbol Xi has a probability p � p1, . . . , pN􏼈 􏼉 to appear.
*e entropy H of the source x is defined as

H(x) � − E log2(p)􏼂 􏼃, (7)

where E is the expected value operator and log2 the loga-
rithm in base 2.

Shannon’s entropy can be found in the literature in
various fields of research such as stock market [32], image
segmentation [33], and cryptography [34].

*e main reason for using Shannon’s entropy is that it is
a function that intuitively quantifies the amount of infor-
mation in a variable. In order to remove irrelevant points,
our simplification technique is based on the estimation of
the amount of information.

4. Accuracy Evaluation

4.1. SimplificationError. In order to evaluate the accuracy of
the novel simplification method, the geometric error be-
tween the original and simplified point cloud to be measured
is used. To make a comparison between two surfaces,
Cignoni et al. [35] developed a tool called Metro. Also, Pauly
et al. [3] andMiao et al. [36] adopted a technique to measure
simplification errors. In this paper, we evaluate the maxi-
mum geometric error and the average geometric error be-
tween the original model X and the simplified one X′.

*e geometric max error is defined in paper [3] as
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Δmax X, X′( 􏼁 � max
q∈X

d q, X′( 􏼁. (8)

*e geometric average error is defined in paper [3] as

Δavg X, X′( 􏼁 �
1

‖X‖
􏽘
q∈X

d q, X′( 􏼁. (9)

*e corresponding normalized geometric errors can
then be obtained by scaling the above error measures
according to the model’s diagonal of bounding box.

For each sample point q ∈ X, the geometric error
d(q, X′) can be defined as the Hausdorff distance between
the q on the original surface and its projection point q′ on
the simplified surface X′. *e Hausdorff distance is defined
as follows:

d � max Sup
q∈X

inf
q′∈X′

de q, q′( 􏼁, Sup
q′∈X′

inf
q∈X

de q, q′( 􏼁
⎧⎨

⎩

⎫⎬

⎭, (10)

where d(., .) is an Euclidian distance. IfNq is the normal vector
of point q and q′ is the projection point on the simplified
surface X′, the sign of d is the sign of Nx ∗ (q′ − q).

4.2. Surface Compactness. To measure the quality of the
obtained meshes, Gueziec [37] proposes a formula to
compute the quality of the triangles. It is called compactness
formula and is defined as follows:

z �
4

�
3

√
α

L2
1 + L2

2 + L2
3
, (11)

where Li are the lengths of the edges of a triangle and α is the
area of the triangles as shown in Figure 1. Note that this
measure is equals to 1 for an equilateral triangle and 0 for a
triangle whose vertices are collinear. According to [38], a
triangle is of acceptable quality if z≥ 0.6.

5. The Simplification Method Proposed

*e goal of 3D point cloud simplification is to choose the
relevant and representative 3D points and remove redun-
dant data points. In this work, the k-means clustering al-
gorithm [23], which has been extensively used in the pattern
recognition and machine learning literature, is extended to
simplify dense points. As noted in Figure 2, the k-means
algorithm is used to subdivide point cloud into c clusters.

α

L1L3

L2

Figure 1: Measure of quality of the meshes.

Original point cloud 

Simplified point cloud

Simplification process

Entropy
calculation

of all 
clusters

Sorting 
clusters 
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to their 
entropy

Removing
selected
clusters 

Data 
clustering 
using K-
means 

algorithm

Figure 2: A diagram that shows how the new point cloud simplification method works.
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*e size of the clusters is equal to 5% of the size of the
original set of points. Subsequently, to select the clusters to
be deleted, Shannon’s entropy [18] will be used.

In this paper, we present a new robust approach based on
clustering and Shannon’s entropy. *is approach allows
keeping a uniform distribution of the points of the resulting
cloud. In addition, it makes it easy to control the overall
density of the coarse cloud by simply defining the size of the
clusters. *is approach, as shown in Figure 2, simplifies the
3D point cloud by saving the characteristics of the model
presented by the original point cloud. Moreover, this sim-
plificationmethod preserves contours and sharp feature. Also,
small features are maintained in the simplified point sets.*is
new method can be adapted to simplify nonuniformly dis-
tributed point sets.

Data clustering in small sets of points, using information
theoretic clustering algorithm [21], makes it possible to

obtain groups containing points having a great similarity,
which guarantees a good quality of simplification with an
acceptable calculation time. To subdivide data sample into
groups of 3D points, our technique of simplification is based
on information theoretic clustering algorithm [21].

Next, the selection of relevant points in each cluster is
done using Shannon’s entropy [18]. *e set of relevant
points is the representative data samples that contain more
information selected from the original dataset based on the
proposed sample selection algorithm [1].

Compared to other simplification algorithms such as those
of Shi et al. [16], Lee et al. [39], and Miao et al. [36], the ad-
vantages of the new algorithm are analyzed from many factors.

Firstly, our simplification method allows keeping the
borders. *is preservation of the integrity of original border
is attributed to the nature of our method, as it uses Shannon
entropy, which allows keeping clusters that have a high

Input
(i) X � x1, x2, . . . , xN􏼈 􏼉: the data sample (point cloud)
(ii) C[ ]: the array in which cluster indexes are stored
(iii) c: the number of clusters
(iv) n: the number of clusters to delete (n< c)
(v) Ecmin � E(R1): minimal entropy
(vi) Begin
(vii) Decomposing the initial set of points X into c small clusters denoting X � Rj(j � 1, 2, . . . , c), using the k-means algorithm
(viii) For i � 1 to n

For j � 2 to c

Calculate global entropy of a cluster j by using all data samples in Rj � y1, y2, . . . , ym􏼈 􏼉 according to equation (7), Note this
entropy E(Rj)

If E(Rj)<Ecmin then
Ecmin⟵E(Rj)

pos⟵ j
End if
For j � pos to c

C[j]⟵C[j + 1]

End for
End for

(ix) End for,
X′ � X C[i � 1, . . . , k − n]{ }

End.

ALGORITHM 1: Simplification of 3D point cloud based on the clustering algorithm and Shannon’s entropy.
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Figure 3: *e compactness of the original surface of Bimba point set.
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entropy value, and this is the case for borders. Secondly, the
novel algorithm preserves compactness of the surface ob-
tained from the simplified point cloud. *is characteristic is
measured by calculation of the percentage of compact

triangles using (11) proposed by Gueziec [37]. *e con-
struction of surfaces used in this article is realized using ball
pivoting method [40].

*e summary of contributions is as follows:
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Figure 4: *e compactness of the simplified surface of Bimba point set.

(a) (b)

Figure 5: Various models simplified using the novel method. Left column: the original point clouds (triangulated). Right column: the
simplified point sets (triangulated).
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(i) Subdivide 3D dataset to clusters using k-mean
clustering [23], which is widely applied in the
pattern recognition and machine learning literature

(ii) Shannon’s entropy [18] is applied to select clusters
of 3D point cloud, where it is applied to data
classification

(iii) *e effectiveness and performance of the novel
method are validated and illustrated through ex-
perimental results and comparison with other point
sampling methods

(iv) *e new algorithm is validated and illustrated by the
test of its efficiency and its performance through the
realized experiments and the comparison with other
simplification methods

*e full description of the 3D point simplification al-
gorithm, Algorithm 1, is as follows:

We note that the level of simplification of our approach
is mainly determined by the user. *is level is defined by the
number (n) of clusters to be removed and the size of these
clusters. In this work, the density of the clusters constituting
the original point cloud is equal to 5% of the number of
points of the original point cloud.

6. Results and Discussion

*e new technique was implemented using MATLAB and
MeshLab software.*e algorithm for this new technique was

run on an Intel 64 core i5-2540M CPU 2.60GHz PC. *e
David model and the Stanford Bunny model tested in this
paper were developed at Stanford University [41]. *e
Fandisk, Max Planck, Genus, and Bimba models were ob-
tained from the AIM@SHAPE database [42].

In order to approve the robustness of the proposed
technique, we apply it using various 3D objects of different
sizes and topologies. To ensure a better reconstruction, the
surfaces of all the point clouds of the simplified objects were
reconstructed using the MeshLab software [43].

6.1. Computing of Compactness. Computing of the com-
pactness of the original and simplified surface of Bimba
gives, respectively, 65.9498% and 66.7420%. *e two values
represent the percentages of the compact triangles of the two
surfaces.*e two previous results, Figures 3 and 4, show that
this method ensures and increases the compactness of the
simplified surface of Bimba. Calculation of the compactness
is done using (11).

6.2. Results of the Novel Simplification Method. *e novel
strategy can deliver balanced point cloud. Figure 5 presents
three cases of different models, where the David model
shows that the original number of 3D points decreased from
182996 to 177454, the Max Planck model shows that the
original points set diminished from 49089 to 48481, and the
Bimba model was diminished from 74764 to 73458.

(a) (b)

Figure 6: Fandisk and Genus model simplified using the novel method. (a) *e original point sets (triangulated). (b) *e simplified point
cloud sets (triangulated).
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Among the models tested in this paper, we used non-
uniform objects such as the models of David, Bimba, and
Max Planck. After simplification of these point clouds using
the new method, we obtained satisfying results with the
preservation of small details. *erefore, we can use the new
technique for the simplification of nonuniform point clouds.

Figure 6 shows two models simplified using the new
technique. *ese point sets have boundaries. *e Genus
model was simplified from 1234 to 1134, and the Fandisk
model was reduced from 103568 to 93809. *e experimental
results obtained in Figure 6(b) indicate that the new tech-
nique can preserve the boundaries. Furthermore, the orig-
inal sharp edges were well maintained, which again
illustrates the superiority of our technique.

*e novel method can produce some sparser level-of-
detail point sets while preserving the small features and the
sharp edges. In Figure 7, the sharp edges of the bunny model
can be clearly seen when the point set is reduced from 16130
to 15813. *is example demonstrates the good performance
of the proposed method.

6.3. Comparison with Other Simplification Methods. *e
adaptive simplification of point cloud using k-means

clustering of Shi et al. [16] and 3D Grid method [39] was
employed for a comparative study.*e simplification results
were triangulated with the software MeshLab [43]. In Fig-
ure 8, the famous Fandisk model was simplified. Since there
was no redundant data in the original model (vertices 2502,
faces 5000), we increased the vertices with the Geomagic
Studio [44]. Finally, the number of vertices was 103 570. As
shown in Figures 8 and 9, the new simplification technique
gives better results either in terms of the number of points
deleted or in terms of the error which presents the difference
between original and simplified surfaces. We obtain uni-
formly distributed sparse sampling points in the flat areas
and necessary dense points in the high curvature regions.
*e sharp edges of the Fandisk model are well maintained.
*e adaptive simplification of point cloud using k-means
clustering of Shi et al. [16] and 3D Grid method [39] can also
preserve sharp edges, but too many sampling points are
assigned to the sharp edges. 3D Grid method [39] preserves
fewer points in the flat areas, which leads to unbalance,
unlike the proposed technique, as shown in Figure 4, which
produces balanced simplified surfaces. On the other hand, as
shown in Figure 4, the novel technique produces balanced
simplified surfaces. Figures 8 and 9 and Table 1 show that the

Original: 16130 points

(a)

Original clusters: 807
Simplified clusters: 60
Simplified points: 15489
points

(iii)
(ii)
(i)

(b)

Original clusters: 807
Simplified clusters: 40
Simplified points: 15684
points

(iii)
(ii)
(i)

(c)

Original clusters: 807
Simplified clusters: 30
Simplified points: 15813
points

(iii)
(ii)
(i)

(d)

Figure 7: Simplification of the bunny model at different levels of detail (triangulated).

(a) (b) (c)

Figure 8: Simplification results of the Fandisk model (triangulated); the original number of points is 103,570. (a) Simplified using the novel
method with parameters of cluster size and deleted cluster number (2590, 310) and (9759). (b) Simplified using Shi et al. method [16] with
parameters of space interval and normal vector deviation threshold as (0.076, 0.13) and (9682). (c) Simplified using the 3DGrid method [39]
with parameters of space interval and standard normal vector deviation as (0.0696, 0.41) and (9694).
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error of the original surface and the simplified surface ob-
tained from the application of the new method is small
compared to the error obtained from the method of Shi et al.
[16] and 3D Grid method, which shows that our technique
allows giving simplified point cloud close to that of the
original one.

7. Conclusion

In this work, Shannon’s entropy, which has been largely used
in data processing, and k-means clustering algorithm, which
has been extensively used in pattern recognition and ma-
chine learning literature, have been extended to reduce 3D
point cloud. *is simplification procedure is achieved
through the removal of redundant and less attractive 3D
groups of points that have a minimum entropy value.
Clusters are obtained using the k-means clustering algo-
rithm. *e new method is mainly impacted by two factors:
number of original clusters and number of deleted clusters.
*e studies and illustrations made above show that, since
both factors are regulated, this newmethod can be applied to
different levels of detail and different forms of 3D point
clouds and produce well-balanced surfaces, which makes it
robust, as the results show.

Data Availability

*e experimental data, which are in the form of 3D ob-
jects, used to support the results of this study are
downloadable from the AIM@SHAPE database included
in references.
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