Hindawi

Advances in Multimedia

Volume 2020, Article ID 8861367, 8 pages
https://doi.org/10.1155/2020/8861367

Research Article

Hindawi

Dominant Symmetry Plane Detection for Point-Based 3D Models

Chen He ®,! Lei Wang,2 Yonghui Zhang,2 and Chunmeng Wang 3

'Media and Communication College, Weifang University, Weifang, China
2Computer Engineering College, Weifang University, Weifang, China
*Computer Engineering College, Jinling Institute of Technology, Nanjing, China

Correspondence should be addressed to Chen He; imhechen@163.com and Chunmeng Wang; wchm87@jit.edu.cn
Received 19 August 2020; Revised 28 September 2020; Accepted 16 October 2020; Published 28 October 2020
Academic Editor: Patrick Seeling

Copyright © 2020 Chen He et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a symmetry detection algorithm for three-dimensional point cloud model based on weighted principal component
analysis (PCA) is proposed. The proposed algorithm works as follows: first, using the point element’s area as the initial weight, a
weighted PCA is performed and a plane is selected as the initial symmetry plane; and then an iterative method is used to adjust the
approximate symmetry plane step by step to make it tend to perfect symmetry plane (dominant symmetry plane). In each
iteration, we first update the weight of each point based on a distance metric and then use the new weights to perform a weighted
PCA to determine a new symmetry plane. If the current plane of symmetry is close enough to the plane of symmetry in the
previous iteration or if the number of iterations exceeds a given threshold, the iteration terminates. After the iteration is
terminated, the plane of symmetry in the last iteration is taken as the dominant symmetry plane of the model. As shown in
experimental results, the proposed algorithm can find the dominant symmetry plane for symmetric models and it also works well

for nonperfectly symmetric models.

1. Introduction

Symmetry exists widespread in nature and various man-
made objects. In recent years, symmetry detection has drawn
increasingly more attention in research areas of computer
graphics and computer vision. Symmetry detection is an
important problem in 3D shape analysis [1]. First, the es-
sence of symmetry detection is to compute a nontrivial
correspondence of the model (or its subpart) to itself.
Correspondence analysis is a basic problem in shape anal-
ysis. Second, symmetry is a bridge between low-level ge-
ometry attributes and high-level shape information of the
models: on one hand, symmetry is a geometric property that
can be detected by measuring and analyzing the geometric
properties of the model; on the other hand, symmetry de-
scribes the shape and structure of the model and even the
semantic information. Especially in man-made objects,
symmetry often reflects the creator’s design intent and even
suggests the functional components of the object.

The geometric symmetry of a three-dimensional object
refers to the invariance of the shape as a whole or a part

under a certain transformation. According to the geometric
properties that the symmetry depends on, the geometric
symmetry can be divided into two types: extrinsic symmetry
and intrinsic symmetry. The extrinsic symmetry is defined
by the Euclidean distance, while the intrinsic symmetry is
based on geodesic distance on the surface. Since the cal-
culation of the intrinsic distance is very complicated, it is
often more difficult to represent and calculate the intrinsic
symmetry. Intrinsic symmetry is invariant to the isometric
transformation of a surface. Besides, symmetry can be
classified into global symmetry and local symmetry
according to the distribution of the symmetrical region on
the surface of the three-dimensional model.

The existing symmetric analysis of three-dimensional
model mainly focuses on the detection of various types of
geometric symmetry in the model and can be generally
divided into four categories: global extrinsic symmetry, local
extrinsic symmetry, global intrinsic symmetry, and local
intrinsic symmetry detection. A brief introduction to some
existing symmetry detection algorithms in related work is
discussed below.
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2. Related Work

The global extrinsic symmetry is the simplest form of
symmetry, so the research work on it started earliest.
Minovic et al. [2] proposed a three-dimensional model
symmetry detection algorithm based on octree representa-
tion. They use PCA analysis to calculate the principal axes of
the input objects, determine a local coordinate system, and
construct the corresponding octree representation. In this
way, the symmetry of the input object can be determined by
calculating the “degree of symmetry” of the symmetrical cells
in the octree. Zabrodsky and Weinshall [3] use the trans-
formed symmetry metric to measure the distance from one
shape to its nearest symmetric shape, achieving approximate
symmetry detection. Kazhdan et al. [4] proposed a sym-
metric transformation that measures the degree of symmetry
with respect to any straight line in the plane for a two-di-
mensional shape. This method was later extended to a three-
dimensional geometric model by Podolak et al. [5] and
proposed the concept of planar reflective symmetry trans-
form (PRST). Rustamov [6] incorporated the asymmetric
spatial distribution of objects into PRST, resulting in an
enhanced PRST for efficient shape retrieval. Martinet et al.
[7] defined a kind of generalized moments based on
spherical harmonic coefficients, which can detect both
discrete and continuous global symmetries simultaneously,
and proposed a method that can recover the global sym-
metry of 3D models.

Relative to the global extrinsic symmetry, the detection
of local extrinsic symmetry is more difficult. This is because
local symmetry detection needs to search for symmetric
subareas on the surface of the model, while the subset search
space is very large. Thrun and Wegbreit [8] presented a
hierarchical production test algorithm for the local sym-
metry detection of the model. Simari et al. [9] studied the
local approximate planar reflection symmetry problem of
the mesh model and defined a hierarchical representation of
the three-dimensional shape based on the planar reflection
symmetry. Mitra et al. [10] proposed an algorithm to detect
partial symmetries based on the transformation space voting
and clustering. They considered the invariance of the model
in the conversion process such as reflection, translation,
uniform scale, and rotation is symmetrical. Similarly, Loy
and Eklundh [11] also studied the method of symmetry
detection based on transformation space. Based on the
detected local extrinsic symmetry, Mitra et al. [12] further
studied the symmetrization of the three-dimensional
models; that is, applying a deformation to a model makes it a
global extrinsic symmetry one.

One of the problems associated with the detection of
local extrinsic symmetry is repetitive pattern detection. In
recent years, the detection of repetitive patterns in three-
dimensional models has also received widespread attention.
Repetitive patterns can be formally described by symmetric
groups, typically expressed as multiple translations and/or
rotations of the model’s subparts. Pauly et al. [13] first
proposed the repetitive pattern detection on 3D models. This
work uses the symmetric group to formally describe the
repetitive patterns on the model. The symmetric group
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parameters are obtained by clustering in the transformation
space to realize the automatic detection of repetitive pat-
terns. Bokeloh et al. [14] utilized the feature lines of the
model to construct graph representations of repetitive
patterns, which transforms the detection problems of re-
petitive patterns into subgraph matching problems. Liu et al.
[15] studied the detection of periodic reliefs on 3D meshes.
Yeh and Méch [16] studied repetitive pattern detection
problems in 2D line art. Recently, Ben-Chen et al. [17]
studied the calculation of the discrete Killing vector field
(KVF) and applied it to the detection of the repeated
structures on three-dimensional surfaces.

For the intrinsic symmetry detection of the model, most
of the current methods only consider the global intrinsic
symmetry. Raviv et al. [18] presented an algorithm for a set
of sample points on manifold surfaces to find an isometric
transformation from the set to itself. Global point signature
(GPS) [19] can translate the global intrinsic symmetry of a
model into the global extrinsic symmetry in high-dimen-
sional space. Using GPS, Ovsjanikov et al. [20] proposed a
pure algebraic algorithm to detect global intrinsic symmetry.
This method can divide the symmetry into several discrete
equivalence classes. Similarly, based on spectral analysis,
Chertok and Keller [21] presented an intrinsic symmetry
detection algorithm. Kim et al. [22] presented a global in-
trinsic symmetry detection method based on the Mobius
transform.

As for local intrinsic symmetry detection, the existing
work is still relatively few. Bronstein et al. [23] studied the
local intrinsic similarity of nonrigid models. However, this
method tends to find the maximum symmetry region and,
therefore, not suitable for local intrinsic symmetry detection.
Xu et al. [24] first solved the problem of local intrinsic
symmetry detection in 3D models. They give the definition
of local intrinsic reflection symmetry on a closed 2-manifold
and propose a method based on voting strategy. In addition,
they also realized the meaningful segmentation of the model
based on local intrinsic reflection symmetry. Lipman et al.
[25] presented an algorithm for detecting the orbits of
symmetric groups of three-dimensional point clouds. The
method first constructs a symmetry correspondence matrix
for the input point cloud and then uses the spectral char-
acteristics of the matrix to define a symmetry factored
distance on the three-dimensional surface. This method can
stably detect the local intrinsic symmetry existing in 3D
point cloud data.

Recently, Li et al. [26, 27] present a simple and efficient
view-based reflection symmetry detection method based on
the viewpoint entropy features of a set of sample views of a
3D model. Sipiran et al. [28] present an algorithm to detect
symmetry planes in objects with partial data. The method is
based on the ability of finding good candidate features. For
this reason, the method is not suitable for feature-less
shapes. Ecins et al. [29] present an approach to detecting
symmetric objects and extracting their symmetries from
three-dimensional data. The method can be used to detect
symmetric objects in scenes consisting of synthetic 3D
models, as well as 3D scans of real environments. Li et al.
[30] propose an FSM- (frequent subgraph mining-) based
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symmetry detection approach for CAD models, but this
approach mainly works for regular CAD models. Nagar and
Raman [31] develop a generic framework to detect ap-
proximate reflection symmetry in a volumetric set of points
in R? using optimization on Riemannian manifold. They
show the effectiveness of the method by applying it to the
problem of 2D and 3D reflection symmetry detection.

3. Algorithm Description

The proposed algorithm is based on the point cloud model
represented by surfel (surface element) set. For more in-
formation about this format model, see Pointshop 3D’s
homepage at http://graphics.ethz.ch/pointshop3d/. In this
representation, each point is rendered as a small disc con-
taining information such as position, normal vector, color,
and radius. Simari et al. [9] have proposed an iterative
reweighted least-squares algorithm for the detection of
planar reflection symmetry of 3D mesh models. Different
from Simari et al’s algorithm, we propose an algorithm that
can be used to detect the dominant symmetry plane for the
point cloud models.

3.1. Overview. As we all know, the principal component
analysis (PCA) method can generally be used to detect the
symmetry plane for a perfectly symmetric model. The PCA
method firstly calculates the model’s covariance matrix and
then calculates the eigenvectors of the matrix. The symmetry
plane is perpendicular to one of the eigenvectors and passes
through the centroid of the model. However, for a nonperfectly
symmetric model, using only one PCA procedure cannot find
the dominant symmetry plane of the model. For example, the
symmetry plane detected by only one PCA process is obviously
incorrect for the bunny model shown in Figure 1.

In this paper, an iterative, reweighted PCA algorithm is
proposed to detect the symmetry of the point cloud model.
The algorithm is implemented as follows: first, using the
point element’s area as the initial weight, a weighted PCA is
performed and a plane is selected as the initial symmetry
plane, and then an iterative method is used to adjust the
approximate symmetry plane step by step to make it tend to
be a perfect symmetry plane (dominant symmetry plane). In
each iteration, we first update the weight of each point based
on a distance measure and then use the new weights to
perform a weighted PCA to determine a new symmetry
plane. If the current plane of symmetry is close enough to the
plane of symmetry in the previous iteration or if the number
of iterations exceeds a given threshold, the iteration ter-
minates. After the iteration is terminated, the plane of
symmetry in the last iteration is taken as the dominant
symmetry plane of the model. The algorithm flow chart is
shown in Figure 2, and the details of the algorithm will be
described in the following sections.

3.2. Weighted Principal Component Analysis. For n surfels in
a given point cloud model, suppose the positions are p; (i=1,

3
2, ..., n), and the corresponding weights for the surfels are
w; (i=1,2,...,n), then the covariance matrix of the model is
computed as follows:
1 n
C:;Zwi(Pi_m)(Pi_m)T' (1)
i=1

In this equation, m = (1/s) Y, w;p; and s= Y w;
Having the matrix C, the eigenvectors of the matrix are
computed, and these eigenvectors and the centroid m de-
termine three mutually orthogonal planes, P;, P, and P;. For
each plane, a value of symmetry degree is computed and the
plane with the smallest symmetry degree is chosen as the
principal symmetry plane. From this procedure, we can see
that the key problem of weighted PCA is how to calculate the
weight of the surfels and how to calculate the symmetry
degree of a plane.

3.3. Calculation of Weight and Symmetry Degree. Before
calculating the weight of a point, we first calculate a distance.
When calculating the distance for the i-th surfel s;, the re-
flection symmetry point of s; with respect to current sym-
metry plane P is first calculated and this reflection point is
marked as s;,. Then, for all the surfels s; which are located on
the same side of plane P as the point s;, the Euclidean
distance between s;, and s; is computed if the angle between
the normal vectors of s;, and s; is less than a given threshold
T, (30 degrees in our experiment). Finally, the minimum
value of these distances is used as the distance metric for the
i-th surfel, marked as d;. The 2D illustration of d; is shown in
Figure 3. Intuitively speaking, this distance metric can be
used to measure the symmetry degree of a point about the
current plane P. The smaller the distance, the better the
model’s symmetry at this point. If the model is perfectly
symmetric relative to the current plane P at this point, d;
should tend to zero. With this distance metric, the weight w;
can be calculated as follows:

2
%, ifd; <6,
w, = (6 +di) )

0, otherwise.

In this equation, § = ¢ x median (d;), where c is a constant
defined by the user. In our experiment, c is set to 1.5. With
this distance metric, the symmetry degree of plane P is
defined as m, = Y., d,.

3.4. Convergence Analysis. In the proposed algorithm,
convergence is detected by comparing the current symmetry
plane and previous symmetry plane. Suppose the equation of
current symmetry plane is A;x+ A,y +A3z+ A, =0, and the
equation of previous symmetry plane is
Bix+B,y+Bsz+B,=0, then the proximity of this two
planes can be measured by the following equation:
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FIGURE 1: Symmetry plane obtained by one PCA process, taking bunny model for example.
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Fi1GUrk 2: The flowchart of the proposed symmetry detection algorithm.

algorithm, taking the bunny model for example. In Figure 4,

(3) the horizontal axis represents iteration numbers and the
vertical axis represents the value of e. The estimated sym-

metry planes of the bunny model are also shown in Figure 4.

In our experiments, the proposed algorithm exhibits = From left to right, the iteration numbers are 1, 2, and 7,
good convergence behaviour on all the tested models.  respectively. After the experiment, we found that the two
Figure 4 illustrates the convergence property of the proposed ~ symmetry planes are close enough when ¢ is less than 0.1.
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Iteration numbers

FIGURE 4: The convergence property of the proposed algorithm.

4. Results and Discussion

In the experiment, we use five models to test the effectiveness
of our symmetry detection algorithm, which are shown in
Figure 5. They are face by the courtesy of Pointshop 3D,
bunny from the Stanford 3D scanning repository, horse
from Aim@Shape, and banana and rabbit from the Internet.
Under each model, the number of points is marked. It
should be noted that we obtained the surfel set models for
bunny, horse, banana, and rabbit from the original 3D
meshes by subdividing each triangle into four subtriangles
and placing a surfel at the center of each subtriangle.
Figure 6 shows some intermediate results of the algo-
rithm during iteration, taking the rabbit model as an ex-
ample. From this figure, we can see that starting from the

initial plane, after each iteration, the plane gradually ap-
proaches the dominant symmetry plane of the model, in-
dicating that our algorithm is correct.

The result of the proposed algorithm running on several
point-based models is shown in Figure 7. In this figure, the
symmetry plane is shown by coloring the two sides of the
plane with different colors. As shown in the figure, for
perfectly symmetrical models such as the face model and the
banana model, our algorithm can accurately detect the
symmetry plane, and the algorithm also works well for
nonperfectly symmetric models such as bunny, horse, and
rabbit models.

We compare our method with the traditional PCA
method on bunny, horse, and rabbit models, shown in
Figure 8. We also show the timing statistics in Table 1. From
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FIGURE 5: Models used in the experiment. For each model, the numbers in parentheses indicate the number of points. (a) Banana (25k).
(b) Face (40k). (c) Rabbit (189k). (d) Bunny (20k). (e) Horse (158k).

(a) (b) (© (d)

FIGURE 6: The iteration procedure of the proposed algorithm, taking rabbit model for example. (a) i=0. (b) i=1. (c) i=2. (d) i=3.

(O1§D

FIGURE 7: Experimental results for different point-based models.
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FiGURE 8: Comparison results of the proposed method and traditional PCA method for bunny, horse, and rabbit models.

TaBLE 1: Running time of the proposed method and PCA method.

Models Running time (s)/proposed method Running time (s)/PCA method
Bunny 4.57 1.52
Horse 462.14 89.43
Rabbit 521.77 94.35

this comparison, we can see that although our method takes
more time, it works well on detecting the dominant sym-
metry plane for nonperfectly symmetric models, while the
traditional PCA method does not work.

5. Conclusion and Future Work

This article presented a simple yet efficient symmetry de-
tection algorithm for three-dimensional point cloud models.
Based on weighted principal component analysis, the pro-
posed algorithm first uses the area of each point element as
the weight, performs a weighted PCA to determine an initial
symmetry plane, and then iteratively update the weights and
adjust this approximate symmetry plane step by step to the
perfect symmetry plane (dominant symmetry plane).

The future research can be carried out from the following
two aspects: first, the detection of partial symmetry that
exists in the models, for example, the two ears of the bunny
model; second, the detection of other types of symmetries in
3D models, such as rotational symmetry, translational
symmetry, and so on.
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