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The spatial sparsity and temporal discontinuity of station-based SAT data do not allow to fully understand Antarctic surface air
temperature (SAT) variations over the last decades. Generating spatiotemporally continuous SAT fields using spatial interpolation
represents an approach to address this problem. This study proposed a backpropagation artificial neural network (BPANN)
optimized by a genetic algorithm (GA) to estimate the monthly SAT fields of the Antarctic continent for the period 1960-2019.
Cross-validations demonstrate that the interpolation accuracy of GA-BPANN is higher than that of two benchmark methods, i.e.,
BPANN and multiple linear regression (MLR). The errors of the three interpolation methods feature month-dependent variations
and tend to be lower (larger) in warm (cold) months. Moreover, the annual SAT had a significant cooling trend during 1960-1989
(trend = —0.07°C/year; p = 0.04) and a significant warming trend during 1990-2019 (trend = 0.06°C/year; p = 0.05). The monthly
SAT did not show consistent cooling or warming trends in all months, e.g., SAT did not show a significant cooling trend in January
and December during 1960-1989 and a significant warming trend in January, June, July, and December during 1990-2019.
Furthermore, the Antarctic SAT decreases with latitude and the distance away from the coastline, but the eastern Antarctic is
overall colder than the western Antarctic. Spatiotemporal inconsistencies on SAT trends are apparent over the Antarctic
continent, e.g., most of the Antarctic continent showed a cooling trend during 1960-1989 (trend=-0.20~0"C/year;
p = 0.01 ~ 0.27) with a peak over the central part of the eastern Antarctic continent, while the entire Antarctic continent showed a
warming trend during 1990-2019 (trend = 0~0.10°C/year; p = 0.04 ~ 0.42) with a peak over the higher latitudes.

1. Introduction

Variation in surface air temperature (SAT) over the Ant-
arctic is an indicator of global SAT change [1]. Variations in
the Antarctic SAT partly contribute to climate anomalies in
East Asia [2], Tropics [3], and Arctic [4] through the at-
mosphere-ocean bridges. Establishing how the Antarctic
SAT modulates the sea ice extent and thickness over the
Southern Hemisphere will improve the predictability of
global climate change. However, challenges exist in un-
derstanding the Antarctic SAT, and previous studies have
not reached consistent conclusions. Some studies have re-
ported that most of the Antarctic continent has shown a
cooling trend [5-7]. In contrast, other studies support a
weak warming trend over the entire Antarctic continent
[8-10]. In addition, some studies have reported that the

Antarctic Peninsula showed a warming trend during the last
decades of the twentieth century [11, 12], but other research
suggested that there was no evidence that the Antarctic
Peninsula has experienced warming during that period [13].
Among the factors responsible for the inconsistent study
results are the sparsity and temporal discontinuity of station-
based SAT data [14], the lack of good quality satellite-based
SAT products, which are often affected by cloud cover and
snow surface over the Antarctic [15], the large warm bias in
reproducing the Antarctic temperature using climate models
[16], the clear cold bias for monthly SAT reanalysis datasets
over the Antarctic coastal regions, and the large warm bias
dominating the winter over the Antarctic inland [17]. The
above inconsistencies may also be attributed to the different
data sources used for each study. Accordingly, generating a
widely accepted, high-quality, and spatiotemporally
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continuous SAT dataset over the Antarctic is critical to better
understand the Antarctic SAT variation during the last
decades.

An alternative approach is used to generate spatiotem-
porally continuous and high-quality SAT data based on
limited station-based SAT observations and appropriate
spatial interpolation methods [18, 19], which allows ex-
ploring the SAT variations over the areas where station-
based data are not available. There are many spatial inter-
polation methods such as inverse distance weighting (IDW)
[20], Spline method [21], Kriging-based method [22], and
multiple linear regression method [23]. Based on these
methods, several gridded SAT datasets have been developed,
such as the Met Office Hadley Centre Climatic Research Unit
Temperature version 4 (hereinafter, HadCRUT4) [24],
Berkeley Earth Surface Temperatures (hereinafter, BEST)
[25], NASA GISS Surface Temperature Analysis (hereinafter,
GISTEMP) [26], NOAA Merged Land-Ocean Global Surface
Temperature Analysis version 4 (MLOST) [27], and Climatic
Research Unit Timeseries version 4 (CRU TS) [28]. How-
ever, although these SAT datasets have been widely used in
various climate studies, shortcomings persist. For example,
these datasets do not cover some crucial regions, and there
are large areas of missing values over the ocean and the
Antarctic [29]. These shortcomings motivated this research
to establish new approaches to create gridded SAT datasets
covering the entire Antarctic and meeting high-quality
standards.

In recent years, machine learning- (ML-) based spatial
interpolation methods have been proposed over traditional
methods (e.g., IDW, Spline, and Kriging) [30-33]. The
feedforward backward-propagation artificial neural network
(BPANN) [34], which is a commonly used ANN model in
ML, is a promising tool for solving complex nonlinear
modelling and prediction problems [35]. As a type of
nonlinear model, BPANN can find the complex nonlinear
relationships within the sample data without assuming a
specific relationship between the input and output in ad-
vance [34]. The BPANN algorithm has been used in the
spatial interpolation of climate variables [36-38]. However,
due to its purely data-driven characteristics, BPANN also
showed deficiencies in practice. For example, BPANN is
prone to overfitting [39] and can easily fall into local optimal
solutions [40]. In addition, the structure of BPANN cannot
be easily determined, and while the selection of the initial
connection weights and thresholds of the network greatly
impacts BPANN’s performance, they are random and
cannot be accurately obtained [41]. Aiming to overcome
these intrinsic deficiencies, many researchers have attemp-
ted to improve BPANN’s performance using intelligent
optimization algorithms [42-45]. Genetic algorithms (GA)
feature excellent global search ability [46] and are used to
optimize the initial connection weights and thresholds of
BPANN (hereinafter, GA-BPANN) in order to avoid falling
into a local optimum and improve its training speed and
modelling ability [42, 47]. Therefore, GA-BPANN has been
applied in many fields of natural and social sciences for
complex nonlinear modelling and prediction, showing ex-
cellent performance over other BPANN models optimized

Advances in Meteorology

by different algorithms [48-51]. Currently, however, there
are very few reports on the use of GA-BPANN for spatial
interpolation, especially for the interpolation of Antarctic
temperatures.

A high-quality and spatiotemporally continuous SAT
dataset is the foundation of Antarctic climate research. This
study aims to produce a monthly gridded SAT dataset for the
Antarctic continent during 1960-2019 using the GA-BPANN
method and limited station-based SAT observations. The
performance of the GA-BPANN for spatial interpolation is
compared with those of MLR and BPANN. The remainder of
the paper is organized as follows. The details of the station-
based SAT data and the spatial interpolation methods used in
this study are presented in Section 2. Section 3 includes the
validation of the estimated Antarctic SAT datasets using
different interpolation methods. Preliminary analyses re-
garding the spatiotemporal variations of the Antarctic SAT
during 1960-2019 are also described in this section. Some
prospects for improving the data quality of the SAT inter-
polation are discussed in Section 4. In the final section, the
main findings of this study are summarized.

2. Data and Methods

2.1. Station-Based SAT Data. The station-based SAT data of
the Antarctic were extracted from the Global Historical
Climatology Network monthly dataset, version 4 (hereinafter,
GHCNmV4) [52]. The GHCNmV4 is a set of monthly climate
records from thousands of weather stations around the world.
The monthly data have periods of record that vary by station,
with the earliest observations dating to the eighteenth century.
Some station records are purely historical and are no longer
updated, whereas many others are still up to date. Relative to
previous versions, the GHCNmV4 provides an expanded
dataset of station-based temperature records as well as more
comprehensive uncertainties for the calculation of station and
regional temperature trends. The total number of monthly
temperature stations in GHCNmV4 over the Antarctic during
1960-2019 is 82 (Figure 1).

2.2. Geographic Factor Data. The geographic factors af-
fecting the spatial distribution of SAT mainly include lon-
gitude, latitude, altitude, topographic conditions, and land
cover [53]. Previous studies have reported that the monthly
mean SAT has a significant correlation with latitude, lon-
gitude, and altitude [54, 55]. In addition, the spatial dis-
tribution of SAT at the continental scales is mainly
controlled by geographic factors such as latitude, longitude,
and elevation [54]. These three factors usually are extracted
from digital elevation model (DEM) data. In this study, a
1 km resolution Antarctic DEM data was used; these data
were downloaded from the National Tibetan Plateau Data
Centre (TPDC; https://data.tpdc.ac.cn/en/). This 1km res-
olution DEM can well capture the striking effect of Antarctic
orography on SAT distributions. The elevation of each SAT
station was extracted based on the longitude and latitude of
this SAT station. The training sample used to construct the
spatial interpolation model includes the longitudes and
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FIGURE 1: The spatiotemporal distribution of the extracted station-based SAT data of the Antarctic.

latitudes of all SAT stations, the extracted elevations, and the
monthly SAT observations during 1960-2019. The inter-
polation model was constructed monthly using the training
sample. Additionally, the longitudes, latitudes, and eleva-
tions on all grids were obtained through DEM sampling in
ArcGIS software and then were used as the input sample of
the monthly varied interpolation model for estimating the
monthly SAT fields of the Antarctic continent during
1960-2019. Therefore, the spatial resolution of the estimated
SAT fields is consistent with that of DEM, both of which are
1km regular grids.

2.3. Spatial Interpolation Methods

2.3.1. MLR. Multiple linear regression (MLR) is a com-
monly used method in spatial interpolation, and its per-
formance is always superior to several benchmark
interpolation methods such as IDW, Spline, and Kriging
[23]. In this study, the MLR-based interpolation result is
considered as a reference to compare the interpolation
performances of the BPANN and GA-BPANN. According to
previous studies, the MLR method considers that the spatial
distribution of SAT is the comprehensive effect of longitude,
latitude, altitude, and other geographic factors. MLR takes
SAT as the dependent variable and geographic factors such
as altitude, latitude, and longitude as independent variables
[20, 56] to construct the SAT interpolation model as follows:

T =ax, +bx, +cx; + ¢, (1)

where T denotes SAT and x,, x,, x5 are longitude, latitude,
and altitude, respectively. ¢ is the residual error. a, b, c are
regression coeflicients. The regression coefficients and

residual error are estimated by the least square method. The
MLR model is constructed, and then the SAT over other
areas is estimated based on the constructed MLR model and
the longitudes, latitudes, and altitudes extracted from the
DEM data.

2.3.2. BPANN. The BPANN model is one of the most
commonly used ANN models and has strong nonlinear
modelling and analysis capability for complex systems.
BPANN uses a nonlinear differentiable function to train a
multilayer network, which is divided into input layer,
hidden layer, and output layer. BPANN features several
advantages, including (1) simple structures and easy op-
erability, (2) sophisticated nonlinear mapping from input
to output, and (3) self-study ability for further improve-
ment and development [57]. In this study, there were three
neurons in the input layer of the BPANN model to denote
the longitude, latitude, and altitude and one neuron in the
output layer (i.e., the SAT). The number of neurons in the
hidden layer is a fundamental parameter of the BPANN
model, but it is difficult to determine exactly. Currently,
empirical rules for addressing this problem have been
proposed [58]. In this study, the neurons of the hidden
layer were set to seven according to these rules. The
structure of BPANN is described in Figure 2 and takes the
following formulation:

SAT = BPANN (lontitude, latitude, altitude, ) + ¢, (2)

where ¢ is the residual error and 0 denotes the parameters of
the BPANN model such as connection weights and
thresholds.
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FiGURE 2: The structure of the BPANN model. The number of neurons of each layer is denoted as , p, and m, respectively. W/ (i=1,2, .. ., n

and j=1, 2, ..., p) represents the weights between the input and hidden layer, while 1% (j=1,2,..,pand k=1, 2, ..., m) represents the
weights between the hidden and the output layer. The threshold values of the hidden layer and the output layer are 6; and ., respectively. f
(-) is an activation function by which the mapping process from the input layer to the hidden layer is implemented and g (-) is an activation
function by which the mapping process from the hidden layer to the output layer is implemented. In this study, the default activation
functions of the BPANN model in the MATLAB (2016a) ANN toolbox were adopted. The parameters in the BPANN mainly include the
maximum training times, learning rate, and training target accuracy. The parameters of the BPANN model in this study include a maximum
training time of 2000, a learning rate of 0.5, and a training target accuracy of 0.001.

2.3.3. GA-BPANN. A GA is a kind of self-adaptive and
probabilistic global searching process that starts from an
initial population of finite string representations in which
each member (called chromosome or individual) represents
a candidate solution to the problem [46]. The initial pop-
ulation of a GA is randomly sampled. A GA provides a
solution space that enables BPANN to find the optimal
solution that helps avoid a local optimum. In GA-BPANN,
each individual (or chromosome) represents a distribution
of connection weights and thresholds of each network.
Thus, a population of individuals (or chromosomes) rep-
resents a population of neural networks with different
weights and threshold distributions. A GA is used to op-
timize the initial weights and thresholds of BPANN. The
BPANN model optimized by GA includes two parts. One
part is to determine the BPANN structure and code the
initial individuals. The other part is to optimize BPANN
with GA. The GA process is summarized as follows: (1)
initialize the population; (2) calculate the fitness value of
each individual in the population; (3) select individuals
which will enter the next generation according to a rule
determined by individual fitness values; (4) perform
crossover operation according to crossover probability; (5)
carry out mutation operation according to mutation
probability; (6) if the end conditions are not met, then go to
step (2), or enter (7); and (7) use the individual (or
chromosome) with the best fitness value in the output

population as the optimal solution of the problem. As a
result, the most optimal individual, which represents the
optimal initial weights and thresholds of the BPANN
model, is generated. Figure 3 describes the flowchart of
BPANN optimized with GA; for the details of population
initialization, fitness function, selection operation, cross-
over operation, and for mutation operation, refer to
[46, 47].

2.4. Validation Method. Cross-validation was used to
evaluate the spatial interpolation performances of the above
three interpolation methods. The cross-validation assumes
that the SAT value of each station is unknown and is es-
timated based on the SAT values of the surrounding sta-
tions. The errors between the observed SAT values and the
estimated SAT values of all stations are calculated to
evaluate the performance of the interpolation method.
Typical performance indicators including mean absolute
error (MAE) and root-mean-square error (RMSE) were
used to investigate the differences between the observed
SAT and the estimated SAT. The MAE reflects the extent of
the overall error at all sites, while the RMSE can reflect the
estimated sensitivity and extreme effect of the error sample
data. Smaller values of these two metrics indicate higher
accuracy of the interpolation. The formulas for MAE and
RMSE are as follows:
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1 n
MAE = Yabs(T,-T,),
i=1

(3)
RMSE =

where T, is the observed value, T, is the estimated value at
the corresponding site, and # is the total number of ob-
servational sites.

3. Results

3.1. Results of Cross-Validations. In this study, 82 station-
based SAT data over the Antarctic continent and its sur-
rounding regions were selected to estimate the monthly SAT
fields during the period 1960-2019 using the MLR, BPANN,
and GA-BPANN methods. The accuracies of the three in-
terpolation methods were tested by cross-validation. The
annual and monthly MAEs and RMSEs were calculated and
used to observe the variations of the interpolation accuracies
of the three methods (Figures 4 and 5).

Figure 4 reveals a strong monthly dependence of the
MAEs and RMSEs associated with the three interpolation
methods, i.e., they show larger errors during the cold months

and smaller errors during the warm months. Similarly, the
validation of SAT reanalysis over the Antarctic demonstrates
that the SAT reanalysis datasets have higher MAEs in the
Antarctic winter months and lower MAE in the Antarctic
summer months [17]. Similar observations have also been
reported in the air temperature spatial interpolation for
China [59], which found that the interpolation error in
winter is larger than that in summer and autumn. In ad-
dition, the validation of Arctic air temperature reanalysis
datasets also indicated that SAT reanalysis datasets have a
large bias in the Arctic winter and a small bias in the Arctic
summer [60]. The above results imply that the skill of spatial
interpolation for estimating monthly climate variables is
temperature-dependent or month-dependent. In addition,
Figure 4 suggests that the MAEs and RMSEs between the
station-based SAT and the estimated monthly SAT using
GA-BPANN are the lowest, with the averaged MAEs at all
stations in each month ranging between 1.92 and 4.91 with a
mean of 3.15 and the averaged RMSE:s at all stations in each
month ranging between 4.09 and 9.46 with a mean of 6.31.
Following GA-BPANN is the MLR interpolation method,
with station-averaged MAEs in each month ranging from
3.61 to 6.35 and a mean of 5.32 and station-averaged RMSEs
in each month ranging from 6.84 to 10.38 and a mean of
9.03. The MAEs and RMSEs associated with BPANN are
greater than those of GA-BPANN and MLR, e.g., the station-
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FIGURE 4: Boxplots of the monthly mean absolute errors (MAE) and root-mean-square error (RMSE) of the three interpolation methods for
estimating monthly Antarctic SAT during 1960-2019 obtained from the cross-validation.

averaged MAEs in each month range from 3.65 to 8.00 with a
mean of 6.28, and the station-averaged RMSEs in each
month range from 5.75 to 12.17 with a mean of 9.30. Overall,
the performance ranking of the three interpolation methods
for estimating the monthly SAT of the Antarctic continent is
GA-BPANN > MLR > BPANN. Moreover, Figure 5 shows
that the interpolation errors of the three methods gradually
decrease with the increase of observational data available,
implying that when more observational data are used, the
relationship between SAT distribution and geographical
factors increases, and the interpolation becomes more ac-
curate. Furthermore, Figures 4 and 5 also indicate that the
interpolation accuracy of BPANN is inferior to that of MLR,
implying that although the BPANN model can express the
nonlinear relationship between SAT and geographical fac-
tors, without optimal connection weights and thresholds, its
performance in the spatial interpolation of the Antarctic
SAT is worse than with MLR, which expresses the rela-
tionship between SAT and geographical factors in a linear
way. In this study, the interpolation accuracy of GA-BPANN
is apparently better than that of the MLR and BPANN
methods, indicating the effectiveness of the GA optimization
for the traditional BPANN.

3.2. Antarctic SAT during 1960-2019. In this section, the
temporal and spatial variations of the Antarctic SAT during
1960-2019 were analyzed using the monthly SAT fields
generated by the GA-BPANN method.

3.2.1. Temporal Variations of the Antarctic SAT. Since the
time span of the estimated SAT fields is 60 years, it includes
exactly two climatologies (a 30-year period is a climatology
baseline defined by the World Meteorological Organiza-
tion), i.e., 1960-1989 and 1990-2019, allowing for carrying
out SAT climatology comparisons. Therefore, variations of
the Antarctic SAT during 1960-1989 and 1990-2019 on
monthly and annual timescales are analyzed here (Figure 6).
During 1960-1989, the annual mean SAT in the Antarctic
continent was —39.86 + 1.24°C, the highest SAT was found in
January (i.e., —21.62 + 1.32°C), and the lowest SAT was found
in August (ie., —50.53+2.93°C). During 1990-2019, the
annual mean SAT in the Antarctic continent was
-39.31£0.93°C. The SAT was highest in December (ie.,
-20.71 + 1.24°C) and lowest in August (i.e., —49.69 + 2.59°C).
In addition, Figure 6 shows that the Antarctic annual SAT
experienced a significant cooling trend during 1960-1989
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annual RMSE was calculated in the same way.

(trend =-0.07°C/year; p = 0.04) and a significant warming
trend during 1990-2019 (trend =0.06"C/year; p = 0.05).
However, there was no trend in the Antarctic annual SAT
during 2003-2019 (trend = 0°C/year, p = 0.47). This finding
is consistent with the previous conclusion that warming was
absent in the Antarctic annual SAT during the last decades of
the twenty-first century [13]. Moreover, the monthly SAT
did not show a consistent cooling or warming trend in all
months during these two periods. For example, the highest
cooling rate during 1960-1989 was found in June
(trend = —0.14°C/year; p < 0.01), while the SAT had no trend
in January during 1960-1989 (trend =0°C/year; p = 0.53),
and the SAT in December showed a nonsignificant warming
trend during 1960-1989 (trend = 0.01°C/year; p = 0.67). The
SAT in other months showed cooling trends with different
significant levels and rates during 1960-1989. Furthermore,
the warming trends in January, June, July, and November
were not significant during 1990-2019. The SAT in De-
cember did not show cooling or warming trends
(trend = 0°C/year; p = 0.44) during 1990-2019. The SAT in

other months showed warming trends with different sig-
nificant levels and rates during 1960-1989. The highest
warming rate was in May during 1990-2019 (trend =0.16°C/
year; p <0.01).

3.2.2. Spatial Patterns of the Antarctic SAT. Figure 7 shows
the spatial distributions of mean SAT fields during
1960-1989 and 1990-2019, respectively. The two SAT fields
show almost identical patterns over the Antarctic continent.
The Antarctic SAT basically decreased with the increase of
latitude and distance away from the coastline during these
two periods, with a cold centre (i.e., —=55.13 + 4.67°C) located
over the eastern Antarctic continent south of 80° S. Overall,
the east Antarctic continent was colder than the west
Antarctic continent during the two periods. Statistical dif-
ferences between the two SAT fields cannot be found in
terms of patterns and amplitudes.

Figure 8 shows the spatial patterns of the SAT trends
during 1960-1989 and 1990-2019, respectively. Although
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denote the linear trends of the Antarctic SAT during 1960-1989 and 1990-2019, respectively. The trends (unit: °C/year) and their significance
(i.e., p values) were calculated using the Mann-Kendall trend test method [61].

the SAT climatology did not show clear differences between
the two periods, noticeable differences can be found in the
SAT trends during the two periods. Figure 8(a) shows that
SAT over most of the Antarctic continent had a cooling

trend  during 1960-1989  (trend =-0.20~0°C/year;
p=0.01~0.27) with a peak over the central part of the
eastern Antarctic continent. During the same period, the
Antarctic Peninsula also showed a cooling trend
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FIGURE 8: Spatial patterns of the SAT trends derived from the estimated SAT datasets during (a) 1960-1989 and (b) 1990-2019, respectively.
The trend on each grid is calculated using the Mann-Kendall trend test method [61].

(trend =—-0.10~0°C/year; p = 0.03 ~ 0.41). Only the west-  (trend =0~0.08°C/year; p =0.06 ~0.44). In addition,
ern coast of the Ross Sea and the eastern and northern coast Figure 8(b) shows that almost the entire Antarctic conti-
of the Weddell Sea showed a warming trend nent showed a warming trend during 1990-2019
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(trend =0~0.10°C/year; p = 0.04 ~ 0.42) with a peak over
the higher latitude areas of the continent, indicating that
the warming rate increased with latitude during 1990-2019.
Only a small portion of the eastern seaboard showed a weak
cooling trend (trend=-0.02~0°C/year; p = 0.35 ~ 0.49).
The above comparisons demonstrate that there are spa-
tiotemporal inconsistencies in the SAT trends over the
Antarctic continent during the two periods and that the
Antarctic SAT trends depend on the time period and the
spatial area over which they are computed. For example,
the highest cooling rate is found over the central part of the
eastern Antarctic continent, while the highest warming rate
is over the higher latitudes of the Antarctic continent. The
cooling rates during 1960-1989 are greater than the
warming rates during 1990-2019. Finally, the mechanism
driving the spatiotemporal inconsistencies in the SAT
trends over the Antarctic continent during the two periods
should be further investigated with the aid of a fully
coupled climate model; however, this analysis is beyond the
main aim of this study and will be addressed in future work.

4. Discussion

Generally, the interpolation errors for climate variables
decrease monotonically with the increase of the station-
based data used [18, 19, 23, 59]. The interpolation errors of
MLR and BPANN are consistent with this rule (see Figure 5).
However, the interpolation errors of GA-BPANN showed a
decreasing trend before 1980, an increasing trend between
1980 and 2003, and a decreasing trend after 2003. Namely,
the interpolation errors of GA-BPANN do not decrease
monotonically with the increase of the used station-based
data. Nonetheless, the interpolation errors of GA-BPANN
are always apparently smaller than those of the MLR and
BPANN. The reasons for this situation may be attributed to
the fact that the number and spatial distribution of stations
in different months are time-varied, but the parameter
values of GA (see Figure 3) are invariant in all months.
Additionally, the parameter values affect the optimization
performance of the GA [46, 47]. Consequently, the GA
might not search the optimal connection weights and
thresholds for some months under these invariant parameter
values, leading to the interpolation accuracies of GA-
BPANN in the corresponding months that did not reach the
expected optimization effect. But GA-BPANN is still su-
perior to the traditional BPANN with random connections
and thresholds and the MLR linearly linking the SAT and
geographical factors. Thus, an straightforward approach to
turther improve the performance of GA-BPANN is to adopt
time-varied parameter values in the searching process of the
GA. Specifically, the GA uses multiple groups of parameter
values in each month, which are randomly sampled from the
empirical ranges of parameters, to search the optimal
weights and thresholds. In each month, a cluster of GA-
BPANN interpolation models are trained using the same
training sample but different GA parameter values, and we
only select the optimal GA-BPANN interpolation model to
estimate the SAT field of that month. This approach ensures
that the monthly GA-BPANN interpolation model can be
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adapted to the sample data in the corresponding month as
much as possible, as long as there are enough groups of
parameter values. However, the number of parameter
groups cannot be infinite because more parameter groups
used means more time consumption is needed.

In addition, as with previous SAT interpolation studies
for other regions [18, 19, 21-23, 31, 59], it usually needs to
place the estimated SAT fields based on the GA-BPANN
method in the context of previously published SAT datasets
developed by traditional interpolation methods. However,
some data-related issues stymied this attempt. In partic-
ular, although there exist several interpolation-based and
widely used gridded SAT datasets, such as HaddCRUT4 [24],
BEST [25], GISTEMP [26], MLOST [27], and CRU TS [28],
these datasets either omit the Antarctic region or have a
large portion of missing values over the Antarctic conti-
nent. As a result, these data-related issues cannot allow
comparing the estimated SAT data in this study with several
widely used SAT interpolation data in terms of fully
Antarctic SAT patterns. Nonetheless, a previous study had
generated an Antarctic annual mean surface temperature
map (hereinafter, AAMSTM) using the MLR method based
on 1175 Antarctic annual mean surface temperature
datasets, including Antarctic ice-sheet temperature data,
10 m borehole temperature, and automatic weather station
data [54]. The AAMSTM demonstrates that the Antarctic
annual mean surface temperature has a minimum of below
—55°C over central East Antarctica, features strong eleva-
tion-dependent variations, and varies from —20°C to —10°C
over the coastal regions. The SAT patterns and magnitudes
reflected in AAMSTM are highly consistent with those of
the Antarctic SAT showed in Figure 7, indicating the re-
liability of the GA-BPANN-estimated SAT fields in this
study.

Only three geographic factors (i.e., longitude, latitude,
and elevation), which were found to be the main factors
affecting monthly SAT distribution and variation at conti-
nental scales in several previous studies, were considered for
estimating the Antarctic SAT fields in this study. However,
the mechanisms driving SAT distribution and variation are
very complicated in space and time domains [18, 55, 59], and
there may be some other factors that have not yet been
evaluated such as land surface type, air humidity, wind
speed, wind direction, and distance from the coastline;
particularly, sea surface temperature and atmospheric cir-
culation have been regarded as important factors affecting
the long-term trend of the monthly and annual mean SAT
[62, 63]. However, this issue is beyond the scope of this study
and will be explored in future work. In addition, the to-
pography of the Antarctic inland is very complex; in this
case, more station-based data are needed to describe the
local relationship between SAT and topography factors
[18, 55, 59]. In this study, 82 station-based SAT data over the
Antarctic were used in Antarctic SAT interpolation, which is
far more than the number of the Antarctic stations used in
previously published SAT datasets [24-26, 64] mainly be-
cause the GHCNmV4 dataset integrated more historical
station-based data. However, as can be seen from Figure 1,
most of the 82 stations are distributed along the Antarctic
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coastline, and the stations over the Antarctic inland are still
very sparse and uneven, which may lead to greater uncer-
tainty in the SAT interpolation over the Antarctic inland
[59]. However, this intrinsic deficiency associated with the
distributions of the Antarctic meteorological stations cannot
be overcome by current interpolation methods, which is a
major challenge for Antarctic SAT interpolation and drives
the stakeholders to develop new interpolation methods
based on sparse and uneven historical stations.

The geographical factor samples used for training in-
terpolation models and estimating SAT fields generally are
extracted from DEM data; accordingly, the spatial reso-
lution and accuracy of DEM data substantially affect the
interpolation accuracy [19, 23, 59]. A DEM data with finer
resolution and accuracy would improve the accuracy of
climate interpolation, particularly in areas with compli-
cated topography such as the Antarctic continent [54]
because it can provide a better topographical description
and is beneficial to constructing a more accurate statistical
relationship between climate variable and geographical
factors. Therefore, applying the most appropriate DEM
data to extract geographical factors is critically important
and indispensable. The Antarctic DEM data used in this
study has the finest spatial resolution among several
existing Antarctic DEM data, and the quality has been
rigorously tested (see details at https://data.tpdc.ac.cn/en/
data/). Therefore, this DEM data enable to minimize the
Antarctic SAT interpolation errors as much as possible.
However, the Antarctic continent is different from other
continents in that it is completely covered by ice and snow
that have been changing in recent decades under the global
warming [65, 66], meaning that the Antarctic elevations
also have been changing over time as the ice and snow are
melting and freezing [67, 68] compared with other ice-free
continents with stable elevations. Actually, the Antarctic
DEM data used in this study represents the multiyear mean
elevations during 1998-2008. It is bound to bring errors to
interpolation results if extracting elevation values from the
multiyear mean DEM to construct monthly training
samples and interpolation samples during 1960-2019.
However, there is no monthly and long-term Antarctic
DEM data; this is challenging in Antarctic SAT interpo-
lation when DEM-based geographical factors must be
considered.

Finally, spatial interpolation is a complicated issue, and
each interpolation method has its own specific assumptions,
applicable conditions, merits, and drawbacks. Although GA-
BPANN performed well in the Antarctic SAT interpolation,
it may not perform well in other areas of the globe with
different station-based SAT data and different climate var-
iables. Spatial interpolation should be carried out according
to the geographical and topographical characteristics of the
study area (e.g., mountainous area, plain, plateau, inland,
and coastal) and the characteristics of the station-based data
(e.g., data quality, data quantity, evenness of spatial distri-
bution, temporal continuity and physical properties of the
variables). Thus, the most suitable method and datasets
should be utilized in the specific area when performing
spatial interpolation.
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5. Conclusions

Accurately and fully understanding the Antarctic SAT
variations helps improve global climate change predictions.
However, due to data availability issues, the Antarctic SAT
variations during the last decades remain controversial. This
controversy has motivated stakeholders to generate a widely
accepted, high-quality, and spatiotemporally continuous
SAT dataset over the Antarctic that could help to fully
understand the Antarctic SAT variations during the last
decades. Spatial interpolation is an alternative approach used
to generate spatiotemporally continuous and high-quality
SAT data based on limited station-based SAT observations.
This study introduced a promising spatial interpolation
method, i.e., GA-BPANN, which is a BPANN optimized by
GA. The GA-BPANN was compared with BPANN and MLR
to estimate the monthly SAT fields of the Antarctic conti-
nent during 1960-2019. Validations demonstrated that the
interpolation performance of GA-BPANN is better than that
of BPANN and MLR. GA-BPANN improved the repre-
sentation of the nonlinear relationship between SAT and the
geographic factors modulating the SAT distribution, which
could not be expressed by MLR. GA-BPANN also avoids
falling easily into a local optimum, which is a shortcoming of
the BPANN approach.

Based on the estimated SAT fields of the Antarctic
continent obtained with GA-BPANN, the temporal and
spatial variations of the Antarctic SAT during 1960-2019
were analyzed. The Antarctic annual SAT experienced a
significant cooling trend during 1960-1989 and a significant
warming trend during 1990-2019. The SAT in most months
showed cooling trends during 1960-1989 and warming
trends during 1960-1989, though the significance levels and
rates varied in different months. The spatial distributions of
the mean SAT fields during 1960-1989 and 1990-2019 show
almost identical patterns over the Antarctic continent. The
Antarctic SAT decreased with latitude and distance from the
coastline, and the eastern Antarctic continent was overall
colder than the west Antarctic continent. The SAT over most
of the Antarctic continent, including the Antarctic Penin-
sula, has undergone a cooling trend during 1960-1989, with
a peak over the central part of the eastern Antarctic con-
tinent. Only the western coast of the Ross Sea and the eastern
and northern coast of the Weddell Sea showed warming
trends. In addition, almost the entire Antarctic continent
showed a warming trend during 1990-2019, with a peak over
the higher latitudes of the Antarctic continent. These results
confirmed the existence of spatiotemporal inconsistencies in
the SAT trends over the Antarctic continent during the two
climatological periods examined. However, it is noted that a
weakness of this study is the inability to make physical
explanations on the spatiotemporal inconsistencies in the
Antarctic SAT trends during the two climatological periods
because addressing this issue requires to conduct compli-
cated attribution experiments with the aid of coupled cli-
mate models, which substantially goes beyond the main
scope of this research.

In summary, this study confirmed that the introduced
GA-BPANN substantially improves the interpolation
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accuracies in the estimation of Antarctic SAT fields com-
pared with BPANN and MLR. The spatiotemporal variations
of the Antarctic SAT during 1960-2019 were analyzed based
on the estimated monthly SAT fields generated by the GA-
BPANN method. Moreover, some prospects for improving
the skill of spatial interpolation were also discussed. The
Antarctic SAT dataset generated by this study can provide a
data basis for studying Antarctic climate change, validating
numerical climate models, and guiding Antarctic field re-
search activities (e.g., drilling ice core and planning mete-
orological stations). The conclusions of this study are also
expected to give new insights into the fields of spatial in-
terpolation methods and Antarctic SAT change during the
last decades.

Data Availability

The GHCNmV4 dataset was downloaded from the National
Climatic Data Centre (https://www.ncdc.noaa.gov/data-
access/land-based-station-data/land-based-datasets/global-
historical-climatology-network-monthly-version-4). ~ The
DEM data were downloaded from the National Tibetan
Plateau Data Centre (TPDC) (https://data.tpdc.ac.cn/en/
data/). The monthly gridded SAT dataset for the Antarctic
continent during 1960-2019 was generated by this study,
and source codes used in this study are directly available
from the author (e-mail: mfang@lzb.ac.cn).
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