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Our aim is to establish a tripled fixed and coincidence point result on generalized C*-algebra-valued metric spaces. We present an
example on matrices. At the end, we give an application on integral equations.

1. Introduction

The Banach contraction principle (BCP) was considered by
Perov [1] on spaces equipped with vector-valued metrics. The
result of Perov has been generalized in [2], and its related fixed
point property on generalized metric spaces was investigated.
Let A be a unital algebra with the unit I and 0 be its zero
element. An involution on A is a conjugate linear map ¢ — *
on A so that for all 1,k € A, /** =rand (k)" = «*1*. The pair
(A, *) is named as an *-algebra. A Banach =-algebra is an =
-algebra A with the complete submultiplicative norm so that
lle*|l = |le|| for all 1€ A. A C*-algebra is a Banach =-algebra
such that ||¢*|| = ||| for all 1 € A. Let H be a Hilbert space
and B(H) be the family of all bounded linear operators on H
; then, B(H) is a C*-algebra with the operator norm. Let A,
be the family of all self-adjoint elements in A, and define the
spectrum of 1€ A as o(1) ={A € C: Al —isnotinvertible}.
An element 1€ A is positive (denoted by 1>0) if 1€ A,
and 0(1) CR,. Take A, ={1€A:1>0}, then A, ={1"1:1¢
A} (see [3]). One can define a partial ordering < on A, as

<kiff k —1>0. If k€ A, and c € A, then 1 <k = c*1c < ke,

and if 1, k € A, are invertible, then i<k = 0<x ' </

Definition 1 (see [4]). Let X be a nonempty set. If the function
U:XxX—>Aissothatforallv, 7,7 € X:

(i) 6<0(v,7) and O(v, 1) =0 iffv="1
(i) O(v, 1) =f(7,0)
(iii) O(v,7) <U(v, 1) +O(n, 7)
then (X, A, U) is named as a C*-algebra-valued metric space.

In this article, denote by M, ;(A) the set of all g x g matri-

ces with coefficients in A. Note that ® = the zero matrix and
I = the identity matrix.
Let o/ € M, ,(A), then A is said to be convergent to zero,
iff A" goes to 0 as n — 0. See [5-8] for more details.
Denote by ZM the family of all matrices o/ € M, ,(A) so

that A" — 0. We provide the following examples.
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Example 1.

L (1)
1
%: —
6\1 1
are in ZM. We have (o + B)*(I- A>) ™' e ZM.
Example 2.
1
5 0
A = ,
1
3
2
1 °)
e
%:
1
- 0
3

are in ZM. Clearly, (of + B)*(I- A2)" € ZM.

Example 3. A=al and B=((I - )’ — a)I are in ZM. Then,

for a € {1/4,1/5,1/7,1/8}, one gets (of + B)*(I-A2) ' €Z
M.

Definition 2 (see [9]). An element (€', ¢%) € X* is named to
be a coupled fixed point of F : X* — X if F(¢',¢*) =¢!' and
F(e%,el) = ¢,

Definition 3 (see [10]; see also [11]). Given F : X? — X and
g: X — X. An element (£',€?) € X? so that F(¢!, ¢*) = ge!
and F(¢%,¢') = g€? is named as a coupled coincidence point
of Fand g. (g€', g*) is called a coupled point of coincidence.

Definition 4 (see [12]). An element (£, ¢%, %) € X is named
to be a tripled fixed point of F : X*> — X if F(¢!, 2, %) = ¢!,
F(€2,€',0%) = 0% and F(¢*, 2, ¢') = ¢.

In this manuscript, we investigate a tripled common fixed
point result for a sequence of mappings T, : X° — X and
g : X — X in the class of complete C*-algebra-valued metric
spaces. An example and an application are presented.

2. Main Results

Our main result is as follows.

Theorem 5. Let (X, A, O) be a complete C* -algebra-valued
metric space. Let g: X — X and {T;}., be a sequence of
mappings from X> into X so that
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O(T; (¢, &,0), T; (u', ?, ) <d[0(g(21),Ti(€1,£2, %))
+O(gu', T;(u', u?, 1) )™ + B(O(gu', gt')) B,
(3)

where 1+ 9 = (a;) € My (A), 1+ B =(b;) € My, (A,) with

(o + B (1-o4?) " ezZM. If T,(X?)cg(X) and g(X) is
complete in X, then {T;},., and g have a tripled coincidence
point. Further, if {T;},., and g are w-compatible, then they
have a unique tripled common fixed point in X.

Proof. Take €3, €3, €3 € X, and let

g% =To (> &, )5
gt =Ty (8 &, &) (4)
g8 =T, (€5, €5, €.

Continuing this technique, we get

G = T, (8 4 83);
genﬂ Tn (ei’eil’ei)’
genﬂ Tn (ez’ei’ei)’

for all n>0.
By (3), we get

U(glii‘ Jzim) U(T (2111 B Ei g fi 1) T, (E}« gfr €i))
S*Qf[ (!ﬂn B (en bl 1))
+U(g€n (e,ﬁ 6, 0)) "]
B(0(gt,, gY,1)B" = A [0(gt, pyel)
+U(g€w9€n+1)]ﬂ* +BU(gt,, gt ) B*
=dV(gt,_, gt ) + A0 (gt,, gty )"
+B0(gty, gt ) B") = 4V(gt,_, ge,)d*
+d0(gtl, geh,,) "0 (gel g8, ) et
+9§U(g€n,g(’, ) B =d0 (g(’,n v gl

+M‘U gt gtl,)'"”

‘w + BU(gtl, gt ) B*
= (d + B)V(gb, 1. 98,) "O(g8,.. 98)) " (o + B)"
+ﬂ’0(ge;,ge “2‘ o —‘ M+9§)U(g€j,71,g€il)m)2

n+l

1/2

1/2
+at|U(g )

[

(6)

It follows that

O(g8y glon) < (4 + B) (1= ) O(gb,1,98,).  (7)

Similarly,

U(gf gerﬁ—l) ("d-’-‘%)z(l_dz) (gzn l’geit)’ (8>
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O(g8), 981) < (o + B) (1- ) 'O(g8)_,, 98))-
)
Adding (7), (8), and (9), we have

8= (g gtn) + U (98 9ts.1) +0(90, 9,.0)
< (el + B) (1- ) [O(gt;, 1, 98,) + V(98 ,, 97)
+0(g01 98] = (o + B (1- ) )8,
(10)
Put C=(of + B)*(I - &iz)_l. Then, for all n > 2,
©<6,<C8, , <C*, , < <C"S,. (11)
Using the triangle inequality, for all p > 1,
(g, 98.,) + 098 98,,) +0 (90, 980, )
<0(g8,, 91) +O(g0, 98.1) + O (g8 961
+ U(gz}ﬁl’ gﬁ:wz) + U(geﬁﬂ’ gefﬁ-Z) + U(geiﬂ’ gefﬁ-Z)
+oo+0 (geinp—l’ ge}ﬁp) +0 (geirp—l’ gepr)
+0 (g?';swp—l’ gefﬁrp) =0, +08,,,+ '8n+p—1
< (CH 4 C™ e 4 CMP NG < CM (14 Co o4 CP 71 421)
=C"(I-C)'s,.
(12)
We have
HU (g€i> gﬁfﬁp) +0 (9% gﬂiﬂ,) +0 (gfi, g€i+p) H
<|lctz-)|[oo = | (o + By (1)) (13)
(1= + B (1- Mz)_1>_1"60.

Now, taking the limit as # — +00, we conclude

|09t gti.,) +0(98 g8, ) + O (gt g, ) |

<||((@+B2-a?)") (1- (o + B (1- dz)‘l)_lH
-8, — 0.
(14)
This implies that
foloat )| [oleton)|

=[[o(gts-at)] =0

and {gt.}, {g€2}, and {g€}} are Cauchy sequences in g(X),
which is complete; there are (', ?, *) € X* so that

3
. 1V 1. pl
A gt =90 =t
Jim {9} = 0" =, 19
lir+n {g{’,i} = g(@3 =3,

We have

O(T, (e, &, €), gt") <U(T; (¢}, 2%,2°), gt).,1) + U (g8, g¢")
=0(T;(¢", €%, ), T, (g%, 9%, 9¢5)) + O (98,1, g¢")
<d[O(ge', T, (€', 2%, 0%)) +U(ge,, T, (gt), g€, 98,) ) | &

+BU(gt,, gt') B +0 (gt gt')-

(17)

Taking the limit as n — +0c0 in the above relation, we
obtain ge' =T,(¢', €% ¢*). Similarly, g¢* = T,(¢% €', ¢*) and
gt =T;(0, €%, ¢"). Therefore, (£', €%, ¢%) is a tripled coinci-
dence point of {T;}. and g.

Let (',¢%€%) and (p', % ’) be tripled coincidence
points, then

U(gt', gp') =O(T, (¢, ,0), T (' 0%, 0°))

<d[0(ge', T; (¢, ¢, €)) + U(gp', T;(¢", 0% ¢") ) | &
+B0(gp', gt') B*.

(18)
That is,
(I-2*)U(gt', gp') < o [O(gt', T;(¢', €, €)) 19)
+0(g0" T;(¢" % 6°) ),
s0
(gt go') <ol (1- %) [U(gt, T,(¢, €, 0")) (20)

+0(gp", Ti(p" 0% 0°))],
which further induces that

[0(ge' g0") || < ||«
+0(gp", T (0" 0% 0°))II-

((I—@z)“HHU(gel, T, (¢, €, ¢%))

(21)

Therefore, U(gt', gg') = ©, that is, ge' = gg". Similarly,
we can prove that g¢* = ge® and g€ = gg>. So, ge' = gt* =
g0’ = gp' = gp* = gg*. Therefore, {T,},. and g have a
unique tripled coincidence point. (ge', ge', g¢'). Now, set g
¢! =u, then u=ge'=T,(¢', ¢',¢"). By w-compatibility of
{Ti}ianand g,

gu=ggt' = g(T,(¢,€',¢")) =T,(gt', gt', gt")

22
=T;(u, u, u)=g(’,1. (22)



Then, (gu, gu, gu) is a tripled coincidence point of
{T.},cx and g. By the uniqueness, we know gu = g¢', which
yields that u=gu=T;(u,u). Hence, (u,u,u) is a unique
tripled common fixed point of {T;},. and g.

Letting g = Idy in Theorem 5, we have the following.
Corollary 6. Let (X,A,O) be a complete generalized C*

-algebra-valued metric space. Suppose that {T.}., is a
sequence of mappings from X> into X so that

O(T; (¢, ¢, 0), T;(u', v, ) ) < [O (¢, T, (¢, €2, &)
+0(u, T(u w’ )| + BO(u', ') B,
(23)
where o/, B € Awithl # o = (a;), 1+ B = (b;) € M, ,,(A,),

(o + B (I- %) € ZM. Then, {T,}

pled fixed point.

10 has a unique tri-

Example 4. Take X = [0, 1]. Given

et - €| 0
0o je-el) (24)

Then, (X, A,U) is a complete generalized C*-algebra-
valued metric space.
Consider T, : X* > X and g: X — X as

o, e*) = (

AN
T, (¢, 0%, 0) = ——"—,
3 (25)
g(th) =9¢".
Choose
1
3 0
o = ,
1
03
1 (26)
0 —
B - 3
1
~— 0
3

By induction, (3) holds for all €', €2, 03 € X. Set x = (El +
€2 +¢%)/3 and u = (u', u?, u*)/3). Here, for i =1, we have

1
<\x u 0 3 0 /]9t - x|+ |9u' - u] 0
= u\ o L 0 [98! — x| + [9u' — u|
3
N 0 ! . o !
CHR I (I9(u ol 0 ) 3
o ! Ly 0 P -e)[ )\ L o
3 3 3
(27)
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Also,
1
X—-u 0 1 0
3 3
K=
1 1
_ 0 =
0 X 3u 3
1 1
’92 —x’+ 3u'——u 0
3
0 |9€1—x|+ 3ut— —u
1
1 1 u
vy (o N [IG)
3 3
+v9
1 1 1
0 - -0 !
3 3 3
1
0 -
3
+9 = 3.
1
- 0
3
(28)
So,
(M—M 0 ) 2<x 0) 13 °
a< +§ gg
0 |x — ul 0 |x| o 1
3
|9El—x}+‘9u1—u‘ 0
0 ’921 —x‘ + ’9141 - u’
L 0 0 ! 1 1
3 3 (Iu—fl 0 )
. +
1 pl
- T 0 jul - €|
3 3
0 1
3 2<x 0)
3 <
1 0 0 ]
3
(29)

Clearly, g and {T;},., are w-compatible. Therefore, all
conditions in Theorem 5 hold, and (0,0,0) is the unique
tripled common fixed point of g and {T'},.,.

3. Application

Consider the following sequence of the integral equations:

MO=JJdetﬂ+Y%nLQXLU¢X@D+@UJJGD
+hy(t, s, x(s))ds + h(t),
(30)
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for all r,t,s € E, where E is a Lebesgue measurable set and
m(E) < oo.

Denote by X = L®(E) the set of essentially bounded mea-
surable functions on E. We consider the following
assumptions:

(i) fpgphi :ExXExR—-R, Y,:ExExE—0,00),
Y, : EXEXE — —00,0) are integrable, and h € L

(E)
(ii) There is k € (0, 1/2) so that for all ¢!, ¢* € R

0<|fi(t5,2(s)) = fi(ts s, €(s)) | < k(¢! - &%),
—k(€' - €) <|g;(t, 5, €'(5)) - gi(t, 5, € (s))| <0, (31)
0< (85,81 (s)) = hi(ts 5, €(s)) | < k(2! - &%),

for all s, t € E with

1
)
ksa?=| " ,
1
° %
32
1 )
5
k<% =
1
- 0
9
(iii) sup e[, (Y (1,5 6) = Yy(r, s t)ds<1

Theorem 7. Suppose that assumptions (i)-(iii) hold. Then,
(30) has a unique solution in L (E).

Proof. Let X = L°(E) and B(L*(E)) be the set of bounded lin-
ear operators on the Hilbert space L?(E). We endow X with
the cone metric U : X x X — B(L*(E)) defined by U(f, g)
=M,;_,» where M;_, is the multiplication operator on L?
(E). Tt is clear that (X, B(L*(E)), D) is a complete C*-alge-
bra-valued metric space. Define the self-mapping T : X°
— X by

T(0, 0,0 (1) =T, (€, &, ) (t) = JE(Yl(r, s t)+ 1,(r,st))

(fi(t s,El(s)) +9g;(ts Ez(s)) +hy(t,s, 23(5)))ds +h(t),
(33)

forall €', 02, 0> ¢ X and r,s,t € E.
Now, we have

O(T; (¢, &, ), T;(u', u?, ) = M (0,201t a20)|
(34)

Using (31), we have

|T,- ((’,1, e, 23) (r) - Tj(ul, u?, u3)(t)| =

J (Y(r,s,t) + Yy(r,5, 1))

E

. (f,.(t, s, El(s))) +gi(t, s, Ez(s)) +hi(t, s, 33(5)))515
—J (Y\(r,s, 1)+ Yy(n,s ))(fi(t,s, ul(s))) +gi(t,s, uz(s))

(D)l = || (V10550 X5 ) (1,159
5 6) + (15 B0) - 0,(65.126) + (5. 0(9)
(%))
)

(t S, u )ds|

(t s u ds| < J (18 1) + 1y(r, 5, 1))]

)ds|
}( i(ts, 2 s) fi(ts,u'(s))) +g;(t.s ¢ ())—gi(t,s,uz(s)))
+h(t, 5, €(s)) = hy(t,s,u (s)))|dssi:1€;;JE\(T1(r, s,t)+ Y, (s 1))
-ds.k(}(%1 7u1| + |82 - u2| + |{’,3 - u3|)
<k(fje -+ € -, + 10 -, )

(35)

forall r,s,t €E.
Therefore, for any ¢ € L*(E), we have

[ T;(¢", €, €°) = T (u', . o ||_HM|T (8.02.8) =T (ul 2|

= sup (M|T(El £0)-T u2u3)|> = su}_)J T (¢, &, ¢)
llpll=1 loll=1J E

=T, 00) () lp(e)plt)d < sup | o) e
lel=1JE

k(e =+ e =2+ e =)
<k(fje =l + e =, + 12 2]l
<|BP (||e —u' ], + € -], + € =2]l,)
- 99(“21 —u|| |||+ ]|e - u3’|m)%*.
(36)

Consequently,

O(T; (31, e, 33), Tj(ul, W, u3)) < ﬂ[U(Bl, 22, {’,3)

37
+0(ul, Ty, (u', u?, u?)) o™ + BO(u', €') B G7)

Hence, all hypotheses of Corollary 6 hold. Hence, (30)
possesses a unique solution in L (E).
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