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In this study, we deal with the problem of constructing semianalytical solution of mathematical problems including space-time-
fractional linear and nonlinear differential equations. The method, called Shehu Variational Iteration Method (SVIM), applied in
this study is a combination of Shehu transform (ST) and variational iteration method (VIM). First, ST is utilized to reduce the
time-fractional differential equation with fractional derivative in Liouville-Caputo sense into an integer-order differential equation.
Later, VIM is implemented to construct the solution of reduced differential equation. The convergence analysis of this method and
illustrated examples confirm that the proposed method is one of best procedures to tackle space-time-fractional differential equations.

1. Introduction

Last couple of decades, employing fractional differential
equations in modelling of processes such as dynamical sys-
tems, biology, fluid flow, signal processing, electrical net-
works, reaction and diffusion procedure, and advection–
diffusion–reaction process [1–4] has gained great importance
since these models reflect the behaviour of the processes bet-
ter than integer-order differential equations.

Consequently, a great deal of methods such as [3, 4] are
established to construct analytical and numerical solutions of
fractional differential equations. Moreover, their existence,
uniqueness, and stability have been studied bymany scientists.

One of the significant integral transformations is Shehu
transformation proposed by Maitama and Zhao [5]. This linear
transformation is a generalization of Laplace transformation.
However, the Laplace transformation is obtained by substitut-
ing q = 1 in Shehu transformation. By this transformation, dif-
ferential equations are reduced into simpler equations.

Various methods such as the homotopy perturbation
method (HPM) and VIM are utilized to establish approxi-
mate solutions of differential equations of any kind [6, 7].
As a result, it is employed widely to deal with differential
equations in various branches of science [8–11]. VIM has
been modified by many researchers to improve this method.

By modified VIM, the approximate solutions of initial value
problems can be established by making use of an initial
condition.

2. Preliminaries

In this section, preliminaries, notations, and features of the frac-
tional calculus are given [12, 13]. Riemann-Liouville time-
fractional integral of a real valued function uðx, tÞ is defined as

Iαt u x, tð Þ = 1
Γ αð Þ

ðt
0
t − sð Þα−1u x, sð Þds, ð1Þ

where α > 0 denotes the order of the integral.
The αth-order Liouville-Caputo time-fractional deriva-

tive operator of uðx, tÞ is defined as

∂αu x, tð Þ
∂tα

= Im−α
t

∂mu x, tð Þ
∂tm

� �

=

1
Γ m − αð Þ

ðt
0
t − yð Þm−α−1 ∂

mu x, yð Þ
∂ym

dy, m − 1 < α <m,

∂mu x, tð Þ
∂tm

,  α =m:

8>>><
>>>:

ð2Þ
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The function

Eα,β zð Þ = 〠
∞

k=0

zk

Γ αk + βð Þ ,

Re αð Þ > 0,
z, β ∈ℂ,

ð3Þ

is called Mittag-Leffler function depending on two parame-
ters α and β.

The following set of functions has Shehu transformation:

f tð Þj∃P, τ1, τ2 > 0, f tð Þj j < Pe tj j/τ j , if t ∈ −1ð Þj × 0,∞½ Þ
n o

,

ð4Þ

and it is defined as

S f tð Þ½ � = F p, qð Þ =
ð∞
0
e− p/qð Þt f tð Þdt, ð5Þ

which has the following property:

S tα½ � =
ð∞
0
e− pt/qð Þtαdt = Γ α + 1ð Þ q

p

� �α+1
,

Re αð Þ > 0:
ð6Þ

The inverse Shehu inverse transform of ðq/pÞnα+1 is defined
as

S−1 q
p

� �nα+1
" #

= tnα

Γ nα + 1ð Þ ,

Re αð Þ > 0,
ð7Þ

where n > 0 [5].
For the αth-order of Liouville-Caputo time-fractional

derivative of f ðx, tÞ, the Shehu transformation has the fol-
lowing form [14]:

S
∂α f x, tð Þ

∂tα

� �
= p

q

� �α

S f x, tð Þ½ �

− 〠
n−1

k=0

p
q

� �α−k−1 ∂k f x, 0ð Þ
∂tk

" #
, n − 1 < α ≤ n, n ∈ℕ:

ð8Þ

3. Main Results

3.1. Fractional Shehu Variational Iteration Method. To reveal
the fundamental notions of this method, let us take the fol-
lowing space-time-fractional initial value problem in the
Liouville-Caputo fractional derivative:

CD
α
t u x, tð Þ + R u, CDβ

xu ; x, t
� �

+N u, CDβ
xu ; x, t

� �
= g x, tð Þ, m − 1 < α ≤m, n − 1 < β ≤ n,m, n = 1, 2, 3,⋯,

ð9Þ

∂m−1u x, tð Þ
∂tm−1

" #
t=0

= gm−1 xð Þ, ð10Þ

where N , R, and gðx, tÞ denote the nonlinear, linear part of
the differential equation, and the source function,
respectively.

Utilizing Shehu transformation for Equation (9), we have

S u x, tð Þ½ � = 〠
m−1

k=0

q
p

� �k+1 ∂ku x, 0ð Þ
∂tk

" #

−
q
p

� �α

S R u, CDβ
xu ; x, t

� �
+N u, CDβ

xu ; x, t
� �h i

+ q
p

� �α

S g x, tð Þ½ �:

ð11Þ

Employing the inverse Shehu transformation for Equa-
tion (11) leads to

u x, tð Þ = k x, tð Þ − S−1 q
p

� �α

S R u, CDβ
xu ; x, t

� �hh�

+N u, CDβ
xu ; x, t

� �ii�
,

ð12Þ

where kðx, tÞ = S−1½ðq/pÞα½S½∑m−1
k=0 ½ðp/qÞk+1ð∂kuðx, 0Þ/∂tkÞ���

+ ðq/pÞαS½gðx, tÞ��, and so

∂u x, tð Þ
∂t

+ ∂
∂t

S−1 q
p

� �α

S R u, CDβ
xu ; x, t

� �hh�

+N u, CDβ
xu ; x, t

� �ii�
−

∂
∂t

k x, tð Þ = 0:
ð13Þ

The following recurrence relation is established by VIM:

um+1 x, tð Þ = um x, tð Þ
−
ðt
0

∂um x, τð Þ
∂τ

+ ∂
∂τ

S−1 q
p

� �α

S R um, CD
β
xum ; x, τ

� �hh��

+N um, CD
β
xum ; x, τ

� �ii�
−

∂
∂τ

k x, τð Þ�dτ:

ð14Þ

Alternately,

um+1 x, tð Þ = k x, t ; βð Þ − S−1 q
p

� �α

S R um, CD
β
xum ; x, t

� �hh�

+N um, CD
β
xum ; x, t

� �ii�
ð15Þ

is called the ðm + 1Þth-order of truncated solution.
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If

lim
m→∞

um x, tð Þ ð16Þ

exists, then the analytical solution uðx, tÞ = lim
m→∞

umðx, tÞ.

3.2. Convergence Theorem. Now, the convergence of VIM is
investigated and required conditions and error estimate
[15] are established for Equation (9).

The operator V is introduced as

V = −
ðt
0

∂um x, τð Þ
∂τ

+ ∂
∂τ

S−1 q
p

� �α

S R um, CD
β
xum ; x, τ

� �hh��

+N um, CD
β
xum ; x, τ

� �ii�
−

∂
∂τ

k x, τð Þ�dτ,

ð17Þ

where vk, k = 0, 1, 2,⋯, denote the components of the solu-
tion satisfying

u x, tð Þ = lim
m→∞

um x, tð Þ = 〠
∞

k=0
vk: ð18Þ

Theorem 1 [16]. Let V , defined in (5∗), be an operator from a
Banach space BS to BS. The series solution uðx, tÞ = lim

m→∞
umð

x, tÞ =∑∞
k=0vk as defined in (6∗) converges if 0 < p < 1 exists

such that kV ½v0 + v1 + v2+⋯+vk+1�k ≤ pkV ½v0 + v1 + v2+⋯+
vk�k, (i.e., kvk+1k ≤ kvkk), ∀k ∈ℕ ∪ f0g.

Theorem 1, obtained from the Banach fixed-point theo-
rem, is utilized to establish a sufficient condition for the con-
vergence of fractional VIM.

Theorem 2 [16]. The exact solution of nonlinear problem (9)
exists under the condition that the series solution uðx, tÞ =
∑∞

k=0vk defined in (18) converges.

Theorem 3 [16]. Suppose that the series solution ∑∞
k=0vk

defined in (18) converges to the solution uðx, tÞ. The maxi-
mum error Ejðx, tÞ for the approximate solution ∑j

k=0vk sat-
isfies the following inequality:

Ej x, tð Þ ≤ 1
1 − p

pj+1 v0k k: ð19Þ

The series solution∑∞
k=0vk of problem (9) is convergent to

an exact solution uðx, tÞ, if the conditions

0 < χi ≤ 1, ð20Þ

∀i ∈ℕ ∪ f0g, hold where the parameters χi for i ∈ℕ ∪
f0g are introduced as

χi =
vi+1k k
vik k ,  vik k ≠ 0,

0,  vik k = 0:

8><
>: ð21Þ

Furthermore, the maximum absolute truncation error
satisfies the inequality

u x, tð Þ − 〠
∞

k=0
vk

�����
����� ≤

1
1 − χ

χj+1 v0k k, ð22Þ

where χ =max fχi, i = 0, 1, 2,⋯, jg.

Table 1: Comparison of the exact solution with the truncated solutions by SVIM for various β and α for Example 1.

t
x

α = 0:5 α = 0:75 α = 1
β = 0:5 β = 0:75 β = 1
uour uour uour uexact

0,2

-5 -0,0728794142905183 -0,0556900475433218 0,00822974704902003 0,00822974704902003

0 0,464049675672513 0,865372126175867 1,22140275816017 1,22140275816017

5 272,995384456584 235,378704685654 181,272241875151 181,272241875151

0,4

-5 -0,102568289434788 -0,0717844261439092 0,0100518357446336 0,0100518357446336

0 0,653089516564494 1,11546396921542 1,49182469764127 1,49182469764127

5 384,205469814638 303,402959554171 221,406416204187 221,406416204187

0,6

-5 -0,140869106433447 -0,0919274211102744 0,0122773399030684 0,0122773399030684

0 0,896964716156101 1,42846758746576 1,82211880039051 1,82211880039051

5 527,674601164535 388,539034541079 270,426407426153 270,426407426153

0,8

-5 -0,190052579642384 -0,117094221086887 0,0149955768204777 0,0149955768204777

0 1,21013373669836 1,81953651567707 2,22554092849247 2,22554092849247

5 711,908534824601 494,908647082167 330,299559909649 330,299559909649

1

-5 -0,252961550186961 -0,148489952829492 0,0183156388887342 0,0183156388887342

0 1,61069797918433 2,30739731539736 2,71828182845905 2,71828182845905

5 947,556128411521 627,605367523717 403,428793492735 403,428793492735
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4. Illustrative Examples

Example 1. Let us consider following space-time-fractional
initial value problem

CDα
t u x, tð Þ = CD2β

t u x, tð Þ, 0 < α ≤ 1, 1 < 2β ≤ 2, 0 ≤ x ≤ l, t > 0,
ð23Þ

u x, 0ð Þ = Eβ,1 xβ
� �

: ð24Þ

Step 1. Implementing Shehu transform for (23), we have

S u x, tð Þ½ � = q
p

� �
Eβ,1 xβ

� �

+ q
p

� �α

S CD2β
x u x, tð Þ

h i
:

ð25Þ

Step 2. Taking the inverse Shehu transform of (25), we get

u x, tð Þ = S−1 q
p

� �
Eβ,1 xβ

� �� �
+ S−1 q

p

� �α

S CD2β
x u x, tð Þ

h i� �
,

u x, tð Þ = Eβ,1 xβ
� �

+ S−1 q
p

� �α

S CD2β
x u x, tð Þ

h i� �
,

ð26Þ

and so

∂u x, tð Þ
∂t

= ∂
∂t

Eβ,1 xβ
� �

+ ∂
∂t

S−1 q
p

� �α

S CD2β
x u x, tð Þ

h i� �
,

∂u x, tð Þ
∂t

−
∂
∂t

S−1 q
p

� �α

S CD2β
x u x, tð Þ

h i� �
= 0:

ð27Þ

Step 3. Employing the variational iteration method, we obtain

um+1 x, tð Þ = um x, tð Þ −
ðt
0

∂um x, τð Þ
∂τ

�

−
∂
∂τ

S−1 q
p

� �α

S CD2β
x u x, tð Þ

h i� �#
dτ:

ð28Þ

Based on the iteration formula (28), we have

u0 x, tð Þ = Eβ,1 xβ
� �

,

u1 x, tð Þ = Eβ,1 xβ
� �

+ Eβ,1 xβ
� � tα

Γ α + 1ð Þ ,

u2 x, tð Þ = Eβ,1 xβ
� �

1 + tα

Γ α + 1ð Þ + t2α

Γ 2α + 1ð Þ
� �

,

u3 x, tð Þ = Eβ,1 xβ
� �

1 + tα

Γ α + 1ð Þ + t2α

Γ 2α + 1ð Þ + t3α

Γ 3α + 1ð Þ
� �

:

ð29Þ

By using the recurrence relation, we obtained the mth

approximate solution of (23) as follows:

um x, tð Þ = Eβ,1 xβ
� �

〠
m

k=0

tkα

Γ kα + 1ð Þ , m = 0, 1, 2,⋯: ð30Þ

0
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0.2

6

0.4

8

10.6

10

0.8

t

x
0.60.8 0.40.21 0

Truncated solution for 𝛽=2/3 and 𝛼=2/3 
Exact solution

u
(x

,t)

Figure 2: 6th order of truncated solutions for α = β = 2/3 and exact
solution for Example 1.
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Truncated solution for 𝛼=𝛽=3/4
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Figure 1: 6th order of truncated solutions for various values of α
and β and exact solution at x = 0:3 for Example 1.
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As a result, the analytical solution of (23) is reached by
taking the limit of (30):

u x, tð Þ = lim
m→∞

um x, tð Þ = Eβ,1 xβ
� �

Eα,1 tαð Þ, ð31Þ

where Eα,1ðtαÞ is the two-parameter Mittag-Leffler function.
Notice from Table 1 and Figure 1 that the values of the

solution for α = β = 1 and exact solution are the same which
implies that the method implemented in this study is one of
the best one for the solution of space-time-fractional differ-
ential equations of any order. Moreover, it is clear from
Figure 1 that as α and β tend to 1, the corresponding solu-
tions tend to exact solution. Three-dimensional graphs of
exact solution and a truncated solution are given in Figure 2.

Example 2. Let us consider the space-time-fractional equation

CD
α
t u x, tð Þ = CD

β
xu x, tð Þ

� �2

− u x, tð ÞCDβ
xu x, tð Þ, 0 < α, β ≤ 1, 0 ≤ x ≤ l, t > 0,

ð32Þ

with the condition at t = 0.

u x, 0ð Þ = 3 + 5
2 Eβ,1 xβ

� �
: ð33Þ

Step 1. Carrying out Shehu transform of (32), we have

S u x, tð Þ½ � = q
p

� �
u x, 0ð Þ + q

p

� �α

S CD
β
xu x, tð Þ

� �2
�

− u x, tð ÞCDβ
xu x, tð Þ

�
:

ð34Þ

Step 2. Enforcing inverse Shehu transform of (34), we obtain

u x, tð Þ = u x, 0ð Þ + S−1 q
p

� �α

S CD
β
xu x, tð Þ

� �2
��

− u x, tð ÞCDβ
xu x, tð Þ

ii
,

ð35Þ

and so

∂u x, tð Þ
∂t

−
∂
∂t

S−1 q
p

� �α

S CD
β
xu x, tð Þ

� �2
��

− u x, tð ÞCDβ
xu x, tð Þ

ii
= 0:

ð36Þ

Step 3. Utilizing the variational iteration method, we have

um+1 x, tð Þ = um x, tð Þ −
ðt
0

∂um x, τð Þ
∂τ

�

−
∂
∂τ

S−1 q
p

� �α

S CD
β
xum x, τð Þ

� �2
��

− um x, τð ÞCDβ
xum x, τð Þ

���
dτ:

ð37Þ

Based on the iteration formula (37), we have

u0 x, tð Þ = 3 + 5
2 Eβ,1 xβ

� �
,

u1 x, tð Þ = 3 + 5
2 Eβ,1 xβ

� �
−
15
2 Eβ,1 xβ

� � tα

Γ α + 1ð Þ ,

u2 x, tð Þ = 3 + 5
2 Eβ,1 xβ

� �
−
15
2 Eβ,1 xβ

� � tα

Γ α + 1ð Þ
+ 45

2
tα

Γ α + 1ð Þ Eβ,1 xβ
� � t2α

Γ 2α + 1ð Þ ,

u3 x, tð Þ = 3 + 5
2 Eβ,1 xβ

� �
−
15
2 Eβ,1 xβ

� � tα

Γ α + 1ð Þ
+ 45

2
tα

Γ α + 1ð Þ Eβ,1 xβ
� � t2α

Γ 2α + 1ð Þ
−
135
2 Eβ,1 xβ

� � t3α

Γ 3α + 1ð Þ ,

u4 x, tð Þ = 3 + 5
2 Eβ,1 xβ

� �
−
15
2 Eβ,1 xβ

� � tα

Γ α + 1ð Þ
+ 45

2
tα

Γ α + 1ð Þ Eβ,1 xβ
� � t2α

Γ 2α + 1ð Þ
−
135
2 Eβ,1 xβ

� � t3α

Γ 3α + 1ð Þ
+ 405

2 Eβ,1 xβ
� � t4α

Γ 4α + 1ð Þ :

ð38Þ

By using the recurrence relation, the mth approximate
solution of (32) is obtained as follows:
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Truncated solution for 𝛼=𝛽=2/3
Truncated solution for 𝛼=𝛽=3/4
Truncated solution for 𝛼=𝛽=1
Exact solution

Figure 3: 6th order of truncated solutions for various values of α
and β and exact solution at x = 0:3 for Example 2.
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um x, tð Þ = 3 + 5
2〠

m

k=0

−3tαð Þk
Γ kα + 1ð Þ

" #
〠
m

l=0

xβ
	 
l

Γ lβ + 1ð Þ : ð39Þ

Hence, the analytical solution of (32) and (33) is reached
by taking the limit of (39):

u x, tð Þ = lim
m→∞

um x, tð Þ = 3 + 5
2 Eα,1 −3tαð Þ

� �
Eβ,1 xβ

� �
, ð40Þ

which is the same as obtained in [17].
As in Example 1, it is obvious from Table 2 and Figure 3

that the values of the solution for α = β = 1 and exact solution
are the same and as α and β tend to 1, the corresponding
solutions tend to exact solution which indicates that the
method employed in this research is a good choice for the
solution of space-time-fractional differential equations of
any order in Figure 4, 3-dimensional graphs of exact solution
and a truncated solution are presented.

5. Conclusions

In this research, the targeted goal is to construct truncated
solutions of linear/nonlinear space-time-fractional initial
value problem by employing SVIM, the combination of the
Shehu transform and variational iteration method. The main
advantage of this method is that its implementation is
straightforward and fruitful. Moreover, the illustrated exam-
ples reveal that the obtained approximate solutions with high
precision converge swiftly to exact analytical solutions.

In the future study, this method and its improved modi-
fications are applied to initial value problems including
space-time-fractional linear and nonlinear differential
equations.
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