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The soliton molecules, as bound states of solitons, have attracted considerable attention in several areas. In this paper, the ð2 + 1Þ
-dimensional higher-order Boussinesq equation is constructed by introducing two high-order Hirota operators in the usual ð2 + 1Þ
-dimensional Boussinesq equation. By the velocity resonance mechanism, the soliton molecule and the asymmetric soliton of the
higher-order Boussinesq equation are constructed. The soliton molecule does not exist for the usual ð2 + 1Þ-dimensional
Boussinesq equation. As a special kind of rational solution, the lump wave is localized in all directions and decays algebraically.
The lump solution of the higher-order Boussinesq equation is obtained by using a quadratic function. This lump wave is just the
bright form by some detail analysis. The graphics in this study are carried out by selecting appropriate parameters. The results
in this work may enrich the variety of the dynamics of the high-dimensional nonlinear wave field.

1. Introduction

The ð2 + 1Þ-dimensional Boussinesq equation can describe
the propagation of small-amplitude long waves in shallow
water. The physical and dynamical structures of the ð2 + 1Þ
-dimensional Boussinesq equation are investigated by using
various methods [1–4]. The ð2 + 1Þ-dimensional Boussinesq
equation reads

utt + γuxx + 3γ u2
� �

xx
− αuxxxx + μuyy = 0, ð1Þ

where α, γ, and μ are arbitrary constants. It can be trans-
formed into the Hirota form:

D2
t + γD2

x − αD4
x + μD2

y

� �
f · f = 0, ð2Þ

with the dependent variable transformation:

u = 2 ln fð Þxx: ð3Þ

The ð2 + 1Þ-dimensional Boussinesq equation reduces
the ð1 + 1Þ-dimensional Boussinesq form with μ = 0. The
ð1 + 1Þ-dimensional Boussinesq equation includes the
“good” Boussinesq form and “bad” Boussinesq form with
α < 0 and α > 0, respectively [5]. Investigating deeper into
properties of this model (1), the extended ð2 + 1Þ-dimen-
sional Boussinesq equations are introduced based on the
usual Boussinesq equation (1) [6, 7]. The topological
kink-type soliton solutions of the extended ð2 + 1Þ
-dimensional Boussinesq equation are obtained by the
sine-Gordon expansion method [6]. The modified expo-
nential expansion method is applied to the coupled Bous-
sinesq equation [7]. The multisoliton solutions, breather
solutions, and rogue waves of the generalized Boussinesq
equation are obtained via the symbolic computation
method [8] and the polynomial functions in the bilinear
form [9]. Generally, seeking exact solutions to nonlinear
evolution equations is a vital task in soliton theory. Many
methods have been proved effective in finding the exact
solutions of the soliton equation [10–12]. By using the
extended auxiliary equation method and the extended
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direct algebraic method, the solitary traveling wave solu-
tions and the stability of these solutions are analyzed
[10–12]. In this work, we shall study the soliton molecule
and lump wave of the higher-order Boussinesq equation
by solving the bilinear form of the higher-order Boussi-
nesq equation.

The soliton molecule which is formed by the balance of
repulsive and attractive forces between solitons is treated as
a boundary state [13]. It was first predicted within the frame-
work of the nonlinear Schrödinger-Ginzburg-Landau equa-
tion [14]. Many effects including nonlinear and dispersive
effects are a key role in the soliton molecule. The soliton
molecule has become a focus of intense research in both
experiment and simulation [13–17]. The theoretical frame-
works to address the soliton molecule have been intro-
duced [18, 19]. Recently, Lou proposed the velocity
resonance mechanism to construct the soliton molecules
of the ð1 + 1Þ-dimensional nonlinear systems [20]. The
velocity resonance mechanism is one of the useful
methods to form the soliton molecule [20]. To balance
the nonlinear effects, the high-order dispersive terms may
play a key role in the velocity resonance mechanism
[21]. The soliton molecule of a variety of integrable sys-
tems has been verified with the velocity resonance mecha-
nism: the fifth-order Korteweg-de Vries (KdV) equation
[22, 23], the modified KdV equation [24, 25], the ð3 + 1Þ
-dimensional Boiti-Leon-Manna-Pempinelli equation [26],
and so on [27]. The dynamics between soliton molecules
and breather solutions and between soliton molecules
and dromions are presented by the velocity resonance
mechanism, the Darboux transformation, and the variable
separation approach [25–28].

In this paper, we try to construct the ð2 + 1Þ-dimensional
higher-order Boussinesq equation which possesses the soli-
ton molecule. The soliton molecule is absent in the usual ð2
+ 1Þ-dimensional Boussinesq equation. This paper is orga-
nized as follows. In Section 2, the soliton molecule and the
asymmetric soliton of the ð2 + 1Þ-dimensional higher-order
Boussinesq equation are constructed by the velocity reso-

nance condition. In Section 3, the lump solution of the
higher-order Boussinesq equation is obtained by solving the
corresponding Hirota bilinear form. Finally, the conclusions
of this paper follow in the last section.

2. Soliton Molecule for the ð2 + 1Þ-Dimensional
Higher-Order Boussinesq Equation

Based on the bilinear form of the ð2 + 1Þ-dimensional
Boussinesq equation, we can construct the higher-order
form by introducing the high-order Hirota operators (D6

x
and D4

y):

D2
t + γD2

x − αD4
x − βD6

x + μD2
y + νD4

y

� �
f · f = 0, ð4Þ

where D is the bilinear derivative operator [29]:

Dl
xD

n
yD

m
t f · gð Þ = ∂

∂x
−

∂
∂x′

� �l ∂
∂y

−
∂
∂y′

� �n

∂
∂t

−
∂
∂t ′

� �m

f x, y, tð Þ

· g x′, y′, t ′
� ����

x
′=x,y=y′,t′=t : 

ð5Þ

Two-soliton solution of the higher-order Boussinesq
equation can be calculated as

f = 1 + exp η1ð Þ + exp η2ð Þ + a12 exp η1 + η2ð Þ, ð6Þ

where ηi = kix + liy + ωit + ci ði = 1, 2Þ. By substituting (6)
into (4), the phase shift a12 and the dispersion relation
are written as

a12 =
2γk1k2 + 2μl1l2 + 2νl1l2 2L − 3l1l2ð Þ − 2αk1k2 2K − 3k1k2ð Þ − k1k2 6K2 − 15k1k2K + 8k21k22

� �
+ 2ω1ω2

2γk1k2 + 2μl1l2 + 2νl1l2 2L + 3l1l2ð Þ − 2αk1k2 2K + 3k1k2ð Þ − k1k2 6K2 + 15k1k2K + 8k21k22
� �

+ 2ω1ω2
,

K = k21 + k22,
L = l21 + l22,

ω2
i + γk2i − αk4i − βk6i + μl2i + νl4i = 0:

ð7Þ
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The soliton molecule can be constructed with the velocity
resonance condition [30]. The velocity resonance condition
ðki ≠ kjÞ reads

ki
kj

= li
l j
= ωi

ωj
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αk4i + βk6i − γk2i − μl2i − νl4i

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αk4j + βk6j − γk2j − μl2j − νl4j

q : ð8Þ

By solving condition (8), the velocity resonant condition
becomes

kj = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β νl4i − αk4i − βk6i
� �r

k2i
,

l j = ±
li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β νl4i − αk4i − βk6i
� �r

k3i
:

ð9Þ

Above velocity resonant condition (9) cannot be obtained
while equation (4) is absent in the high-order Hirota opera-
tors D6

x and D4
y . A soliton molecule and an asymmetric soli-

ton can be constructed by selecting appropriate parameters

in (8) or (9). These phenomena are shown in Figures 1 and
2. We select the same parameters and different phases for
Figures 1 and 2. The parameters are

k1 =
1
2 ,

k2 =
ffiffiffi
2

p

8 ,

l1 =
1
4 ,

l2 =
ffiffiffi
2

p

16 ,

α = −
1
4 ,

β = 1,
γ = −1,
μ = 1,

ν = 1
2 :

ð10Þ

The phases of Figures 1 and 2 are c1 = 0, c2 = 10 and c1
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Figure 1: (a) Soliton molecule of the ð2 + 1Þ-dimensional higher-order Boussinesq equation. (b) Density plot of the corresponding soliton
molecule.
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Figure 2: (a) Asymmetric soliton of the ð2 + 1Þ-dimensional higher-order Boussinesq equation. (b) The wave propagation pattern along the x
-axis by selecting different times t = 60, t = 0, and t = −60 (from left to right).
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= 0, c2 = 1, respectively. The soliton molecule and the asym-
metric soliton are described in Figures 1 and 2. The soliton
molecule and the asymmetric soliton can be transformed
with each other by selecting different parameters. Two soli-
tons in the molecule have different amplitudes, while two sol-
itons in the molecule possess the same velocity.

3. Lump Solution of the ð2 + 1Þ-Dimensional
Higher-Order Boussinesq Equation

Lump solutions, which can be considered a kind of rational
function solutions, decay polynomially in all directions of
space [31–36]. One can construct lump solutions by the Hir-
ota bilinear method and the Darboux transformation [37–
45]. Lump waves of the high-dimensional nonlinear systems
are constructed by solving the Hirota bilinear method [46–
49]. A symbolic computation approach is one of the useful
methods to search the lump wave [31]. The interaction
between the lump waves and other complicated waves is pre-
sented by the symbolic computation approach [38–43]. In
this section, we shall study the dynamics of lump waves by
using the symbolic computation approach.

To obtain the lump solution of the ð2 + 1Þ-dimensional
higher-order Boussinesq equation, a quadratic function of f
is shown as

f = a1x + a2y + a3tð Þ2 + a4x + a5y + a6tð Þ2 + a7, ð11Þ

where ai ði = 1, 2,⋯,7Þ are arbitrary constants. By substitut-
ing (11) into the Hirota bilinear form (4) and balancing the
different powers of x, y, and t, the parameters are constrained
as the following three cases.

Case 1.

a1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa25 + a26

γ

s
,

a2 =
a3a5
a6

,

a4 =
a3
a6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μa25 + a26

γ

s
,

a7 = −
3νa45 a23 + a26

� �
a26 μa25 + a26
� � + 3α a23 + a26

� �
μa25 + a26
� �

γ2a26
:

ð12Þ

The solution of u can be localized in the ðx, yÞ-plane with
the parameters satisfying

μν > 0,
a7 > 0:

ð13Þ

Case 2.

a1 =
−μa25 + a26

γ
,

a2 = −a5,

a4 =
−μa25 + a26

γ
,

a7 =
6α μa25 − a26
� �2
γ2a26

−
6νa45
a26

:

ð14Þ

Case 3.

a1 =
−μa25 + a26

γ
,

a3 = −a6,

a4 =
−μa25 + a26

γ
,

a7 =
6α μa25 − a26
� �2
γ2a26

−
6νa45
a26

:

ð15Þ

In order to localize the solution of u in the ðx, yÞ-plane for
Cases 2 and 3, the parameters should be satisfied:

α μa25 − a26
� �2 − νγ2a45 > 0: ð16Þ

Take Case 1 as an example to describe the dynamics of
lump waves. By substituting (11) into (3), the lump wave of
the ð2 + 1Þ-dimensional higher-order Boussinesq equation
in Case 1 is generated:

u = 4 a23 + a26
� �

μa25 + a26
� �

γa26 f
−
8 a23 + a26
� �2

μa25 + a26
� �2x2

γ2a46 f
2 :

ð17Þ

To describe the lump wave of the ð2 + 1Þ-dimensional
higher-order Boussinesq equation, the parameters are
selected as

α = 1,
γ = 1,
a3 = 1,
a5 = 3,
a6 = 2,
μ = 1,

ν = 1
2 :

ð18Þ

The spatiotemporal structure and the density of a lump
wave are described in Figures 3(a) and 3(b), respectively.
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The critical points of the lump wave are solved:

∂u x, y, tð Þ
∂x

= 0,

∂u x, y, tð Þ
∂y

= 0:
ð19Þ

By solving above condition (19), we find that the function
u reaches the maximum value at the point ð0,−ða6/a5ÞtÞ and
the minimum values at two points ð±ð3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

αðμa25 + a26Þ2 − νγ2a25

q
Þ/ð ffiffiffi

γ
p ðμa25 + a26ÞÞ,−ða6/a5ÞtÞ. By

substituting above three points values into (17), the maxi-
mum and minimum values of the function u are ð4γ
ðμa25 + a26Þ2Þ/ð3ðαðμa25 + a26Þ2 − νγ2a25ÞÞ and −ðγðμa25 + a26Þ2Þ/
ð6ðαðμa25 + a26Þ2 − νγ2a25ÞÞ, respectively. The value of the
maximum point is bigger than zero due to a7 > 0. The ratio
between the maximum and minimum amplitudes is 8. The
lump wave of the higher-order Boussinesq equation is just
the bright form by the above detail analysis.

4. Conclusion

In summary, the soliton molecule and lump solution of the
ð2 + 1Þ-dimensional higher-order Boussinesq equation are
studied by solving the Hirota bilinear form (4). The soliton
molecule and the asymmetric soliton are obtained by the
velocity resonance mechanism. The lump solution can be
derived by using a positive quadratic function. The lump
wave of the higher-order Boussinesq equation is just the
bright form after some detail analysis. Figures 1–3 show the
dynamics of the soliton molecule and lump wave by putting
suitable parameters. The soliton molecule and the asymmet-
ric soliton can be transformed with each other by selecting
different phases. The soliton molecule and the asymmetric
soliton cannot be derived in the ð2 + 1Þ-dimensional Boussi-
nesq equation (1).

In this paper, the ð2 + 1Þ-dimensional higher-order
Boussinesq equation is constructed by introducing the

high-order Hirota bilinear operators D6
x and D4

y based on
the usual ð2 + 1Þ-dimensional Boussinesq equation. Similar
to introducing the high-order Hirota bilinear operator proce-
dure, we propose one equation

D2
t + γD2

x − 〠
n

i=1
αiD

2+2i
x

� �
+ 〠

m

j=1
βjD

2j
y

� � !
f · f = 0, ð20Þ

with αi and βj being arbitrary constants. The soliton mole-
cule and lump wave of (20) are worthy of study by the veloc-
ity resonance mechanism and the symbolic computation
approach. Rogue waves are unexpectedly high-amplitude
single waves that have been reported by using the Hirota
bilinear method [50, 51]. These nonlinear excitations of
(20) are valuable to increase understanding of the phenom-
ena between different nonlinear waves.
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