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In this article, the concept of sequential F-metric spaces has been introduced as a generalization of usual metric spaces, b-metric
spaces, JS-metric spaces, and mainly F-metric spaces. Some topological properties of such spaces have been discussed here. By
considering this notion, we prove fixed-point theorems for some classes of contractive mappings over such spaces. Examples
have been given in order to examine the validity of the underlying space and in support of our fixed-point theorems. Moreover,
our fixed-point theorem is applied to obtain solution of a system of linear algebraic equations.

1. Introduction and Preliminaries

Two distance-controlled functions have been used exten-
sively by the researchers working on fixed-point theory for
obtaining fixed points of mappings such as contractive or
expansive mappings in nature. Also, the polygonal inequality
involved in a metric-like structure plays vital role for defining
the topology on such space. But nowadays, after the intro-
duction of JS-metric space, the latest fashion is to define a
metric-type space which does not involve any type of polyg-
onal inequality (see [1–3]). There is an immense literature in
fixed-point theory and applications. For instance, in [4], a
class of generalized ðψ, α, βÞ-weak contraction has been
introduced, and some fixed-point theorems in the framework
of partially ordered metric spaces have been proved. The
authors also applied their results to a first-order ordinary
differential equation.

Now, we remember some efforts on F-metric spaces.
In [5], Asif and Nazam noticed that the existence of fixed

points of F-contractions, in an F-metric space, can be
ensured with restricted conditions on the Wardowski func-
tion F : ð0,∞Þ⟶ R. They obtained some fixed-point results
for both single and set-valued Reich-type F-contractions in

F-metric spaces. To show the usability of our results, we
present two examples. Also, an application to functional
equations is presented.

In [6], Jahangir et al. investigated some properties of
F-metric spaces. They presented a simple proof to show
that the natural topology induced by an F-metric is
metrizable. They also presented a method to construct
F-metric spaces from bounded metric spaces. They also
showed that F-metrics are not necessarily jointly continuous
functions. They showed that the Nadler fixed-point theorem
and, therefore, the Banach contraction principle in the
framework of F-metric spaces, the Schauder fixed-point the-
orem in F-normed spaces, and also some related F-metric
fixed-point results can be reduced to their original metric
versions.

We now give some definitions of generalized metric-type
spaces which are relevant to our research work.

Definition 1 (b-metric space) [7, 8]. Let Δ be a nonempty
set and h be a real number satisfying h ≥ 1: A function
σb : Δ × Δ⟶ℝ+ is a b −metric on Δ provided that

(1) σbða, cÞ = 0 if and only if a = c
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(2) σbða, cÞ = σbðc, aÞ for all a, c ∈ Δ
(3) σbða, cÞ ≤ h½σbða, eÞ + σbðe, cÞ� for all a, c, e ∈ Δ.
The space ðΔ, σbÞ is called a b-metric space.
Let Δ be a nonempty set and σg : Δ × Δ⟶ ½0,∞Þ be a

mapping. For any a ∈ Δ, let us define the set

C σg, Δ, a
� �

= anf g ⊂ Δ : lim
n⟶∞

σg an, að Þ = 0
n o

: ð1Þ

Definition 2 (JS-metric space) [9]. Let σg : Δ × Δ⟶ ½0,∞Þ
be a mapping such that

(1) σgða, cÞ = 0 implies a = c

(2) for every a, c ∈ Δ, we have σgða, cÞ = σgðc, aÞ
(3) if ða, cÞ ∈ Δ × Δ and fang ∈ Cðσg, Δ, aÞ, then σgða, cÞ

≤ l lim supn⟶∞σgðan, cÞ, for some l > 0.

The pair ðΔ, σgÞ is called a generalized metric space,
usually known as JS-metric space (JSMS).

Definition 3 (F-metric space) [10]. Let Δ be a nonempty set.
Amapping σf : Δ × Δ⟶ ½0,∞Þ is said to be anF-metric on
Δ, if for all a, c ∈ Δ, σf satisfies

(1) σf ða, cÞ = 0 if and only if a = c

σf a, cð Þ = σf c, að Þ ð2Þ

(2) For everym ∈ℕ withm ≥ 2, and for every ðuiÞm1 with
ðu1, umÞ = ða, cÞ, we have

Ω σf a, cð Þ� �
≤Ω 〠

m−1

i=1
σf ui, ui+1ð Þ

 !
+ k, a ≠ c, ð3Þ

where Ω : ð0,∞Þ⟶ ð−∞,∞Þ is an increasing func-
tion such that ΩðtnÞ⟶ −∞ for all 0-convergent
sequence ftng and k ∈ ½0,∞Þ.

The pair ðΔ, σf Þ is called an F-metric space.

Motivated from the previous definitions and based on
these ideas, we now define a new generalized metric-type
space in our next section.

2. Sequential F-Metric Spaces

In this section, we introduce the concept of sequential
F-metric space. To develop such a notion, first we define
Sðσ, Δ, aÞ≔ ffang ⊂ Δ : lim

n⟶∞
σðan, aÞ = 0g, where σ : Δ ×

Δ⟶ ½0,∞Þ is a given mapping.

Definition 4. Let Δ be a nonempty set. A mapping σ : Δ ×
Δ⟶ ½0,∞Þ is said to be a sequential F-metric if for all
a, b ∈ Δ

(F1) σða, bÞ = 0 implies a = b
(F2) σða, bÞ = σðb, aÞ
(F3) Ωðσða, bÞÞ ≤Ωðlim sup

n⟶∞
σðan, bÞÞ + p, for all fang ∈

Sðσ, Δ, aÞ, where Ω : ½0,∞�⟶ ½−∞,∞� is an increasing
function with ΩðtÞ =∞ iff t =∞, ΩðtnÞ⟶ −∞ for all 0-
convergent sequence ftng and p ≥ 0.

The triplet ðΔ, σ,ΩÞ is called a sequentialF-metric space
(SFMS). A SFMS indicated simply as ðΔ, σÞ.

Example 5. Let Λ =N and the metric σ : Λ2 ⟶ ½0,∞Þ be
defined by

σ 1, 1ð Þ = 0 ;
σ n, nð Þ = e − 1, for n ≥ 2 ;

σ 1, nð Þ = σ n, 1ð Þ = cosh 1
n + 1

� �
− 1, for n ≥ 2 ;

σ n,mð Þ = σ m, nð Þ = cosh mnð Þ − 1, for all n,m ≥ 2with n ≠m:

0
BBBBBBB@

ð4Þ

Also, let ΩðxÞ = 1 − 1/ ffiffiffi
x

p
.

For n ≥ 2, Sðσ,Λ, nÞ =∅. Let fnkg ∈ Sðσ,Λ, 1Þ. If all but
finitely many terms of fnkg are 1, then we have nothing to
prove. So, suppose that fnkg only have finitely many 1’s.
Without loss of generality, we can exclude such 1’s, and then,
we get lim sup

k⟶∞
σðm, nkÞ = lim

k⟶∞
½cosh ðmnkÞ − 1� =∞. There-

fore, 1 − 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σð1,mÞp

≤ 1 − 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim sup
k⟶∞

σðnk,mÞ
r

for allm ≥ 2.

Hence, σ is a sequential p-metric on Λ for ΩðxÞ = 1 − 1/ffiffiffi
x

p
for all x > 0 and p = 1.
Note that taking a = 3, b = 2, and c = 1, we see that

σða, bÞ − ðσða, cÞ − σðc, bÞÞ = cosh 6 − 1 − ðcosh ð1/3 − 1Þ +
cosh ð1/4 − 1ÞÞ = 198:190377258. So, σ is not a usual metric.
Now, if a, b are sufficiently large and c = 1, again, the left-
hand side in triangular inequality in a b-metric space is
greater than the right-hand side. So, σ is not also a b-metric.

To show that σ is not an F-metric space, it is sufficient to
take m = 3, a, b are sufficiently large and c = 1. So

Ω σf a, cð Þ� �
=Ω cosh mnð Þ − 1ð Þ⟶∞,

Ω 〠
2

i=1
σf ui, ui+1ð Þ

 !
+ k =Ω cosh 1

n + 1

� �
− 1

�

+ cosh 1
n + 1

� �
− 1
�
+ k⟶ k:

ð5Þ

Proposition 6. Any F-metric space ðΔ,DÞ is a SFMS.
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Proof. Since ðΔ,DÞ is an F-metric space, then for every
ða, bÞ ∈ Δ2, for every m ∈ℕ with m ≥ 2 and for every ðuiÞm1
with ðu1, umÞ = ða, bÞ, we have

f D a, bð Þð Þ ≤ f 〠
m−1

i=1
D ui, ui+1ð Þ

 !
+ k, a ≠ b ; where f , kð Þ ∈F × 0,∞½ Þ:

ð6Þ

Therefore, it follows that

f D a, bð Þð Þ ≤ f D a, cð Þ +D c, bð Þð ÞÞ + k, for a ≠ b and for any c ∈ Δ:
ð7Þ

Thus, for any a, b ∈ Δ, if we take fang ∈ Sðσ, Δ, aÞ, then
we see that

f ∗ D a, bð Þð Þ ≤ f ∗ D a, anð Þ +D an, bð Þð ÞÞ + k for all n ≥ 1, ð8Þ

where f ∗ : ½0,∞�⟶ ½−∞,∞� is defined by f ∗ð0Þ = −∞,
f ∗ð∞Þ =∞, and f ∗ðtÞ = f ðtÞ for all 0 < t <∞: So

f ∗ D a, bð Þð Þ ≤ f ∗ lim sup
n⟶∞

D an, bð Þ
� ��

+ k, ð9Þ

and therefore, D also satisfies condition (F3). Hence, D is a
sequential F-metric on Δ for the mapping f ∗ and k ∈ ½0,∞Þ:

Proposition 7. Any JS-metric space ðΔ, �dÞ is a SFMS.

Proof. Since �d is a JS-metric, then there exists l > 0 such that
for all a, b ∈ Δ

�d a, bð Þ ≤ l lim sup
n⟶∞

�d an, bð Þ for any anf g ∈ S �d, Δ, a
� �

: ð10Þ

Thus

Ω �d a, bð Þ� �
≤Ω lim sup

n⟶∞
�d an, bð Þ

� �
+ log lð Þ for any anf g ∈ S �d, Δ, a

� �
,

ð11Þ

for all a, b ∈ Δ. So, �d also satisfies the third condition of
Definition 4 for the function ΩðtÞ = log t for all 0 < t <∞
and Ωð0Þ = −∞, Ωð∞Þ =∞, and p = log ðlÞ: Hence, �d is a
sequential F-metric on Δ.

Remark 8.

(i) A metric space, b -metric space [7, 8], metric-like
space [11], and modular metric space with the Fatou
property [12] are JS-metric spaces. Therefore, these
spaces are also SFMS

(ii) Any s − relaxedp metric space [13] is an F-metric
space and therefore is also a SFMS. There exist b-
metric spaces which are not F-metric spaces (see

[10]); therefore, our SFMS is a stronger concept than
the concept of F-metric space.

The following is an example of a SFMS which is not
an F-metric space as well as not a b-metric space.

Example 9. Let Δ =ℕ and σ : Δ2 ⟶ ½0,∞Þ be defined by σ
ð1, 1Þ = 0, σðn, nÞ = 2, σð1, nÞ = σðn, 1Þ = 1/n2 for all n ≥ 2,
and σðn,mÞ = σðm, nÞ = 1 + ð1/m + nÞ for all m, n ∈ℕ \ f1g
with m ≠ n: Then for all n ≥ 2, Sðσ, Δ, nÞ =∅: Let fnkg ∈
Sðσ, Δ, 1Þ. If all but finitely many terms of fnkg are 1, then
we are done. So, let fnkg only have finitely many 1’s. Without
loss of generality, we can ignore such 1’s, and then, we get
lim supk⟶∞σðm, nkÞ = limk⟶∞½1 + ð1/m + nkÞ� = 1. There-
fore, σð1,mÞ ≤ lim supk⟶∞σðm, nkÞ for all m ≥ 2. So, ðΔ,
σÞ is a SFMS for ΩðtÞ = log t for all 0 < t <∞, Ωð0Þ = −∞,
Ωð∞Þ =∞ and p = 0. If it is an F-metric space, then there
exists ð f , kÞ ∈F × ½0,∞Þ such that

f σ n,mð Þð Þ ≤ f σ n, 1ð Þ + σ 1,mð Þð Þ + k for all n,m n ≠mð Þ ≥ 2:
ð12Þ

Taking n,m⟶∞, we see that f ð1 + ð1/n +mÞÞ⟶
−∞, a contradiction. Hence, σ is not an F-metric. In a
similar way, we can show that σ is not a b-metric on Δ:

Definition 10. Let ðΔ, σÞ be a SFMS. Also let fang be a
sequence in Δ and a ∈ Δ:

(i) if fang ∈ Sðσ, Δ, aÞ, fang is called convergent and
converges to a

(ii) if limn,m⟶∞σðan, amÞ = 0,fang is called Cauchy

(iii) if any Cauchy sequence in Δ is convergent, Δ is
called complete.

Definition 11. Let ðΔ, σÞ and ðY , σ∗Þ be two SFMS. If for any
ε > 0 there exists δε > 0 such that for any u ∈ Δ, σ∗ðSu, SaÞ < ε
whenever σðu, aÞ < δε, then S : Δ⟶Y is called continuous
at a point a ∈ Δ. S is said to be continuous on Δ if S is contin-
uous at each point of Δ.

Proposition 12. Let ðΔ, σÞ be a SFMS and fang be a conver-
gent sequence converging to some a, b ∈ Δ; then, a = b.

Proof. If possible, let a ≠ b. Then

Ω σ a, bð Þð Þ ≤Ω lim sup
n⟶∞

σ an, bð Þ
� �

+ p⟶ −∞, ð13Þ

since limn⟶∞σðan, bÞ = 0, a contradiction. Hence, the result.

Proposition 13. Let ðΔ, σÞ be a SFMS. If fang converges to
some a ∈ Δ, then σða, aÞ = 0.
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Proof. From the condition (F3) of Definition 4, we have

Ω σ a, að Þð Þ ≤Ω lim sup
n⟶∞

σ an, að Þ
� �

+ p⟶ −∞, ð14Þ

implying that σða, aÞ = 0.

Proposition 14. Let fang be a Cauchy sequence in a SFMS
ðΔ, σÞ. If fang has a convergent subsequence fankg which
converges to a ∈ Δ, then fang also converges to a ∈ Δ.

Proof. From condition (F3) of Definition 4, we have

Ω σ am, að Þð Þ ≤Ω lim sup
k⟶∞

σ am, ank
� �� �

+ p, for anym ≥ 1:

ð15Þ

Taking m⟶∞, we get Ωðσðam, aÞÞ⟶ −∞ as m⟶
∞. Therefore, σðam, aÞ⟶ 0 as m⟶∞, that is, am ⟶ a
as m⟶∞.

Remark 15. Here is an example of JS-metric space which is
given by Senapati et al. [14]. Let Δ =ℝ+ ∪ f0,∞g and �d :
Δ2 ⟶ ½0,∞Þ be defined by

�d a, bð Þ = a + b, either a = 0 or b = 0 ; 1 + a + b, otherwise:ð
ð16Þ

(i) In this space, we see that the sequence f1/ng con-
verges to 0, but it is not a Cauchy sequence. Since
any JS-metric space is a SFMS also, therefore, in a
SFMS, a convergent sequence is not necessarily
Cauchy

(ii) Also, in a SFMS, if fang and fbng are two sequences
convergent to a and b, respectively, then fσðan, bnÞg
may not be convergent to σða, bÞ. For this, let us con-
sider two sequences f1/2ngn≥1 and f1/ð2n + 1Þgn≥1,
and then, both the sequences converge to 0 but
�dð1/2n, 1/ð2n + 1ÞÞ = 1 + 1/2n + 1/ð2n + 1Þ⟶ 1 ≠ 0
= �dð0, 0Þ.

Proposition 16. In a SFMS ðΔ, σÞ, if a self mapping T is
continuous at a ∈ Δ, then fang ∈ Sðσ, Δ, aÞ implies that
fTang ∈ Sðσ, Δ, TaÞ.

Proof. Let ε > 0 be given. Since T is continuous at a, then for
any ε > 0, there exists δε > 0 such that σðu, aÞ < δε, u ∈ Δ,
implies σðTu, TaÞ < ε:

Let fang ∈ Sðσ, Δ, aÞ. Since fang converges to a; for δε > 0,
there existsN ∈ℕ such that σðan, aÞ < δε for all n ≥N. There-
fore, for any n ≥N, σðTan, TaÞ < ε, and thus, Tan ⟶ Ta as
n⟶∞, that is, fTang ∈ Sðσ, Δ, TaÞ.

Let ðΔ, σÞ be a SFMS with supporting function Ω and
p ≥ 0. Define

B a, ζð Þ≔ b ∈ Δ : σ a, bð Þ < σ a, að Þ + ζf g,
B a, ζ½ �≔ b ∈ Δ : σ a, bð Þ ≤ σ a, að Þ + ζf g,

ð17Þ

for all a ∈ Δ and ζ > 0.

Remark 17. The family

τσ ≔ ∅f g∪ U ≠∅ð Þ ⊂ Δ : for any a ∈U, there exists ζf
> 0 such that B a, ζð Þ ⊂Ug ð18Þ

forms a topology on Δ.

Definition 18. If there exists an open set U ⊂ Δ such that
F = Δ \U in a SFMS ðΔ, σÞ, then F is said to be closed.

Proposition 19. Let ðΔ, σÞ be a SFMS and F ⊂ Δ be closed. Let
fang ⊂ F such that an ⟶ a as n⟶∞. Then, a ∈ F.

Proposition 20. Let ðΔ, σÞ be a complete SFMS and F ⊂ Δ be
closed. Then, the subspace ðF, σÞ is also complete.

Definition 21. In a SFMS ðΔ, σÞ, for A ⊂ Δ, we define

diam Að Þ≔ sup σ a, bð Þ: a, b ∈Af g: ð19Þ

Theorem 22. Let ðΔ, σÞ be a complete SFMS and fFng be a
decreasing sequence of nonempty closed subsets of Δ such that
diamðFnÞ⟶ 0 as n⟶∞. Then, ∩ ∞

n=1Fn = fag.

3. Some Fixed-Point Theorems

Theorem 23 (Banach-type fixed-point theorem). Let ðΔ, σÞ
be a complete SFMS and ϖ : Δ⟶ Δ be a mapping which
satisfies the following conditions:

(i) σðϖðaÞ, ϖðbÞÞ ≤ μ σða, bÞ for all a, b ∈ Δ and for some
μ ∈ ð0, 1Þ

(ii) there exists a0 ∈ Δ such that δðσ, ϖ, a0Þ≔ sup fσðϖi

a0, ϖja0Þ: i, j = 1, 2,⋯g <∞.

Then, ϖ has at least one fixed-point u in Δ. Moreover, if v
and w are two fixed points of ϖ in Δ with σðv,wÞ <∞, then
v =w.

Proof. Define δðσ, ϖp+1, a0Þ≔ sup fσðϖp+ia0, ϖp+ja0Þ: i, j ≥
1g for every p ≥ 0. Since δðσ, ϖ, a0Þ <∞, then δðσ, ϖp+1,
a0Þ <∞ for all p ∈ℕ ∪ f0g: Now

σ ϖp+ia0, ϖp+ja0
� �

≤ μ σ ϖp−1+ia0, ϖp−1+ja0
� �

≤ μ δ σ, ϖp, a0ð Þ,
ð20Þ

for all i, j ≥ 1 and p ≥ 1:
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Therefore, δðσ, ϖp+1, a0Þ ≤ μδðσ, ϖp, a0Þ for all p = 1, 2,
3,⋯, from which it follows that limp⟶∞δðσ, ϖp, a0Þ = 0:
Now, for any 1 ≤ n <m, we have

σ ϖna0, ϖma0ð Þ = σ ϖn−1+1a0, ϖn−1+ m−n+1ð Þa0
� �

≤ δ σ, ϖn, a0ð Þ⟶ 0 as n⟶∞:
ð21Þ

So, fϖna0g is Cauchy in Δ, and so, there exists some u ∈ Δ
such that ϖna0 ⟶ u as n⟶∞: Thus, σðϖn+1a0, ϖuÞ ≤ μσ
ðϖna0, uÞ⟶ 0 as n⟶∞. From Proposition 12, it follows
that ϖu = u and u is a fixed point of ϖ.

Now, if v and w are two fixed points of ϖ in Δ with
σðv,wÞ <∞, then we have σðv,wÞ = σðϖv, ϖwÞ ≤ μσðv,wÞ
which gives σðv,wÞ = 0 implying that v =w.

Example 24. Let Δ =ℝ+ ∪ f0g endowed with the distance
function:

σ a, bð Þ = ea+b, if a ≠ b ;
0, if a = b:

(
ð22Þ

Then, ðΔ, σÞ is a SFMS for ΩðtÞ = −1/t and p = 1: Now,
let us define ϖ : Δ⟶ Δ as follows:

ϖ að Þ =
0, if 0 ≤ a ≤ 1 ;
a − 1, if a > 1:

(
ð23Þ

Then, ϖ has all contractive conditions of Theorem 23 for
μ = exp ð−1Þ and also satisfies all other additional conditions.
Here, ϖ has a unique fixed-point 0 in Δ.

Theorem 25 (Reich-type fixed-point theorem). Let ðΔ, σÞ be
a complete SFMS and ϖ : Δ⟶ Δ satisfy

(i) σðϖðaÞ, ϖðbÞÞ ≤ λ σða, bÞ + μ σða, ϖðaÞÞ + ν σðb,
ϖðbÞÞ for all a, b ∈ Δ and for λ, μ, ν ∈ ð0, 1Þ with λ +
μ + ν < 1

(ii) there exists a0 ∈ Δ such that δðσ, ϖ, a0Þ≔ sup fσðϖi

a0, ϖja0Þ: i, j = 1, 2,⋯g <∞.

Then, the Picard iterating sequence fang, an = ϖna0 for
all n ∈ℕ converges to some u ∈ Δ. If σðu, ϖðuÞÞ <∞ and
ΩðνtÞ + p <ΩðtÞ for all t > 0 then u ∈ Δ is a fixed point
of ϖ. Moreover, if v is a fixed point of ϖ in Δ such that
σðu, vÞ <∞ and σðv, vÞ <∞, then u = v.

Proof. Let us define δðσ, ϖp+1, a0Þ≔ sup fσðϖp+ia0, ϖp+ja0Þ:
i, j ≥ 1g for every p ≥ 0: Since δðσ, ϖ, a0Þ <∞, then δðσ,
ϖp+1, a0Þ <∞ for all p ∈ℕ ∪ f0g. Now

σ ϖp+ia0, ϖp+ja0
� �
≤ λ σ ϖp−1+ia0, ϖp−1+ja0

� �
+ μ σ ϖp−1+ia0, ϖp+ia0

� �
+ ν σ ϖp−1+ja0, ϖp+ja0

� �
for all i, j ≥ 1,

≤ r δ σ, ϖp, a0ð Þ for all p ≥ 1, where r = λ + μ + ν < 1:
ð24Þ

Proceeding in a similar way as in Theorem 23, it follows
that fϖna0g, that is, fang is Cauchy in Δ, and so, there exists
some u ∈ Δ such that an ⟶ u as n⟶∞: Therefore, we get

σ an+1, ϖuð Þ ≤ λ σ an, uð Þ + μσ an, ϖ anð Þð Þ
+ ν σ u, ϖuð Þ for any n ≥ 1,

ð25Þ

which implies that lim supn⟶∞σðan+1, ϖuÞ ≤ ν σðu, ϖuÞ.
Thus, using condition ðF3Þ of Definition 4, we have

Ω σ u, ϖuð Þð Þ ≤Ω lim sup
n⟶∞

σ an+1, ϖuð Þ
� �

+ p

≤Ω νσ u, ϖuð Þð Þ + p:

ð26Þ

Now, if σðu, ϖuÞ > 0, then by the assumed condition of
the theorem, we see that Ωðσðu, ϖuÞÞ ≤Ωðν σðu, ϖuÞÞ +
p <Ωðσðu, ϖuÞÞ, a contradiction. Thus, σðu, ϖuÞ = 0 gives
ϖu = u, and u is a fixed point of ϖ.

Now, if v is a fixed point of ϖ in Δ with σðu, vÞ <∞ and
σðv, vÞ <∞, then we have σðu, vÞ = σðϖu, ϖvÞ ≤ λ σðu, vÞ +
μ σðu, ϖuÞ + ν σðv, ϖvÞ = λ σðu, vÞ, as σðv, vÞ = 0, implying
that σðu, vÞ = 0, that is, u = v.

Corollary 26. Let ðΔ, σÞ be a complete SFMS and ϖ : Δ⟶ Δ
satisfies

(i) σðϖðaÞ, ϖðbÞÞ ≤ ν½σða, ϖðaÞÞ + σðb, ϖðbÞÞ� for all a,
b ∈ Δ and for ν ∈ ð0, 1/2Þ

(ii) there exists a0 ∈ Δ such that δðσ, ϖ, a0Þ≔ sup fσðϖi

a0, ϖja0Þ: i, j = 1, 2,⋯g <∞.

Then the Picard iterating sequence fang, an = ϖna0 for
all n ∈ℕ converges to some u ∈ Δ. If σðu, ϖðuÞÞ <∞ and
ΩðνtÞ + p <ΩðtÞ for all t > 0, then u ∈ Δ is a fixed point
of ϖ. Moreover, if v is a fixed point of ϖ in Δ such that
σðu, vÞ <∞ and σðv, vÞ <∞, then u = v.

Proof. If we take λ = 0 and μ = ν, then this corollary follows
from our Theorem 25.

Example 27. Let Δ = ½0, 1� endowed with the distance
function:

σ a, bð Þ = a − bj j + a − bj j2, if a ≠ b ;
0, if a = b:

(
ð27Þ

Then ðΔ, σÞ is a SFMS for ΩðtÞ = log t and p = log 2.
Now, let ϖ : Δ⟶ Δ be defined as

ϖ að Þ =
a
4 , if 0 ≤ a < 1

2 ;

a
5 , if 12 ≤ a ≤ 1:

8>><
>>: ð28Þ
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Then, ϖ satisfies the contractive condition of Corollary 26
for ν = 1/3. Here, all other additional conditions are also
satisfied. We see that ϖ has a unique fixed-point 0 in Δ:

Theorem 28 (Chatterjea-type fixed-point theorem). Let ðΔ,
σÞ be a complete SFMS and ϖ : Δ⟶ Δ be a mapping
satisfying

(i) σðϖðaÞ, ϖðbÞÞ ≤ χ½σða, ϖðbÞÞ + σðb, ϖðaÞÞ� for all a,
b ∈ Δ and for some χ ∈ ð0, 1/2Þ

(ii) there exists a0 ∈ Δ such that δðσ, ϖ, a0Þ≔ sup fσðϖi

a0, ϖja0Þ: i, j = 1, 2,⋯g <∞.

Then the Picard iterating sequence fang, an = ϖna0 for all
n ≥ 1 converges to some u ∈ Δ. If lim supn⟶∞σðan, ϖðuÞÞ <
∞, then u ∈ Δ is a fixed point of ϖ. Also, if v is a fixed point
of ϖ in Δ such that σðu, vÞ <∞, then u = v.

Proof. By similar argument as in Theorem 23, fang is a Cau-
chy sequence in Δ, and by the completeness of Δ, it converges
to an element say u ∈ Δ.

Now, for all n ∈ℕ ∪ f0g, σðan+1, ϖuÞ = σðϖan, ϖuÞ ≤
χ½σðan, ϖuÞ + σðan+1, uÞ�, which implies that lim supn⟶∞
σðan+1, ϖuÞ ≤ χlim supn⟶∞σðan, ϖaÞ, and therefore, lim
supn⟶∞σðan, ϖuÞ = 0. Thus, we have

Ω σ u, ϖuð Þð Þ ≤Ω lim sup
n⟶∞

σ an, ϖuð Þ
� �

+ p = −∞, ð29Þ

which gives σðu, ϖuÞ = 0, that is, ϖu = u, and u is a fixed
point of ϖ.

If v is a fixed point of ϖ in Δ with σðu, vÞ <∞, then
we have σðu, vÞ = σðϖu, ϖvÞ ≤ χ½σðu, ϖvÞ + σðv, ϖuÞ� = 2χσ
ðu, vÞ. Consequently, σðu, vÞ = 0, that is, u = v.

4. An Application to the System of Linear
Algebraic Equations

An application of Theorem 23 for solving a system of linear
algebraic equations has been presented in this section.

Consider the following system of n linear algebraic equa-
tions with n unknowns:

p11λ1 + p12λ2+⋯+p1nλn + c1 = 0,
p21λ1 + p22λ2+⋯+p2nλn + c2 = 0,

⋮

pn1λ1 + pn2λ2+⋯+pnnλn + cn = 0,

ð30Þ

where pij, ci ∈ℝ for all 1 ≤ i, j ≤ n. We can write the system of
linear equations in matrix notation as PΔ + C =O, where
P = ðpijÞn×n, Λ = ðλ1, λ2,⋯, λnÞ, C = ðc1, c2,⋯, cnÞ, and O =
ð0, 0,⋯, 0Þ. To find a solution of the system of linear Equa-
tions (30), we have to find a fixed point of the mapping
g : ℝn ⟶ℝn defined by gðΛÞ =QΛ + C, where Q = P +
In, that is, Q = ðqijÞn×n with qij = pij if i ≠ j and qii = pii +
1 for all i = 1,⋯, n.

Now, we define σ : ðℝnÞ2 ⟶ ½0,∞Þ by

σ x, yð Þ =max
1≤i≤n

λi − λi′
		 		 + λi − λi′

� �2
 �
, where x = λið Þ and y = λi′

� �
:

ð31Þ

Then, σ is a sequential F-metric for ΩðtÞ = log t and
p = log 2:

Theorem 29. If

〠
n

j=1
∣qij∣ + 〠

n

j=1
∣ qij ∣

 !2

≤ μ < 1 for all 1 ≤ i ≤ n, ð32Þ

then the system of linear Equations (30) has a unique solution
in ðℝn, σÞ.

Proof. To find a unique solution of (30), we show that the
mapping g : ℝn ⟶ℝn defined by gðxÞ =Qx + C for all
x ∈ℝn, where Q = P + In, that is, Q = ðqijÞn×n with qij = pij
if i ≠ j and qii = pii + 1 for all i = 1,⋯, n, satisfies the con-
tractive condition of Theorem 23. Now, for any x = ðλiÞ
and y = ðλi′Þ in ℝn, we have

σ g xð Þ, g yð Þð Þ =max
1≤i≤n

〠
n

j=1
qij λj − λj′
� �					

					 + 〠
n

j=1
qij λj − λj′
� � !2" #

≤max
1≤i≤n

〠
n

j=1
qij
			 			 λ j − λ j′

			 			 + 〠
n

j=1
qij
			 			 λ j − λ j′

			 			
 !2" #

≤max
1≤i≤n

〠
n

j=1
qij
			 			σ x, yð Þ + 〠

n

j=1
qij
			 			 ffiffiffiffiffiffiffiffiffiffiffiffiffi

σ x, yð Þ
p !2" #

≤ max
1≤i≤n

〠
n

j=1
qij
			 			

 !
σ x, yð Þ + max

1≤i≤n
〠
n

j=1
qij
			 			

 !2

σ x, yð Þ

= max
1≤i≤n

〠
n

j=1
qij
			 			

 !
+ max

1≤i≤n
〠
n

j=1
qij
			 			

 !2" #
σ x, yð Þ

≤ μσ x, yð Þ:
ð33Þ

Since ðℝn, σÞ is complete, therefore, due to Theorem
23, g has a unique fixed point, that is, the system of linear
Equations (30) has a unique solution in ℝn.

We now give a numerical example in respect of
Theorem 23.

Example 30. Let us consider the following system of linear
algebraic equations in three variables:

0:9λ1 + 0:1λ2 + 0:15λ3 + 1 = 0,

0:1λ1 + 0:85λ2 + 0:1λ3 + 2 = 0,

0:1λ1 + 0:05λ2 + 0:8λ3 + 3 = 0:

ð34Þ
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Then, the system of linear algebraic Equations (34) has a
unique solution.

Solution. Let Λ =ℝ3 be the SFMS endowed with the metric
σ : Λ2 ⟶ ½0,∞Þ defined by

σ x, yð Þ =max
1≤i≤3

λi − λi′
		 		 + λi − λi′

� �2
 �
, for all x = λið Þ and y = λi′

� �
inΛ:

ð35Þ

We can write the above system of linear algebraic
Equations (34) as

−0:9λ1 − 0:1λ2 − 0:15λ3 − 1 = 0,
−0:1λ1 − 0:85λ2 − 0:1λ3 − 2 = 0,
−0:1λ1 − 0:05λ2 − 0:8λ3 − 3 = 0:

ð36Þ

Here, p11 = −0:9, p12 = −0:1, p13 = −0:15, p21 = −0:1, p22 =
− 0:85, p23 = −0:1, p31 = −0:1, p32 = −0:05, p33 = −0:8, c1 = −1,
c2 = −2, and c3 = −3:

Thus, q11 = 0:1, q12 = −0:1, q13 = −0:15, q21 = −0:1, q22 =
0:15, q23 = −0:1, q31 = −0:1, q32 = −0:05, and q33 = 0:2. Also,
we see that

〠
3

j=1
qij
			 			 = 0:35, i:e:,〠

3

j=1
qij
			 			 + 〠

3

j=1
qij
			 			

 !2

= 0:4725 < 1 for all 1 ≤ i ≤ 3:
ð37Þ

Hence, from the Theorem 23, it follows that the sys-
tem of linear algebraic Equations (34) has a unique solu-
tion in ℝ3, which is given by λ1 ≃ −0:3018, λ2 ≃ −1:894,
and λ3 ≃ −3:593.
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