
Research Article
On the Exact Solitary Wave Solutions to the New (2 + 1) and
(3 + 1)-Dimensional Extensions of the Benjamin-Ono Equations

Lan Wu ,1 Xiao Zhang ,1 and Jalil Manafian 2

1School of Mathematical Sciences, Peking University, Beijing, China
2Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

Correspondence should be addressed to Jalil Manafian; j_manafianheris@tabrizu.ac.ir

Received 11 November 2020; Revised 26 December 2020; Accepted 20 March 2021; Published 21 April 2021

Academic Editor: Sergey Shmarev

Copyright © 2021 Lan Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the Kudryashov method to construct the new exact solitary wave solutions for the newly developed (2 + 1
)-dimensional Benjamin-Ono equation is successfully employed. In the same vein, also the new (2 + 1)-dimensional Benjamin-
Ono equation to (3 + 1)-dimensional spaces is extended and then analyzed and investigated. Different forms of exact solitary
wave solutions to this new equation were also determined. Graphical illustrations for certain solutions in both equations are
provided. We alternatively offer that the determining method is general, impressive, outspoken, and powerful and can be
exerted to create exact solutions of various kinds of nonlinear models originated in mathematical physics and engineering.

1. Introduction

Nonlinear evolution equations have been known for their
vital roles in many fields of engineering and nonlinear sci-
ences for long. A lot of these equations are famous in fluid
flow problems and shallow water waves applications. A very
good example for such equations is the Benjamin-Ono equa-
tion [1] that describes inner waves of deep-stratified fluids
that reads

utt + α u2
� �

xx
+ βuxxxx = 0, ð1Þ

where α and β are nonzero constants for monitoring the
nonlinear term and depth of the fluid, respectively. Fur-
ther, different studies have been carried out on this impor-
tant model ranging from analytical solution, numerical
solution, stability, and well-posedness among others. For
instance, the multisoliton solution and time-periodic solu-
tions of the Benjamin-Ono equation were presented by
Matsuno [2] and Ambrose and Wilkening [3], respectively
(see also Angulo et al. [4] for the stability, Tutiya and
Shiraishi [5] for discrete solutions, and [6–11] for other
related studies).

Additionally, the (2 + 1)-dimensional version of
Benjamin-Ono equation Eq. (1) was recently introduced by
Wazwaz [12]. The new equations has the form

utt + α u2
� �

xx
+ βuxxxx + γuyyyy = 0, ð2Þ

where α, β, and γ are nonzero constants. Note that γ should
not be zero; otherwise, we recover Eq. (1). In [12], the Hirota
bilinear method and certain ansatzs methods have been used
to construct a variety of multiple and complex soliton solu-
tions and also checked the Painlevé integrality condition.

However, in this paper, we further extend the new
(2 + 1)-dimensional Benjamin-Ono equation [12] given in
Eq. (2) to (3 + 1)-dimensional spaces and call it the
(3 + 1)-dimensional Benjamin-Ono equation given by

utt + α u2
� �

xx
+ βuxxxx + γuyyyy + δuzzzz = 0, ð3Þ

where α, β, γ, and δ are nonzero constants. Furthermore,
to present more new solitary wave solutions for the
(2 + 1)-dimensional Benjamin-Ono equation in Eq. (2)
and also to study the (3 + 1)-dimensional Benjamin-Ono
equation, we developed Eq. (3), to employ the Kudryashov
method [13, 14] as a powerful integration method for
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treating various nonlinear evolution equations (see also
[15–23] for other methods). The Kudryashov method
and its modified versions have been investigated by capa-
ble authors in the plenty of nonlinear models such as
the nonlinear differential equations [24], higher-order local
and nonlocal nonlinear equations in optical fibers [25], some
(2 + 1)-dimensional nonlinear evolution equations [26],
exact traveling wave solutions of the PHI-four equation,
and the Fisher equation [27]. As we all know, some novel
and important developments for searching the analytical sol-
itary wave solutions for PDE were investigated. Hence, there
are fascinating results on some models in which are pre-
sented in research works containing the new iterative projec-
tion method for approximating fixed point problems and
variational inequality problems [28], weighted inequalities
for the Dunkl fractional maximal function and Dunkl frac-
tional integrals [29], the Painlevé analysis, soliton molecule,
and lump solution of the higher-order Boussinesq equation
[30], and the Darboux solutions of the classical Painlevé sec-
ond equation [31]. The structure of this paper is as follows:
the analysis of the method has been summed up in “Analysis
of the Method.” In “Applications,” the applications of “Anal-
ysis of the Method” for considered equation are investigated.
Also, in “Some Graphical Illustrations,” the graphical illus-
trations for nonlinear equations will be used. In “Conclu-
sion,” the conclusions have been given.

2. Analysis of the Method

To illustrate the idea of the Kudryashov method [13, 14], we
consider the following system of nonlinear differential
equations:

F u, Txu, Txxu, Tttu, Txxxxu,⋯ð Þ = 0: ð4Þ

Applying the transformation

u x, tð Þ = f ξð Þ, ξ = ax − ct − x0, ð5Þ

where a and c are nonzero constants and x0 is arbitrary con-
stant, converts Eq. (4) to a nonlinear ordinary differential
equations as follows

H f ′, f ″, f ″′,⋯
� �

= 0, ð6Þ

where the derivatives are with respect to ξ. It is assumed that
the solutions of Eq. (6) are presented as a finite series, say

f ξð Þ = a0 + 〠
N

i=1
aiΦ

i ξð Þ, ð7Þ

where ai, i = 1, 2,⋯,N ðaN ≠ 0Þ, are constants to be com-
puted, and ΦðξÞ is given by the following function:

Φ ξð Þ = 1
1 +weξ

, ð8Þ

which satisfies the ordinary differential equation

Φ′ ξð Þ =Φ ξð Þ Φ ξð Þ − 1ð Þ: ð9Þ

Also, the value ofN is determined by homogenous balan-
cing method (see [13, 14]). Substituting Eq. (7) and its neces-
sary derivatives like

f ′ = 〠
N

i=1
aiΦ

i Φ − 1ð Þ,

f ″ = 〠
N

i=1
aiΦ

i Φ − 1ð Þ 1 + ið ÞΦ − ið Þ,

⋮

ð10Þ

into Eq. (6) gives

P Φ ξð Þð Þ = 0, ð11Þ

where PðΦðξÞÞ is a polynomial in ΦðξÞ: Equating the coeffi-
cient of each power of ΦðξÞ in Eq. (11) to zero, a system of
algebraic equations will be obtained whose solution yields
the exact solutions of Eq. (4).

3. Applications

In this section, some new solitary wave solutions of the
(2 + 1)-dimensional and (3 + 1)-dimensional Benjamin-Ono
equations are constructed using the Kudryashov method
presented above.

3.1. The (2 + 1)-Dimensional Benjamin-Ono Equation. In this
section, we will study the (2 + 1)-dimensional Benjamin-Ono
equation given by Eq. (2)

utt + α u2
� �

xx
+ βuxxxx + γuyyyy = 0, ð12Þ

where uðx, y, tÞ is a sufficiently often a differentiable function
and α, β, and γ are nonzero parameters.

To determine certain solitary wave solutions, we first
substitute

u x, y, tð Þ = f ξð Þ, ξ = ax + by − ct − x0, ð13Þ

into Eq. (12) where

Tttu = c2 f ′ ξð Þ, Txu = af ′ ξð Þ, Txxu = a2 f ″ ξð Þ,
Txxxxu = a4 f ″″ ξð Þ, Tyyyyu = b4 f ″″ ξð Þ,

ð14Þ

and convert Eq. (12) to a nonlinear ordinary differential
equation given below:

c2 f ″ + αa2 f 2
� �″ + βa4 f ″″ + γb4 f ″″ = 0: ð15Þ

Integrating Eq. (15) twice with respect to ξ, yields

c2 f + αa2 f 2
� �

+ βa4 f ″ + γb4 f ″ = 0, ð16Þ

where the integrating constant is considered zero. Balancing
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f 2 and f ″ in Eq. (12) gives 2N =N + 2, soN = 2. We integrate
Eq. (15) with

f ξð Þ = a0 + a1Φ ξð Þ + a2Φ
2 ξð Þ: ð17Þ

Substituting Eq. (17) into Eq. (16) and equating the
coefficient of each power of ΦðξÞ to zero, we get a system of
algebraic equations given below:

c2a0 + a2αa20 = 0,

c2a1 + a4βa1 + b4γa1 + 2a2αa0a1 = 0,

−3a4βa1 − 3b4γa1 + a2αa21 + c2a2
+ 4a4βa2 + 4b4γa2 + 2a2αa0a2 = 0,

2a4βa1 + 2b4γa1 − 10a4βa2 − 10b4γa2 + 2a2αa1a2 = 0,

6a4βa2 + 6b4γa2 + a2αa22 = 0:

ð18Þ

Solving the above nonlinear algebraic system, the follow-
ing results will be concluded as follows.

Case 1.

a0 = 0, a1 = −
6c2
a2α

, a2 =
6c2
a2α

, b = ∓
−c2 − a4β
� �1/4

γ1/4
: ð19Þ

Hence, the solution is formed as

u1,2 x, y, tð Þ = −
6c2/a2α
1 +weξ

+ 6c2/a2α
1 +weξ
� �2 , ξ = ax + by − ct − x0:

ð20Þ

Case 2.

a0 = −
c2

a2α
, a1 =

6c2
a2α

, a2 = −
6c2
a2α

, b = ∓
c2 − a4β
� �1/4

γ1/4
: ð21Þ

Hence, the solution is formed as

u3,4 x, y, tð Þ = −
c2

a2α
+ 6c2/a2α
1 +weξ

−
6c2/a2α
1 +weξ
� �2 , ξ

= ax + by − ct − x0:

ð22Þ

Case 3.

a0 = 0, a1 = −
6c2
a2α

, a2 =
6c2
a2α

, b = ∓
i −c2 − a4β
� �1/4

γ1/4
: ð23Þ

Hence, the solution is formed as

u5,6 x, y, tð Þ = −
6c2/a2α
1 +weξ

+ 6c2/a2α
1 +weξ
� �2 , ξ = ax + by − ct − x0:

ð24Þ

Case 4.

a0 = −
c2

a2α
, a1 =

6c2
a2α

, a2 = −
6c2
a2α

, b = ∓
i c2 − a4β
� �1/4

γ1/4
: ð25Þ

Hence, the solution is formed as:

u7,8 x, y, tð Þ = −
c2

a2α
+ 6c2/a2α
1 +weξ

−
6c2/a2α
1 +weξ
� �2 , ξ

= ax + by − ct − x0:

ð26Þ

The corresponding dynamic characteristics of the peri-
odic wave solution are plotted in Figures 1 and 2 and arise
at spaces y = −1, y = 0, and y = 1, in Figure 3, they arise at
spaces y = −10, y = −7, and y = 1, and also in Figure 4, they
arise at spaces y = −10, y = 0, and y = 1 with the following
special parameters:

a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, t = 20, ð27Þ

with considering time t = 20.

3.2. The (3 + 1)-Dimensional Benjamin-Ono Equation. In this
section, we will study the (3 + 1)-dimensional Benjamin-Ono
equation which we give as

utt + α u2
� �

xx
+ βuxxxx + γuyyyy + δuzzzz = 0, ð28Þ

where uðx, y, z, tÞ is a sufficiently often differentiable func-
tion and α, β, γ and δ are nonzero parameters. Also to deter-
mine some soliton solutions, we first substitute the
transformation

u x, y, z, tð Þ = f ξð Þ, ξ = ax + by + dz − ct − x0, ð29Þ

into Eq. (28) where

Tttu = c2 f ′ ξð Þ, Txu = af ′ ξð Þ, Txxu = a2 f ″ ξð Þ,
Txxxxu = a4 f ″″ ξð Þ, Tyyyyu = b4 f ″″ ξð Þ, Tzzzzu = d4 f ″″ ξð Þ,

ð30Þ

which converts Eq. (28) into a nonlinear ordinary differential
equation as follows:

c2 f ″ + αa2 f 2
� �″ + βa4 f ″″ + γb4 f ″″ + δd4 f ″″ = 0: ð31Þ
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Integrating (31) once with respect to ξ and setting the
integrating constant zero yield

c2 f + αa2 f 2
� �

+ βa4 f ″ + γb4 f ″ + δd4 f ″ = 0: ð32Þ

Balancing f 2 and f ″ in Eq. (32) results to 2N =N + 2, so
N = 2. This offers a truncated series as the following form:

f ξð Þ = a0 + a1Φ ξð Þ + a2Φ
2 ξð Þ: ð33Þ

Substituting Eq. (33) into Eq. (32) and equating the coef-
ficient of each power of ΦðξÞ to zero, we get the following
system of algebraic equations:

c2a0 + a2αa20 = 0,

c2a1 + a4βa1 + b4γa1 + d4δa1 + 2a2αa0a1 = 0,

−3a4βa1 − 3b4γa1 − 3d4δa1 + a2αa21 + c2a2 + 4a4βa2
+ 4b4γa2 + 4d4δa2 + 2a2αa0a2 = 0,

2a4βa1 + 2b4γa1 + 2d4δa1 − 10a4βa2 − 10b4γa2
− 10d4δa2 + 2a2αa1a2 = 0,

6a4βa2 + 6b4γa2 + 6d4δa2 + a2αa22 = 0: ð34Þ

Solving the above system, yields the following.
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Figure 1: Graph of Eq. (20) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, t = 20 and
for 2 plot spaces y = −1, 0, 1.
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Figure 2: Graph of Eq. (22) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, t = 20 and
for 2 plot spaces y = −1, 0, 1.
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Case 1.

a0 = 0, a1 = −
6c2
a2α

, a2 =
6c2
a2α

, b = ∓
−c2 − a4β − d4δ
� �1/4

γ1/4
:

ð35Þ

Hence, the solution is formed as

u1,2 x, y, z, tð Þ = −
6c2/a2α
1 +weξ

+ 6c2/a2α
1 +weξ
� �2 , ξ

= ax + by + dz − ct − x0:

ð36Þ

Case 2.

a0 = −
c2

a2α
, a1 =

6c2
a2α

, a2 = −
6c2
a2α

, b = ∓
c2 − a4β − d4δ
� �1/4

γ1/4
:

ð37Þ

Hence, the solution is formed as

u3,4 x, y, tð Þ = −
c2

a2α
+ 6c2/a2α
1 +weξ

−
6c2/a2α
1 +weξ
� �2 , ξ

= ax + by + dz − ct − x0:

ð38Þ
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Figure 3: Graph of the absolute value of Eq. (24) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r
= 1,w = 0:3, t = 20 and for 2 plot spaces y = −10, −7, 1.
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Figure 4: Graph of the absolute value of Eq. (42) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r
= 1,w = 0:3, t = 20 and for 2 plot spaces y = −10, 0, 1.
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Case 3.

a0 = 0, a1 = −
6c2
a2α

, a2 =
6c2
a2α

, b = ∓
i −c2 − a4β − d4δ
� �1/4

γ1/4
:

ð39Þ

Hence, the solution is formed as

u5,6 x, y, tð Þ = −
6c2/a2α
1 +weξ

+ 6c2/a2α
1 +weξ
� �2 , ξ

= ax + by + dz − ct − x0:

ð40Þ

Case 4.

a0 = −
c2

a2α
, a1 =

6c2
a2α

, a2 = −
6c2
a2α

, b = ∓
i c2 − a4β − d4δ
� �1/4

γ1/4
: ð41Þ

Hence, the solution is formed as

u7,8 x, y, tð Þ = −
c2

a2α
+ 6c2/a2α
1 + we ξð Þ −

6c2/a2α
1 +weξ
� �2 , ξ

= ax + by + dz − ct − x0:

ð42Þ

The corresponding dynamic characteristics of the peri-
odic wave solution are plotted in Figures 5 and 6 and arise
at spaces y = −1, y = 0, and y = 1, in Figure 7, they arise at
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Figure 5: Graph of Eq. (36) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, d = 2, δ
= −2, z = 1, t = 20 and for 2 plot spaces y = −1, 0, 1.
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Figure 6: Graph of Eq. (38) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, d = 2, δ
= −2, z = 1, t = 20 and for 2 plot spaces y = −1, 0, 1.
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spaces y = −10, y = −7, and y = 1, and also in Figure 4, they
arise at spaces y = −10, y = 0, and y = 1 with the following
special parameters:

a = 2, α = 2, β = −3, c = 2, γ = 2, r = 1,w = 0:3, d = 2, δ = −2,
ð43Þ

considering space and time z = 1, t = 20.

4. Some Graphical Illustrations

We depict in this section some graphical illustrations of the
obtained solutions for the (2 + 1)- and (3 + 1)-dimensional
extensions of the Benjamin-Ono equations, both the two

and three dimensional plots for the solutions are plotted.
Figures 1 and 4 show the graph of the solutions (20)–(26)
for the (2 + 1)-dimensional Benjamin-Ono equation, respec-
tively. Figures 5 and 8 show the behavior of the solutions
(36)–(42) for the (3 + 1)-dimensional Benjamin-Ono equa-
tion, respectively.

5. Conclusion

In conclusion, we have presented new solitary wave solu-
tions for the (2 + 1)-dimensional Benjamin-Ono equation
introduced recently by Wazwaz and also extended it to
(3 + 1)-dimensional spaces called the (3 + 1)-dimensional
Benjamin-Ono equation. While constructing the solitary
wave solutions, we make use of the Kudryashov method
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Figure 7: Graph of the absolute value of Eq. (40) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2,
r = 1,w = 0:3, d = 2, δ = −2, z = 1, t = 20 and for 2 plot spaces y = −10, −7, 1.
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Figure 8: Graph of the absolute value of Eq. (42) for the (2 + 1)-dimensional Benjamin-Ono equation at a = 2, α = 2, β = −3, c = 2, γ = 2,
r = 1,w = 0:3, d = 2, δ = −2, z = 1, t = 20 and for 2 plot spaces y = −10, −3, 1.
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being one of the powerful integration methods for treating
various nonlinear evolution equations and construct various
exponential solutions to both equations. The development of
offered method may allow the extensions of the Benjamin-
Ono equations to be used in more general configurations.
The solutions are all verified by putting them back into the
original equations with the aid of the Maple symbolic com-
putation package 18.
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