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This article intends to review quasirandom sequences, especially the Faure sequence to introduce a new version of scrambled of this
sequence based on irrational numbers, as follows to prove the success of this version of the random number sequence generator and
use it in future calculations. We introduce this scramble of the Faure sequence and show the performance of this sequence in
employed numerical codes to obtain successful test integrals. Here, we define a scrambling matrix so that its elements are
irrational numbers. In addition, a new form of radical inverse function has been defined, which by combining it with our new
matrix, we will have a sequence that not only has a better close uniform distribution than the previous sequences but also is a
more accurate and efficient tool in estimating test integrals.

1. Introduction

It is well known that Monte Carlo calculations are based on
the generation of random numbers on interval (0,1). There-
fore, the generation of random numbers that have more
uniformity on (0,1) guarantees better approximations in
these calculations. In recent years, some researchers have
employed quasirandom sequences instead of random num-
bers to aim producing extra uniformity of the randomly gen-
erated numbers on (0,1). Due to the breadth and complexity
of some problems that are mostly unsolvable by classical
mathematical methods or solving them with classical
methods is associated with more time and computational
cost, the stochastic solving of such cases with numerical
methods and using the Monte Carlo method plays a key role.
The quasirandom sequences are common in Monte Carlo
calculations such as Faure, Halton, Niederreiter, and Sobol
sequences, but due to the lack of complete success of these
sequences in Monte Carlo computation, we use scrambled
versions of them, all of which are designed to increase the
uniformity of randomly (quasirandom) generated numbers

on (0,1), so that we can estimate the obtained solution to
the desired unknown solution of the problem.

To resolve this problem, researchers are competing on
the use of scrambled quasirandom generators based on their
version of random number generation to provide more accu-
rate results in Monte Carlo calculations.

Today, Monte Carlo and quasi-Monte Carlo methods are
widely used to solve the computations of physical and math-
ematical problems. Quasi-Monte Carlo (QMC) methods play
an alternative role for Monte Carlo methods. The advantage
of these methods is that they use numbers to provide extera
uniformity on unit hypercube. This feature has led to the
use of these methods to estimate high-dimensional integrals
(Niederreiter, 1992; Spanier and Maize, 1994) [1].

So far, several quasirandom sequences (or low discrep-
ancy sequences) have been introduced for the QMC method.
Such as the Faure sequence, the Halton sequence, and the
Sobol sequence. Despite the fact that among these three
sequences, the Faure sequence has better features in terms
of discrepancy bound, but in practice, it is less used. Because,
the convergence rate of this class of sequences is not so good
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compared with the other sequences [2]. In addition, due to
the correlation between the different dimensions of the Faure
sequence, the distribution of the sequence points is not very
favorable, and we see poor two-dimensional projections
(Figure 1). To overcome this problem, many scrambling
methods have been proposed for the Faure sequence (see
[3]). In almost all of these scrambles, there are attempts to
define a new matrix by shifting numbers in the generating
matrix or the placement of the elements, and there has been
less talk about the properties of irrational numbers. The
matrix that we introduce in this paper has been selected from

several proposed matrices. Because it has good two-
dimensional projections and it is also at a very high level in
terms of integral estimation.

In the next section, the structure of the original Faure
sequence is given. We then briefly list the scramblers that
have already been introduced in Section 3. In Section 4,
we have brought our proposed matrix. Sections 5 and 6
give the evaluation criteria for the quality of the sequence
generated by our proposed matrix and compare it with
previous sequences, and in Section 7, the conclusion is
stated.
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Figure 1: 512 points from the original Faure sequence in several bases.
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2. The Faure Sequence

Suppose p ≥ 2 is a prime number, and suppose N is the num-
ber of points we want to generate, and n = ða0, a1,⋯, am−1ÞT
is a vector of integers whose components are from the expan-
sion of the number n on the base p, where 0 ≤ aj ≤ p and m
= dlogp Ne. We define the radical inverse function, ϕpðnÞ, as

ϕp nð Þ = a0
p

+ a1
p2

+⋯+ am−1
pm

: ð1Þ

For the Faure sequence, we define a different generator
matrix for each dimension. If P be the Pascal matrix, then
for a s-dimensional Faure sequence the generator matrix of
the jth dimension is CðjÞ = P j−1, 1 ≤ j ≤ s, where the member
on the row c and the column r is defined as follows:

P j−1 =
c − 1
r − 1

 !
j − 1ð Þc−r mod pð Þ, c ≥ 1, r ≥ 1: ð2Þ

Thus, let xðjÞn be represents the number n in the dimension
j in the Faure sequence, then

x jð Þ
n = ϕp P j−1n

� �
, ð3Þ

and so the s-dimensional Faure sequence is ðϕpðP0nÞ, ϕp

ðP1nÞ,⋯, ϕpðPs−1nÞÞ:

3. Scrambling the Faure Sequence

Since the introduction of the Faure sequence, several
methods were proposed to scramble it. In this section, we
give an overview of some of such scrambles.

3.1. The Generalized Faure Sequence. Tezuka [2] proposed
the generalized Faure sequence, GFaure, with the jth dimen-
sion generator matrix CðjÞ = AðjÞP j−1 and the AðjÞ for j = 1, 2
,⋯, s are arbitrary nonsingular lower triangular matrices
over Fp. A special case for AðjÞ is that all members are one
for all dimensions [4].

3.2. Random Linear (Digit) Scrambling. After reviewing dif-
ferent versions of the Owen’s method, Matoušek introduced
a scramble matrix and a transfer vector for various dimen-
sions [5]. The sequences obtained by Matoušek have the
following general form:

xn = ϕp A 1ð ÞP0n + g1

� �
, ϕp A 2ð ÞP1n + g2

� �
,⋯, ϕp A sð ÞPs−1n + gs

� �� �
:

ð4Þ

For the random linear scrambling, the matrices AðjÞ and
the vectors gj for j = 1,⋯, s are of the form

A jð Þ =

h1,1 0 0 0
h2,1 h2,2 0 0
h3,1 h3,2 h3,3 0
⋮ ⋮ ⋮ ⋱

0
BBBBBBBB@

1
CCCCCCCCA
, gj =

g1

g2

g3

⋮

0
BBBBBBBB@

1
CCCCCCCCA
, ð5Þ

where the gj’s and the hi,j with i ≥ j are chosen randomly and
independently from f0, 1,⋯, b1g, the hj,j’s are chosen ran-
domly and independently from f1, 2,⋯, p − 1g.
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Figure 2: 1000 points from the original Faure sequence.
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Random linear digit method is the basis of other scram-
bles that will follow. Even the GFaure method is a subset of
this method in which the members of the shift vectors are
all zero.

3.3. I-Binomial Scrambling. A subset of the family of random
linear scrambling methods is called left I-binomial scram-
bling [6]. Here, the AðjÞ is defined as

A jð Þ =

h1 0 0 0 0
h2 h1 0 0 0
h3 h2 h1 0 0
h4 h3 h2 h1 0
⋱ ⋱ ⋱ ⋱ ⋱

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
, ð6Þ
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Figure 4: L2-discrepancy for various randomized scramblings of a 40-dimensional Faure sequence.
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Figure 3: 1000 points from our scrambled Faure sequence.
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where h1 is chosen randomly and independently from f1, 2
,⋯, p − 1g and also hi’s ði > 1Þ are chosen randomly and
independently from f0, 1,⋯, p − 1g.

3.4. Striped Matrix Scrambling. The scrambling matrix AðjÞ

for Striped Matrix Scrambling method, has the following
form:

A jð Þ =

h1 0 0 0 0
h1 h2 0 0 0
h1 h2 h3 0 0
h1 h2 h3 h4 0
⋮ ⋮ ⋮ ⋮ ⋮

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
, ð7Þ
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Figure 5: Estimates of the integral I1ð f Þ by using various Faure sequences.
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where the hi’s are chosen randomly and independently from
f1, 2,⋯, p − 1g. The different types of this scramble are
examined in [7], only for problems in the first dimension.
Of course, it does not say what changes should be made to
the matrix for higher dimensions.

3.5. Chi’s Optimal Scramble. When we use the I-binomial
method to scramble the Faure sequence, the value of (num-
ber) h1 causes all the expansion digits of each number to be

replaced (permuted). Now, if we leave out the first digit, the
value of (number) h2 causes all the remaining digits to be
replaced (permuted).

So by cleverly selecting these two members, we can
achieve better Faure sequences.

In [8], Chi has shown that the best choice for these
two values can be obtained based on the primitive roots
of the p. Finally, the Chi’s optimal scramble matrix is as
follows:
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Figure 6: Estimates of the integral I2ð f Þ with ai = 1 by using various Faure sequences.
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Figure 7: Estimates of the integral I2ð f Þ with ai = i by using various Faure sequences.

7Advances in Mathematical Physics



0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

1.0

1.1

1.2

1.3

1.4

1.5

Comparisons among Faure sequence (s = 10)

Number of points

Es
tim

at
ed

 v
al

ue

Faure
IBinomial

RLD
Aj-41rev

(a)

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

1.0

1.1

1.2

1.3

1.4

1.5

Comparisons among Faure sequence (s = 20)

Number of points

Es
tim

at
ed

 v
al

ue
Faure
IBinomial

RLD
Aj-41rev

(b)

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

1.0

1.1

1.2

1.3

1.4

1.5

Comparisons among Faure sequence (s = 30)

Number of points

Es
tim

at
ed

 v
al

ue

Faure
IBinomial

RLD
Aj-41rev

(c)

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

1.0

1.1

1.2

1.3

1.4

1.5

Comparisons among Faure sequence (s = 40)

Number of points

Es
tim

at
ed

 v
al

ue

Faure
IBinomial

RLD
Aj-41rev

(d)

Figure 8: Estimates of the integral I2ð f Þ with ai = i2 by using various Faure sequences.
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A jð Þ =

hj−11 0 0 0

h2 hj−11 0 0

0 h2 hj−11 0

0 0 h2 hj−11

⋮ ⋮ ⋮ ⋱

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
, ð8Þ

3.6. Inverse Scrambling. Fathi and Eskandari [9] adapted
Chi’s optimal matrix and introduced two kind of matrix
AðjÞ as follows:

A jð Þ
1 =

dj−1 0 0 0
0 dj−1 0 0
0 0 dj−1 0
⋮ ⋮ ⋮ ⋱

0
BBBBBBBB@

1
CCCCCCCCA
, A jð Þ

2 =

dj−1 0 0 0
0 dj 0 0
0 0 dj+1 0
⋮ ⋮ ⋮ ⋱

0
BBBBBBBB@

1
CCCCCCCCA
,

ð9Þ

where d is chosen from f1, 2,⋯, p − 1g for j = 1,⋯, s.
Based on nonlinear congruential method, they proposed

another scrambling method for the Faure sequence for which
the jth coordinate of the nth point has the general form

x jð Þ
n = ϕp Φ−1 A jð ÞΨ P j−1n

� �
+ gj

� �� �
, ð10Þ

where ΦðxÞ and ΨðxÞ are bijections that map a digit vector x
to another digit vector.

4. Scrambling Matrix with Irrational Members

In this section, corresponding to the method of random lin-
ear digits, we introduce a scrambling matrix that its members
are a function of square root of base p (that is, they are
irrational numbers).

After testing many functions, we found the following
function that has the most performance:

A jð Þ =

ffiffiffi
p

p
− 1 0 0 0ffiffiffi

p
p

− 1 ffiffiffi
p

p
− 1 0 0ffiffiffi

p
p

− 1 ffiffiffi
p

p
− 1 ffiffiffi

p
p

− 1 0ffiffiffi
p

p
− 1 ffiffiffi

p
p

− 1 ffiffiffi
p

p
− 1 ffiffiffi

p
p

− 1

0
BBBBBBBB@

1
CCCCCCCCA
: ð11Þ

In (1), we introduced the common form of radical inverse
function ϕ for base p. Now, we define a new form of this func-
tion as follows:

ϕp′ nð Þ = a0
pm

+ a1
pm−1 +⋯+ am−1

p
: ð12Þ

We call this as reverse radical inverse function, and we
denote the sequences that are made in this way, with the
suffix “rev.” Therefore, by combining the matrix AðjÞ and
function ϕ′, the general form of number n in dimension j will
be as follows:

x jð Þ
n = ϕ′p A jð ÞP j−1n

� �
: ð13Þ

So, for example, we denote the 40-dimensional Faure
sequence generated on the base 41 by the scrambled matrix
AðjÞ and the function ϕ′ with AðjÞ.41rev.

In the following sections, we have examined (studied) the
quality of this sequence along with its performance compared
to other sequences.

5. Investigation of the Uniformity of
Generated Sequences

5.1. Two-Dimensional Projections. The first step in evaluating
the performance of a sequence is to see how the points in the
2D projections are distributed. From Figure 2, in these
designs, the Faure sequence points are located within parallel

Table 1: Estimates of I1ð f Þ by using Faure sequences.
Generator N s = 5 s = 10 s = 20 s = 30 s = 40
Faure 500 1.2175 2.2301 13.402 2.6464 0.0001

IB 500 0.0017 0.0016 0.0014 0.0006 0.0002

RLD 500 0.0013 0.0013 0.0011 0.0006 0.0001

Aj-41rev 500 1.0392 1.0439 1.5286 0.8095 1.1542

Faure 5000 0.9803 1.0128 3.1585 0.7848 0.0314

IB 5000 0.0340 0.0397 0.0443 0.0402 0.0306

RLD 5000 0.0469 0.0475 0.0548 0.0737 0.0341

Aj-41rev 5000 1.0015 1.0154 1.0219 1.1401 0.6935

Faure 10000 0.9584 0.9445 1.9919 0.6583 0.0464

IB 10000 0.0569 0.0564 0.0593 0.0774 0.0496

RLD 10000 0.0539 0.0541 0.0566 0.0758 0.0418

Aj-41rev 10000 0.9992 0.9959 1.0182 0.8780 0.5630

Faure 20000 0.9943 1.0522 1.4909 0.5440 0.0575

IB 20000 0.0610 0.0607 0.0628 0.0791 0.0561

RLD 20000 0.0583 0.0585 0.0592 0.0670 0.0637

Aj-41rev 20000 0.9999 1.0021 1.0614 0.9301 0.7249

Faure 50000 0.9965 1.0127 0.9972 0.5159 0.0674

IB 50000 0.0617 0.0618 0.0621 0.0683 0.0628

RLD 50000 0.0604 0.0605 0.0582 0.0657 0.0587

Aj-41rev 50000 0.9984 0.9983 1.0241 0.9901 0.9173

Faure 70000 0.9964 1.0058 0.9680 0.5029 0.0669

IB 70000 0.0809 0.0806 0.0877 0.2000 2.3467

RLD 70000 0.0711 0.0713 0.0671 0.0702 0.0583

Aj-41rev 70000 0.9985 0.9954 1.0260 1.0841 0.9623

Faure 100000 1.0008 1.0248 1.0459 0.5466 0.1665

IB 100000 0.4610 0.4616 0.4667 0.4694 1.7654

RLD 100000 0.2742 0.2746 0.2772 0.2529 0.1366

Aj-41rev 100000 0.9979 1.0007 1.0215 1.1251 1.3969
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lines, which shows that there is a linear correlation between
points in successive dimensions. Also in these designs, we
see a lot of empty spaces. Therefore, the distribution of good
points has not been done. In Figure 3, we draw the same
designs using the by AðjÞ:41rev.

These figures show that two-dimensional projections of
AðjÞ:41rev sequence are better than two-dimensional projec-
tions of the original Faure sequence.

5.2. Discrepancy. One way to measure the quality of a
sequence is to calculate its discrepancy [10]. Warnock
shows that

TNð Þ2 = 1
N2 〠

N

k=1
〠
N

m=1

Ys
i=1

1 −max x ið Þ
k , x ið Þ

m

� �� �
−
21−s
N

〠
N

k=1

Ys
i=1

1 − x ið Þ2
k

� �
+ 3−s:

ð14Þ

where xðiÞk is the ith component of the point xk.
Figure 4 compares TN between the original Faure

sequence and the some scrambled Faure sequences that
introduced in Section 3. From Figure 4, we see that the dis-

crepancy p diagram for our new sequence is at all points
below the other sequences. This is a good indication of the
high quality of our sequence points.

6. Numerical Integration

Another way to compare the quality of sequences is to use
them to solve high-dimensional integration problems with
numerical methods. Consider the following test integrals:

I1 fð Þ =
ð1
0
⋯
ð1
0

Ys
i=1

π

2 sin πxið Þdx1 ⋯ dxs = 1, ð15Þ

I2 fð Þ =
ð1
0
⋯
ð1
0

Ys
i=1

4xi − 2j j + ai
1 + ai

dx1 ⋯ dxs = 1, ð16Þ

where the ai are parameters. There are four choices of param-
eters as follows:

(1) ai = 0 for 1 ≤ i ≤ s

(2) ai = 1 for 1 ≤ i ≤ s

Table 2: Estimates of I2ð f Þ with ai = 1 by using Faure sequences.

Generator N s = 5 s = 10 s = 20 s = 30 s = 40
Faure 500 1.0759 1.2370 1.7994 0.6913 0.1727

IB 500 1.5015 1.5000 1.5572 1.3445 1.1510

RLD 500 1.5123 1.4820 1.5456 1.4661 1.2191

Aj-41rev 500 0.9879 0.9014 0.9347 0.8930 0.9629

Faure 5000 0.9963 0.9908 1.0342 0.7406 0.4475

IB 5000 1.4836 1.4785 1.4787 1.4212 1.2841

RLD 5000 1.4807 1.4770 1.4840 1.4455 1.2824

Aj-41rev 5000 0.9976 0.9840 0.9964 0.9898 1.0902

Faure 10000 0.9935 0.9864 1.0062 0.7860 0.5359

IB 10000 1.4769 1.4750 1.4697 1.4370 1.3296

RLD 10000 1.4779 1.4759 1.4784 1.4438 1.3261

Aj-41rev 10000 0.9990 0.9865 0.9925 0.9968 1.0920

Faure 20000 0.9945 0.9954 0.9861 0.8140 0.5897

IB 20000 1.4753 1.4755 1.4706 1.4244 1.3306

RLD 20000 1.4763 1.4752 1.4640 1.4288 1.3271

Aj-41rev 20000 1.0000 1.0002 1.0151 1.0336 1.0965

Faure 50000 0.9992 0.9969 0.9609 0.8397 0.6360

IB 50000 1.4750 1.4744 1.4697 1.4397 1.3342

RLD 50000 1.4755 1.4751 1.4725 1.4398 1.3372

Aj-41rev 50000 1.0015 1.0039 1.0192 1.0222 1.0509

Faure 70000 0.9983 0.9935 0.9613 0.8428 0.6458

IB 70000 1.4654 1.4650 1.4582 1.4249 1.3238

RLD 70000 1.4710 1.4705 1.4653 1.4362 1.3491

Aj-41rev 70000 1.0020 1.0040 1.0237 1.0418 1.1168

Faure 100000 0.9997 1.0003 0.9798 0.8856 0.7312

IB 100000 1.2785 1.2783 1.2727 1.2476 1.1649

RLD 100000 1.3848 1.3844 1.3821 1.3508 1.2698

Aj-41rev 100000 1.0027 1.0050 1.0233 1.0371 1.1048

Table 3: Estimates of I2ð f Þ with ai = i by using Faure sequences.

Generator N s = 5 s = 10 s = 20 s = 30 s = 40
Faure 500 1.0243 1.0200 1.0077 0.9945 0.9817

IB 500 1.5010 1.5022 1.5031 1.5030 1.5023

RLD 500 1.5055 1.5029 1.5043 1.5051 1.5045

Aj-41rev 500 0.9951 0.9746 0.9768 0.9761 0.9770

Faure 5000 0.9972 0.9944 0.9908 0.9877 0.9851

IB 5000 1.4837 1.4835 1.4833 1.4833 1.4832

RLD 5000 1.4810 1.4809 1.4807 1.4806 1.4804

Aj-41rev 5000 0.9990 0.9957 0.9963 0.9968 0.9974

Faure 10000 0.9977 0.9964 0.9946 0.9929 0.9915

IB 10000 1.4770 1.4769 1.4768 1.4768 1.4766

RLD 10000 1.4781 1.4780 1.4779 1.4778 1.4777

Aj-41rev 10000 0.9998 0.9971 0.9973 0.9977 0.9984

Faure 20000 0.9979 0.9977 0.9965 0.9956 0.9949

IB 20000 1.4752 1.4753 1.4753 1.4752 1.4752

RLD 20000 1.4764 1.4763 1.4763 1.4762 1.4762

Aj-41rev 20000 1.0002 1.0002 1.0007 1.0012 1.0017

Faure 50000 0.9999 0.9996 0.9991 0.9987 0.9983

IB 50000 1.4750 1.4750 1.4750 1.4750 1.4749

RLD 50000 1.4755 1.4755 1.4755 1.4755 1.4755

Aj-41rev 50000 1.0009 1.0012 1.0019 1.0024 1.0027

Faure 70000 0.9993 0.9989 0.9986 0.9983 0.9980

IB 70000 1.4654 1.4654 1.4654 1.4654 1.4653

RLD 70000 1.4710 1.4710 1.4709 1.4709 1.4709

Aj-41rev 70000 1.0011 1.0013 1.0021 1.0026 1.0029

Faure 100000 0.9997 0.9996 0.9993 0.9990 0.9989

IB 100000 1.2785 1.2785 1.2785 1.2785 1.2784

RLD 100000 1.3848 1.3848 1.3848 1.3848 1.3848

Aj-41rev 100000 1.0013 1.0016 1.0024 1.0028 1.0032
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(3) ai = i for 1 ≤ i ≤ s

(4) ai = i2 for 1 ≤ i ≤ s

Note that the most difficult case is when a = 0. Because in
this case, the importance of all variables is the same and the
superposition dimension is approximately the same as the
truncation dimension. It is important to know that the larger
ai, the less important the variables are, and therefore, the
effective dimension becomes smaller. The last three choices
of the parameters will be considered here [11].

In numerical solution of problems with qMC methods,
an accepted procedure is to omit the starting points of the
sequence. For example, Fox [12] has suggested that we con-
sider the starting point of the sequence as n =QS4 − 1.
Although, this may lead to better results, note that with this
selection, a large amount of points must be omitted. For
example, for s = 40, we have to skip the initial 2825760 points
with this formula, which is practically impossible. We found
in our research that if we select the p as the starting point, it
will significantly improve the results. We will probably get
the best result when we start from the ðp2 + 1Þth point.

Therefore, we skip the first 41 points and start n = 42 in
our calculations. For comparison purposes, we present
numerical results for original Faure (Faure), our sequence
(Aj-41rev), and two types of scrambled Faure sequences, I-
binomial (IB) and random linear digits (RLD).

Now, we compare the numerical results of different
scrambled Faure sequences presented in this paper. The
estimated values for the test functions are given in
Figures 5–8. These figures show that our proposed scramble
has a very acceptable convergence compared to other
scrambles.

An observation is that estimated values by the matrix Aj-
41rev very close to the actual value. This can be seen in
Tables 1–4. The estimation error obtained with this scramble
in dimension 40, for the function (16) with parameters ai = 1,
ai = i, and ai = i2 are at most 11.68%, 0.32%, and 0.64%,
respectively. However, there are some exceptions. For exam-
ple, in the first function, when the number of dimensions
increases, the accuracy of the estimation decreases. So that,
for the dimension 40, the maximum estimated relative error
value is 43.7%.

7. Conclusion

We studied the original Faure sequence and some of its
recent years introduced scrambles. Then, we introduced a
new scrambling matrix based on irrational numbers that its
elements are function of square root of base p. In
Figures 5–8, we have shown that this modified scrambled
Faure sequence provides better results than the previous ver-
sions of its scrambles. Also, we presented that this modified
scrambled Faure sequence has greatly improved the distribu-
tion of points. The 2D designs confirm this claim, good two-
dimensional projections in successive dimensions. As
mentioned in the previous section, using this scramble leads
to very small estimated relative errors that can often be
ignored. In our next research, we will use deterministic
scrambling matrices based on another irrational numbers
and primitive roots. The results proved the improvements
of accuracy using our new scramble.
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