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The purpose of this article is to study numerically the Turing diffusion-driven instability mechanism for pattern formation on
curved surfaces embedded in ℝ3, specifically the surface of the sphere and the torus with some well-known kinetics. To do this,
we use Euler’s backward scheme for discretizing time. For spatial discretization, we parameterize the surface of the torus in the
standard way, while for the sphere, we do not use any parameterization to avoid singularities. For both surfaces, we use finite
element approximations with first-order polynomials.

1. Introduction

Reaction-diffusion systems of partial differential equations
(PDEs) have been used in the modeling of various processes
and systems in physics and financial mathematics and espe-
cially in chemistry and biology. An attractive property of
these systems is that they give rise to spatiotemporal patterns
through Turing’s diffusion-driven instability mechanism [1,
2]. For very particular values of reaction rates, diffusion con-
stants, and boundary and initial conditions, spatiotemporal
patterns appear as a system solution. This mechanism has
been proposed to model complex patterns that appear in var-
ious phenomena, for instance, patterns in the skin of some
animals and morphogenesis. These systems have been so well
studied, both analytically and numerically, that it is possible
to know the type of pattern that will appear depending on
the kind of reaction that is carried out, how they change
according to the initial and boundary conditions, and other
system parameters. The well-known models of Schnakenberg
[3] and Gierer and Meinhardt [4] are used to explain the
activator-inhibitor relationship between chemical substances
such as population cycles and metabolic regulation [5]. The
FitzHugh-Nagumo model has been used in neurophysiology
and in the theory of the nuclear reactor among others [6]. An

interesting system is the BVAM model that has been used to
study transitions between fish patterns that go from stripes to
spots [7]. In this way, we can talk about many more different
types of reactions.

In recent works, it has been seen that Turing conditions
can strongly depend on the substrate shape where the che-
micals diffuse. Modification in the range of unstable modes
appears for curved surfaces [8] (and references therein) and
systems with advection [9], on growing surfaces [10–12];
there is also a difference if the membranes are thin [13]
or elastic [14]; the stability of traveling waves have been
found to also depend on surface curvature [15], etc. Pat-
terns have also been found to tend to accommodate at cer-
tain positions on the surface, according to the curvature
value [16, 17]. This could be useful for the description of
processes in the cell membrane, in some tissues, or in gen-
eral development processes in organisms. Indeed, for phyl-
lotaxis, it is observed that the chemical patterns associated
with the plant growth change due to stress modifications
on the surface [18]. All these characteristics are typical of
biological systems, pointing out the importance of domain
geometry in PDE models.

In many of the previous references, the system of equa-
tions is solved numerically using the finite difference method;
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in some cases, the finite element is used but with automatic
meshers. Recently, there are some proposals for extensions
of finite element methods to solve this kind of systems [19, 20].

In this work, we solve a reaction-diffusion system on a
curved surface embedded in three-dimensional space using
its variational formulation and the finite elements. In order
to solve this kind of problems, we present the spatial and
temporal discretization of the surfaces in ℝ3. As particular
cases, we study discretization of the torus and the sphere sep-
arately. First, we chose the surface of the circular torus since
it is easier to parameterize and triangulate, see [21–24],
although it is not as common to find it in industrial and sci-
entific applications as on the sphere. On the other hand, it
presents interesting characteristics since its curvature
depends not only on its radius, such as that of the sphere,
but on one of its angles, which even allows changing the sign
in some areas (see [25]). Finally, we study the numerical solu-
tion of a reaction-diffusion system for PDE (Turing mecha-
nism for pattern formation) that takes place in the spherical
surfaces in ℝ3; for this, it is necessary to consider Cartesian
coordinates (unlike the case of the torus) to represent a
sphere in order to avoid the singularities introduced by the
parameterization with spherical coordinates (see [26, 27]).
We study several typical reactions on both surfaces and verify
the formation of Turing patterns for the corresponding
parameter values.

Variational methods provide a handy analytical tool to
study PDEs’ properties, for instance, to study the existence,
uniqueness, and stability of solutions, differentiability prop-
erties, and spectral theory theorems. For a given differential
equation, it is possible to construct a functional so that its
minimum becomes a solution to the original problem [28].
In [29], Costa shows how variational methods give exact
solutions to some differential equations. Recent works show
that variational tools provide nontrivial smooth solutions to
nonlinear problems with reactions and different boundary
conditions, such as the parametric Robin problem with arbi-
trary potential [30] or the elliptic Dirichlet problem driven by
an anisotropic Laplacian [31]. Moreover, the study of nonlin-
ear dissipative models has also been done using group classi-
fication techniques that allow analyzing symmetries and
reducing equations to obtain exact solutions to such differen-
tial equations [32, 33]. Variational methods are also used to
find approximate solutions to partial differential equations
in some numerical methods [21]. As already mentioned
above, we will use the corresponding variational formulation
of the reaction-diffusion system to apply the finite element
method and obtain numerical solutions.

The paper is structured as follows. Section 2 briefly sum-
marizes the pattern formation mechanism in reaction-
diffusion systems. In the Section 3, we establish the corre-
sponding system of equations on the embedded surface and
propose its variational formulation. In Section 4, we present
in detail the spatial and temporal discretization of the
reaction-diffusion system. This provides the implementation
of the numerical scheme tested in Section 5, where some
examples of pattern-forming reactions on the torus and
sphere are also presented. Finally, the results are discussed
in Section 6.

2. Turing Mechanism for Pattern Formation

The mechanism proposed by Turing starts when a trans-
port component is added to a system of two interacting
chemical species in a steady state. The diffusion helps to
destabilize the system from a spatially homogeneous state
to a nonequilibrium steady state with distinguishable struc-
tures. Generally, patterns formed in two-dimensional
domains with simple boundaries are studied. The particular
structure of the spatial patterns depends on the parameters
of the kinetics and the diffusion coefficients of each species
that must be different.

Let the reaction-diffusion PDE system be as follows:

∂u
∂t

=Du∇
2u + f u, vð Þ,

∂v
∂t

=Dv∇
2v + g u, vð Þ,

8>><>>: ð1Þ

that describes the evolution and spatial behavior of the con-
centrations uðx, tÞ and vðx, tÞ, of the two chemical species.
Here, ∇2 is the Laplace operator in some bounded domain
Ω ∈ℝn, Du and Dv are the corresponding diffusion coeffi-
cients, and the functions f ðu, vÞ and gðu, vÞ give the local
reaction kinetics. Usually, concentrations u and v are
assumed to be C1ð½0, T�Þ and C2ðΩÞ in time and space,
respectively. Moreover, for the system to be well-posed, the
kinetics given by f and g must be sufficiently well-behaved
since these functions typically contain nonlinear dissipative
terms. As we shall see in the next section, to guarantee that
the integrals are finite in the variational formulation, both
the concentrations u and v and the kinetics f and g must
be L2ðΩ, ð0, TÞÞ. For diffusion-driven instability to occur
and patterns to form, we must guarantee that the homoge-
neous steady state is stable under small spatial perturbations
when the diffusion coefficients vanish and unstable when
they are present. We look for perturbations that decrease
exponentially in time and are combinations of spatially oscil-
latory modes [1, 7]. Furthermore, they must be subject to
zero-flux or periodic boundary conditions, which precisely
allow self-organizing solutions.

The absence of diffusive terms causes the reactive terms
to vanish when evaluated at the spatially homogeneous
steady state ðus, vsÞ. Around this solution, it is possible to
make a perturbative analysis to consider small instabilities.
We can arrange the functions in a vector and, in this case,
replace it with a matrix of its derivatives evaluated in the
steady state. This imposes certain conditions on the parame-
ters that define the reaction kinetics and that can be written
as follows:

∂f
∂u

+ ∂g
∂v

< 0,

∂f
∂u

∂g
∂v

−
∂f
∂v

∂g
∂u

> 0,
ð2Þ

evaluated in the steady state ðus, vsÞ. These conditions are
obtained assuming an exponentially stable behavior of the
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perturbations. When diffusion is introduced, the system
becomes unstable. This can be understood if the perturba-
tions decompose in modes labeled by the wavenumber.
These are nothing but the eigenvalues of the corresponding
Laplacian operator. The corresponding stability analysis
now involves the diffusion coefficients and these wavenum-
bers and induces the following instability conditions:

Dv
∂f
∂u

+Du
∂g
∂v

> 0,

Dv
∂f
∂u

+Du
∂g
∂v

> 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DuDv

∂f
∂u

∂g
∂v

−
∂f
∂v

∂g
∂u

� �s
:

ð3Þ

The dependence of λ in wavenumbers, often called the
dispersion relation for the linearized system, is as follows:

where the subscripts in f and g indicate partial derivatives.
This implies that there is a set of values k for which λ can
be positive; this is the so-called range of unstable modes,

which depends on the reaction and diffusion constants, and
is as follows: ðk2−, k2+Þ, where

In the case of curved surfaces embedded inℝ3, the eigen-
values of the tangent Laplacian change in each case. For
instance, for the sphere, the eigenvalue equation can be
solved in terms of spherical harmonics and the eigenvalues
would be k2 = nðn + 1Þ; in such a case, the dispersion relation
considered is λðnðn + 1ÞÞ. For the subsequent numerical
implementation of the reaction kinetic models, it is impor-
tant to choose constants whose values are in this range.

3. Reaction-Diffusion System on a
Curved Surface

The goal of this article is to analyze the numerical solution of
the reaction-diffusion processes that form the so-called
Turing patterns but that takes place on a curved surface
embedded in ℝ3, such as a torus or a sphere. To do this, we
first consider the general problem of the system of reaction-
diffusion equations on a surface that can be stated as follows:

∂u
∂t

=Du∇
2
Σ
u + f u, vð Þ, onΣ,

∂v
∂t

=Dv∇
2
Σ
v + g u, vð Þ, onΣ,

initial conditions : u x, 0ð Þ = u0 xð Þ, v x, 0ð Þ = v0 xð Þ,

8>>>>><>>>>>:
ð6Þ

where

(i) uðx, tÞ and vðx, tÞ represent the local distribution of
the two constituents at time t on the surface Σ that
diffuse at different rates and react according to the
nonlinear functions f and g

(ii) Du and Dv are the diffusion coefficients of the u and
v components, respectively

(iii) ∇
Σ
is the tangential gradient on Σ. We will choose Σ

to be the sphere or the torus. Let us realize that the
corresponding operator ∇2

Σ becomes the so-called
Laplace-Beltrami operator of the surface

(iv) f ðu, vÞ and gðu, vÞ are the reaction kinetic functions.
There are several different models for f and g that
generate different patterns depending on the system
under study

Remark 1. Thanks to Turing, we now that, under certain con-
ditions, the system tends to a linearly stable uniform steady
state, if there is no diffusion; thus, if Du ≠Dv, the diffusion-
driven instability can cause spatially inhomogeneous pat-
terns to appear in the system [1, 2].

3.1. Variational Formulation of the Reaction-Diffusion
System. We will solve problem (6) using the methodology
of finite elements; therefore, we need to consider first its var-
iational formulation (see [22, 34]), which is as follows.

λ k2
� �

= 1
2 f u + gvð Þ − k2 Du +Dvð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 Du + Dvð Þ − f u + gvð Þ� �2 − 4 DuDvk

4 − k2 Dvf u +Dugvð Þ + f ugv − f vguð Þ� �q� �
, ð4Þ

k2± =
1

2DuDv
Dv

∂f
∂u

+Du
∂g
∂v

� �
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dv

∂f
∂u

+Du
∂g
∂v

� �2
− 4DuDv

∂f
∂u

∂g
∂v

−
∂f
∂v

∂g
∂u

� �s24 35: ð5Þ
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Find u and v ∈H 1ðΣÞ such that

where (i) H 1ðΣÞ = fz ∣ z ∈L2ðΣÞ, Ð
Σ
j∇Σzj2dΣ < +∞g; (ii)

∇Σ is the tangential gradient on Σ; (iii) dΣ is the infinitesimal
surface measure; (iv) u0ðxÞ, v0ðxÞ ∈L2ðΣÞ; and (v) Du and
Dv are the diffusion coefficients.

Remark 2. The functions u and v that satisfy the weak formu-
lation (7) are called weak solutions of the state equations (6).
Since we use the finite element method to numerically solve
system (6), the variational formulation is quite useful since
it requires solving an integral problem instead of a differen-
tial problem.

Remark 3. The elliptic operators associated with system (7) is
clearly (-1)Du and (-1)Dv times the Laplace-Beltrami opera-
tor for the distributions u and v, respectively.

4. Discretization of the Reaction-
Diffusion System

4.1. Time Discretization of the Reaction-Diffusion System (7).
Let us define the time discretization step Δt as Δt = T/N ,
where T is the final time and N a positive integer. Next, we
approximate system (7) by

u0 = u0, v0 = v0, ð8Þ

for n = 1,⋯,N ,

where un = uðx, nΔtÞ and vn = vðx, nΔtÞ. Systems (9) are
well-posed elliptic problems; they are not associated with
any boundary conditions since Σ is a surface without
boundary.

Remark 4. For time discretization of the parabolic problems
in (7), we have used the backward Euler scheme, as in [24,
26, 27], getting thus (9). Although this implicit scheme is
only fist-order accurate, it is robust and stiff A-stable and
preserves the maximum principle if combined with appro-
priate space approximations.

4.2. Full Discretization of the Reaction-Diffusion System (7).
Now, we will consider the space discretizations of the surface
of the torus and the sphere. For the torus, we consider a well-
known parametrization to discretize the space. However, for

the case of the sphere, we discretize directly to avoid the sin-
gularities due to the usual parameterization.

4.2.1. Full Discretization of the Reaction-Diffusion System on
the Surface of a Torus. For the space discretization of the
torus surface, denoted by ΣT , we proceed as in [23, 24] using
the following parameterization:

x1 = R + r cos θð Þ cos ϕ,
x2 = R + r cos θð Þ sin ϕ,
x3 = r sin θ,

8>><>>: ð10Þ

to map ΣT over the square bΩ = ð0, 2πÞ × ð0, 2πÞ of the
plane ðϕ, θÞ (see Figure 1). We should note that it is necessary

ð
Σ

∂u
∂t

zdΣ +Du

ð
Σ

∇Σu · ∇ΣzdΣ =
ð
Σ

f u, vð Þ zdΣ, ∀z ∈H 1 Σð Þ, a:e: on 0, Tð Þ,

u x, 0ð Þ = u0 xð Þ,ð
Σ

∂v
∂t

zdΣ +Dv

ð
Σ

∇Σv · ∇ΣzdΣ =
ð
Σ

g u, vð ÞzdΣ, ∀z ∈H 1 Σð Þ, a:e: on 0, Tð Þ,

v x, 0ð Þ = v0 xð Þ,

8>>>>>>>>><>>>>>>>>>:
ð7Þ

un, vn ∈H 1 Σð Þ,ð
Σ

un − un−1

Δt
zdΣ +Du

ð
Σ

∇Σu
n · ∇ΣzdΣ =

ð
Σ

f un, vnð ÞzdΣ, ∀z ∈H 1 Σð Þ,ð
Σ

vn − vn−1

Δt
zdΣ +Dv

ð
Σ

∇Σv
n · ∇ΣzdΣ =

ð
Σ

g un, vnð ÞzdΣ, ∀z ∈H 1 Σð Þ,

8>>>>>><>>>>>>:
ð9Þ
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to consider periodic boundary conditions to take into
account the fact that ΣT has no boundary.

The problem being formulated on a planar domain can
be approximated using finite element methods discussed in
[21]. We first consider a finite element triangulation τh ofbΩ with the following properties: τh is a finite collection of tri-

angles T in
�bΩ , with h denoting the length of the largest edge

of the triangulation τh, and
�bΩ =ST∈τh

T . Additionally, if T ,
T ′ ∈ τh, with T ≠ T ′, we have T ∩ T ′ =∅ or T and T ′ have
only one vertex in common or one full edge in common.

Using the parameterization (10), we obtain

dΣT = r R + r cos θð Þdϕdθ,

∇ΣT
= 1

R + r cos θ
∂y
∂ϕ

, 1
r
∂y
∂θ

� �
,

ð11Þ

and we approximate the space of doubly periodic functions

H 1
p
bΩ	 


=
n
z ∣ z ∈H 1 bΩ	 


, z ϕ, 0ð Þ
= z ϕ, 2πð Þ a:e: on 0, 2πð Þ, z 0, θð Þ

= z 2π, θð Þ, a:e: on 0, 2πð Þ
)
,

ð12Þ

by the set

Vh =
(
z z ∈C0

�bΩ¯ !
, z

�����
�����
T

∈ℙ1,∀T ∈ τhz 0, θð Þ

= z 2π, θð Þ, z ϕ, 0ð Þ = z ϕ, 2πð Þ,∀ ϕ, θf g

∈ 0, 2π½ � × 0, 2π½ �
)
,

ð13Þ

where ℙ1 is the space of the two variable first degree polyno-
mials. The time-discrete parabolic problem (9) for a torus
can be reformulated as follows: for n = 1,⋯,N ,

where u0h and v0h are an approximation of u0 and v0 in Vh,
respectively.

Remark 5. The above discrete linear elliptic problems (14) are
associated with the same matrix, differing only by their right-
hand sides. This matrix is symmetric positive definite, and
sparse, and we solve the associated linear systems by a sparse
Cholesky solver. On the other hand, we recommend using a
small time step Δt, implying that the matrix associated with
the backward Euler scheme is not too badly conditioned,
allowing thus the solution of these discrete elliptic problems.

4.2.2. Full Discretization of the Reaction-Diffusion System on
the Surface of a Sphere. For the reaction-diffusion processes
on the surface of a sphere in ℝ3, we will consider Cartesian
coordinates to represent this surface, to avoid the singulari-
ties that the standard parameterization usually introduces.
We denote by Σ the surface given by x2 + y2 + z2 = R2, where
R is the sphere radius. Now, to obtain the space discretization
to numerically solve the elliptic problems in (9), we approx-
imate the sphere Σ by a polyhedral surface and proceed as
in [25]. However, to calculate the surface gradient ∇Σ, we will
proceed in a slightly different way, e.g., [27]. We approximate

𝜃

(a) (b)

𝝓

Figure 1: (a) A surface of a torus. (b) Triangulation of
�bΩ¯ .

unh, vnh ∈ Vh,

r
ð
bΩ unh − un−1h

Δt
z R + r cos θð Þdϕdθ +Du

ð
bΩ r

R + r cos θ
∂unh
∂ϕ

∂z
∂ϕ

+ R + r cos θ
r

∂unh
∂θ

∂z
∂θ

� �
dϕdθ = r

ð
bΩ f unh, vnhð Þz R + r cos θð Þdϕdθ, ∀z ∈ Vh,

r
ð
bΩ vnh − vn−1h

Δt
z R + r cos θð Þdϕdθ +Dv

ð
bΩ r

R + r cos θ
∂vnh
∂ϕ

∂z
∂ϕ

+ R + r cos θ
r

∂vnh
∂θ

∂z
∂θ

� �
dϕdθ = r

ð
bΩg unh, vnhð Þz R + r cos θð Þdϕdθ, ∀z ∈ Vh,

8>>>>>><>>>>>>:
ð14Þ
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Σ by the polyhedral surface Σh, as shown in Figure 2. Let us
assume that the elements of Σh are triangular facets, and we
denote by T h the set they form, with h the maximum diam-
eter of the elements T ∈T h. From T h, we approximate H 1

ðΣÞ through

Vh = z z ∈H 1 Σhð Þ, z�� ��
T
∈ℙ1,∀T ∈T h

n o
: ð15Þ

Unlike [26], we consider an isoparametric parameteriza-
tion of the surface (the same idea can be used for arbitrary
parameterizations), i.e., each triangular facet T ∈T h is
described by the

xh ε, ηð Þ = 〠
n

i=1
xiφi ε, ηð Þ, ð16Þ

where ðε, ηÞ are the coordinates used to define the usual ref-
erence element T̂ ∈ℝ2, as in Figure 3; xi = ðxi1, xi2, xi3Þ, with
i = 1, 2, 3, are the physical coordinates; and φiðε, ηÞ are the
corresponding reference shape functions. Thus, we can dis-
cretizate the problems in (9); for instance, the discrete ver-
sion of the first equation of (9), corresponding to
distribution u, can be written as follows:

Let u0,h ∈ Vh and v0,h ∈ Vh be approximations of u0 and
v0, respectively. Then, for n = 1,⋯,N ,

The second equation of (9), corresponding to distribu-
tion v, is approximated in a similar way. On the other hand,
the tangential gradient ∇Tu

n
h can be computed by projecting

the usual gradient ∇unh on the surface of T , that is,

∇
T
unh = I −ℙTð Þ∇unh, ð18Þ

where unh ∈ Vh, I is the identity matrix in ℝ3, and ℙT = nTn
t
T

is the orthogonal projection matrix to the normal direction of
T . This quantity is well defined, since ∇unh is a constant vector
for any T ∈T h and nT is the (unique) unitary vector normal
to T .

Let us simplify the notation used in (17), so that the dis-
crete version of system (9) is written as follows: for n = 1,
⋯,N ,

Polyhedral approximation of a sphere of radius R = 10.
No. of elements = 8192, no. if nodes = 4098

10 −10
−5

0
5

10

5
0

x-axis y-axis

z-
ax

is

−5
−10
−10
−8
−6

−4
−2

0
2

4

6
8

10

Figure 2: A polyhedral approximation of a sphere of radius R = 10.

unh, vnh ∈ Vh,

〠
T∈T h

ð
T

unh − un−1h

Δt
zdT +Du 〠

T∈T h

ð
T
∇Tu

n
h · ∇TzdT = 〠

T∈T h

ð
T
f unh, vnhð ÞzdT , ∀z ∈ Vh:

8><>: ð17Þ

unh, vnh ∈ Vh,ð
Σh

unh − un−1h

Δt
zdΣh +Du

ð
Σh

∇Σh
unh · ∇Σh

zdΣh =
ð
Σh

f unh, vnhð ÞzdΣh, ∀z ∈ Vh,ð
Σh

vnh − vn−1h

Δt
zdΣh +Dv

ð
Σh

∇Σh
vnh · ∇Σh

zdΣh =
ð
Σh

g unh , vnhð ÞzdΣh, ∀z ∈ Vh:

8>>>>>>><>>>>>>>:
ð19Þ
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Remark 6.Note that Remark 5 is also true for the matrix asso-
ciated to system (19).

To solve numerically the integrals encountered in (14)
and (19), we found different numerical methods, such as
the trapezoid, Simpson, midpoint, and Monte Carlo. Here,
we have used the trapezoidal rule on each triangle T ∈ τh
and T ∈T h, taking advantage ofð

bΩ = 〠
T∈τh

ð
T
, 
ð
Σh

= 〠
T∈T h

ð
T
: ð20Þ

5. Numerical Examples

5.1. Numerical Examples on a Torus Embedded on ℝ3. Next,
we present some numerical examples with different functions
for the reaction kinetics. In the first case, we consider a torus
with minor radius r and major radius R. For the parameteri-
zation in the time, we use Δt = 0:01. Also, a regular uniform

mesh on
�bΩ¯ = ð0, 2πÞ × ð0, 2πÞ is considered for the finite ele-

ment discretization, with Δϕ = Δθ = 2π/100 (see Figure 1).

Example 7. We first consider the FitzHugh-Nagumo model,
see [12], given by

∂u
∂t

=Du∇
2u + u −

u3

3 + v − 0:6
� �

,

∂v
∂t

=Dv∇
2v − u − 0:6 + 9:99vð Þ,

8>>><>>>: ð21Þ

where Du and Dv are the diffusion coefficients of u and v,
respectively.

The FitzHugh-Nagumo kinetic model was first proposed
to study the propagation of electrical signals in neurons [6].
In that case, u and v are interpreted as electric potentials,
the fixed value −0:6 corresponds to the current pulse I, and
the other parameters are scale constants. However, since it

is a simple dynamical system with a variety of structures,
the system has been applied to model other systems [12].

For the following examples, we fix the parameters at Du
= 1, Dv = 1:75, R = 20, and r = R/3. Figure 4 shows the initial
condition u0 and the approximation of the final state uðx, TÞ,
with T = 100.

In Figure 5, we show a different initial condition u0 and
the approximations of the state uðx, TÞ, with T = 100 and T
= 300.

Example 8. Now, we choose the reaction-diffusion system
proposed by Barrio et al. [7],

∂u
∂t

=Du∇
2u + αu 1 − r1v

2� �
+ v 1 − r2uð Þ,

∂v
∂t

=Dv∇
2v + βv 1 + αr1

β
uv

� �
+ u γ + r2vð Þ,

8>><>>: ð22Þ

where Du and Dv are the diffusion coefficients of u and v,
respectively.

The coefficients show a conservation relation between the
chemical products [7, 35]. The principal interaction parame-
ters are r1 and r2 as each favors stripes and dots, respectively.
The parameters α, β, and γ are related to production and
depletion of chemicals. This model has been used mainly to
study pattern selection in reaction-diffusion models. Also, it
has been used to study transitions between fish patterns that
go from stripes to spots.

For the numerical results of these examples, we fix the
parameters at Du = 2:322 × 10−3, Dv = 0:0045, α = 0:899, β
= −0:91, γ = −α, r1 = 3:5, and r2 = 0. The major and minor
radii that we consider are R = 1 and r = 0:3, respectively.
Figure 6 shows the initial conditions u0 and the approxima-
tions of the state uðx, TÞ, with T = 200.

Figure 7 shows another initial condition u0 and the
approximations of the state uðx, TÞ, with T = 100, 200, and
300.

For the same parameters and conditions of the reaction-
diffusion system of system (22), we now explore how the for-
mation of patterns changes for different surfaces by changing
the radii of the torus; this will be related to the curvature of
the surface. Let us recall that the Gaussian curvature of the
torus is given as a function of the radii and the angle θ as fol-
lows:

K = cos θ
Rr + r2 cos θ : ð23Þ

Hence, for each set of fixed radii, the torus has a negative
curvature on the inside and positive on the outside. However,
if the radii vary, we would have a landscape of possible sur-
faces. In Figure 8, two different views of each experiment
are shown for the final distributions u of the reaction-
diffusion system (22) with different radii, corresponding to
different surfaces in the curvature landscape.

We observe that the patterns that appear earlier if the sur-
face have a more pronounced curvature at θ = π as seen in

(0, 1)

𝜂

(0, 0) (1, 0)
𝜉

Figure 3: A usual reference element T̂ ∈ℝ2.
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Figure 4: (a) Initial distribution u0. (b) Final distribution u. Case: equation (21), Du = 1, Dv = 1:75, T = 100, R = 20, and r = R/3.
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Figure 6: (a) Initial distribution u0. (b) Final distribution u. Case: equation (22), Du = 2:322 × 10−3, Dv = 0:0045, T = 200, R = 1 and r = 0:3.
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Figure 7: (a) Initial distribution u0. (b) Final distributions u. Case: equation (22); Du = 2:322 × 10−3; Dv = 0:0045; T = 100, 200, 300; R = 1;
and r = 0:3.
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Figure 9. Although we cannot conclude a general behavior,
our examples serve as evidence indicating that the appear-
ance of patterns will depend on the curvature and other geo-
metric factors of the surface on which the diffusion process is
taking place, as reported in the literature [8, 12, 35].

5.2. Numerical Examples on a Sphere in ℝ3

Example 9. First, we will numerically study the effects of a
reaction-diffusion system on spheres of different radii. We
consider the Schnakenberg model [3, 8], given by

∂u
∂t

=Du∇
2u + a − u + u2v,

∂v
∂t

=Dv∇
2v + b − u2v,

8>><>>: ð24Þ

where Du and Dv are the diffusion coefficients of species u
and v, respectively. The numerical results show spot patterns
for different cases.

With a minimal number of reactions and reactants, the
Schnakenberg model simulates the chemical reactions that
occur in some biological systems, such as population cycles
and metabolic regulation. Therefore, it has been extensively
studied. It is similar to the Gierer-Meinhardt model used to
study the activator-inhibitor relation between chemicals.
The model describes the evolution of concentrations of che-
micals u and v, produced at rates a and b, respectively.

For the first case of this example, we fix the parameters at
Du = 1/R, Dv = 10/R, a = 0:01, b = 1:2, T = 600, and R = 40 (R
is the radius of sphere). For the discretization, we used h =
0.0051 and δt = 1/100. In Figure 10, we show the final distri-
bution u for T = 100, 300, 400, and 600.

For the next example, we considered Du = 1/20, Dv = 1,
a =0.1, b = 0:9, T = 300, and R = 20. The results are shown
in Figure 11. Also in this figure, we are able to see that three
different views correspond to different times of distribution.

Example 10. Next, we will consider the Gierer-Meinhardt
model with saturation, given as follows:

∂u
∂t

=Du∇
2u + ρu

u2v
1 + ku2

− μuu,

∂v
∂t

=Dv∇
2v − ρv

u2v
1 + ku2

+ σv ,

8>><>>: ð25Þ

whereDu andDv are the diffusion coefficients of the morpho-
gens u and v, respectively.

In the Gierer and Meinhardt model, species u acts as an
activator of both species and v as an inhibitor of activator
sources. In agreement with the Turing conditions, this model
assumes that v diffuses faster than u, and a and b are again
the production rates [4]. Saturation i in this model is intro-
duced by modifying the quadratic production term in u2v,
by u2v/ð1 + ku2Þ , where k is a sufficiently large constant, so
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that when u tends to k, it is said to be saturated. In this case,
the production and consumption constants with saturation
are ρu and ρv, respectively; μu is a decrease constant and σv
a constant source. This model has been used to study the pat-
terns that appear in the ladybeetles, using certain tuned values
for the parameters [36]. One of the features of that study was
that they worked with finite differences, and therefore, only a
very specific section of the sphere could be studied. Since the
analysis used here presents no problems at the poles, we can
extend the domain of the solution to the entire sphere.

For the following example, we fix the parameters at ρu
= 0:18, ρv = 0:36, μu = 0:08, σv = 0:1, and T = 100. For the
discretization, we used h = 0:0051 and δt = 1/100. Figure 12
shows the initial conditions u0 and v0 and the approxima-
tions of the final state uðx, 100Þ and vðx, 100Þ for the case
Du = 0:0005, Dv = 0:025, and k = 0.

Figure 13 shows the final distributions uðx, 100Þ and
vðx, 100Þ for the case Du = 0:0005, Dv = 0:025, and k = 0:35;
the initial distribution is the same initial distribution as the
above case.
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Dv = 0:025, T = 100, and k = 0.
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Stripe patterns are shown in Figure 14; to obtain these
patterns, we use the following parameters Du = 0:000028,
Dv = 0:000168, and k = 0:35. Figures 14(a) and 14(b) show
the initial distributions, which are different to the above
cases.

A variant for this example given by

∂u
∂t

=Du∇
2u + ρu

u2v
1 + ku2

− μuu,

∂v
∂t

=Dv∇
2v − ρv

u2v
1 + ku2

+ σv + σu,

8>><>>: ð26Þ

The numerical results are shown in Figure 15; in order to
obtained these results, we fixed the parameters at Du =
0:000026, Dv = 0:000182, k = 0:45, and σu = 0:0019. Also,
the initial distribution that we considered is the same as in
the cases for Figures 14(a) and 14(b).

6. Discussion

In this manuscript, the numerical solution of different sys-
tems of reaction-diffusion equations that use the Turing
mechanism for pattern formation has been studied. In bio-
logical applications, the systems on two-dimensional surfaces
embedded in ℝ3 are of particular interest, so here, we study
these processes on the surface of the torus and the sphere.
To solve this kind of problem, we propose to use the finite
element approximation with first-order polynomials.

To discretize the temporal part, we have used the back-
ward Euler scheme, resulting in N well-posed elliptic prob-
lems. For spatial discretization, we use two different
approaches. For the torus, we used the standard parameteri-
zation, and for the sphere, we used direct discretization to
avoid the singularities that arise in the standard parameteri-
zation. To solve the N elliptic problems, we have used finite
elements with first-order polynomials. For the torus, we have
considered periodic boundary conditions due to the parame-
terization used, while on the sphere, we have not considered
any boundary since we are solving the system directly on the
surface.

For both surfaces, it was possible to obtain the concentra-
tion patterns after at least 1000 iterations, for several different
reactions. In addition to the known influence of the values of
the reaction parameters on the formation of the patterns,
here, an influence of the curvature of the surfaces through
the variation of their radii is also appreciated, specially for
the reaction kinetics of the BVAMmodel, on tori of different
radii as seen in Figure 8. In particular, for the last studied
reaction kinetics on the sphere, the Gierer-Meinhardt model
with saturation, solutions can be obtained on the entire
sphere since this method allows evading the singularity at
the pole, so that patterns can be seen in the whole sphere,
instead of just over a hemisphere as in [36].

Given that the variational methods studied for nonlinear
dissipative models give exact solutions [30, 33], it would be
interesting to address further the reaction-diffusion systems
for some kinetics of interest, such as the saturation one, with
these methods.
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