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The time-scale version of Noether symmetry and conservation laws for three Birkhoffian mechanics, namely, nonshifted
Birkhoffian systems, nonshifted generalized Birkhoffian systems, and nonshitfed constrained Birkhoffian systems, are studied.
Firstly, on the basis of the nonshifted Pfaff-Birkhoff principle on time scales, Birkhoff’s equations for nonshifted variables are
deduced; then, Noether’s quasi-symmetry for the nonshifted Birkhoffian system is proved and time-scale conserved quantity is
presented. Secondly, the nonshifted generalized Pfaff-Birkhoff principle on time scales is proposed, the generalized Birkhoff’s
equations for nonshifted variables are derived, and Noether’s symmetry for the nonshifted generalized Birkhoffian system is
established. Finally, for the nonshifted constrained Birkhoffian system, Noether’s symmetry and time-scale conserved quantity
are proposed and proved. The validity of the result is proved by examples.

1. Introduction

Birkhoffian mechanics is a new stage in the development of
analytical dynamics. It was first proposed by Birkhoff [1]
and later developed by Santilli [2] and Mei et al. [3]. In litera-
ture [4], Mei proposed and studied in detail the dynamics of
the generalized Birkhoffian systems. Since then, some scholars
[5–10] have carried out a series of studies on this issue.

The dynamics theory on a time scale unifies the dynamics
of continuous systems, discrete systems, and quantum sys-
tems. The theory of time scale analysis can be traced back
to Hilger [11], who first proposed the calculus theory on a
measure chain. Time scale, as a special case of the measure
chain, has strong representative, so it has attracted extensive
attention. Bohner and Peterson [12] systematically studied
time scale calculus and its dynamic equations. Agarwal and
Bohner [13] began to study the time scale linear and nonlin-
ear Hamiltonian systems and unify and extend the symplec-
tic flow properties of continuous and discrete Hamiltonian
system. In 2004, Bohner [14] studied the time scale varia-
tional problem for the first time. In 2008, Bartosiewicz and

Torres [15] first carried out the researches about Noether’s
theorem on time scales. They discovered that Noether’s con-
served quantities can be derived without changing the time
transformations. What is more, Bartosiewicz and his
coworkers [16] also deduced the second Euler-Lagrange equa-
tion for variational problem on time scales. Based on the sec-
ond Euler-Lagrange equations, they proposed another method
to find the Noether conserved quantity. Afterwards, according
to these two methods, many scholars have obtained some
results have been obtained in the study of variational principle,
dynamical equations, and Noether symmetries for the differ-
ent mechanical systems, such as references [17–31].

With the study on time scales, scholars began to study the
time-scale version of the nonshifted variational problem.
Bourdin [32] found that the Euler-Lagrange has greater con-
vergence in the discrete case of the nonshifted variational
problem. Anerot et al. [33] derived the Noether theorem for
the shifted and nonshifted variational problems on time
scales; they pointed out that the methods of deriving Noether
conserved quantities on time scales by references [15, 16]
were not correct. Song and Cheng [34] researched Noether
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symmetry on time scales for the nonshifted Birkhoffian sys-
tems, but the work was limited to free Birkhoffian systems
and to Noether symmetries. Here, we will study the Noether
symmetry for more general nonshifted Birkhoffian systems,
including generalized Birkhoffian systems and constrained
Birkhoffian systems, not only Noether symmetry but
Noether quasi-symmetry. According to the study, it was
found that the shifted variational problem are not suitable
for the structure-preserving algorithm, while the nonshifted
variational problem on time scales is suitable for the
structure-preserving algorithm for discrete systems. There-
fore, the research of the paper is of great significance.

The structures of this article are as follows. In Section 2,
according to nonshifted Birkhoff’s equations, the Noether
quasi-symmetry and time-scale conserved quantity are
obtained. An example is given for discussion. In Section 3,
about the nonshifted generalized systems on time scales,
nonshifted generalized Pfaff-Birkhoff principle and equa-
tions are deduced. The Noether symmetries and time-scale
conserved quantities are obtained. Then, an example is given
for analysis. In Section 4, the equations for the nonshifted
constrained Birkhoffian systems are deduced, and symme-
tries and time-scale conserved quantities are given. And an
example is given. In Section 5, the conclusion is given.

2. Nonshifted Birkhoffian Systems on
Time Scales

For the properties of calculus on a time scale, please refer to
reference [12].

2.1. Nonshifted Birkhoff’s Equations. On a time scale, the
nonshifted Pfaff action is

S aμ ·ð Þ� �
=
ðt2
t1

Rυ t, aμ
� �

aΔυ − B t, aμ
� �� �

Δt, ð1Þ

where the endpoint conditions are aμðt1Þ = aμ1 and aμðt2Þ
= aμ2 . a

Δ
μ is the delta derivative of aμ with respect to t. aμ ∈

C1,Δ
rd ðTÞ for t ∈ T k

k. The Birkhoffian B : T ×ℝ2n ⟶ℝ and
Birkhoff’s functions Rμ : T ×ℝ2n ⟶ℝ are of C1,Δ

rd ðTÞ,
where μ, υ = 1, 2,⋯, 2n.

The nonshifted Birkhoff’s equations on time scales
are [34].

R∇
μ = σ∇ tð Þ ∂Rυ t, aρ

� �
∂aμ

aΔυ −
∂B t, aρ
� �
∂aμ

" #
, ð2Þ

where σ = σðtÞ is nabla differentiable on T .

2.2. Quasi-symmetry and Conserved Quantity. Introduce
infinitesimal transformations

t∗ = t + εξ0 t, aρ
� �

, a∗μ = aμ + εξμ t, aρ
� �

, ð3Þ

where ε is an infinitesimal parameter and ξ0 and ξμ are
the generators.

Let R1
υ and B1 be the other Birkhoffian and Birkhoff’s

functions on time scales. If accurate to a small quantity of
first order, this is true

ðt2
t1

Rυ t, aρ
� �

aΔυ − B t, aρ
� �� �

Δt

=
ðα t2ð Þ

α t1ð Þ
R1
υ t∗, a∗ρ
� �

a∗Δ
∗

υ − B1 t∗, a∗ρ
� �h i

Δ∗t∗:

ð4Þ

Then, the nonshifted Pfaff action (1) is a quasi-invariant,
where α : T ⟶ℝ. Obviously, R1

υ, B1 and Rυ, B will satisfy
the same equation, so we have

R1
υ = Rυ +

∂G
∂aυ

, B1 = B −
∂G
∂t

: ð5Þ

Thus, equation (4) can be expressed as

ðt2
t1

Rυ t, aρ
� �

aΔυ − B t, aρ
� �� �

Δt

=
ðα t2ð Þ

α t1ð Þ
Rυ t∗, a∗ρ
� �

a∗Δ
∗

υ − B t∗, a∗ρ
� �h i

Δ∗t∗

+
ðt2
t1

Δ

Δt
G t, aρ
� �

Δt,

ð6Þ

where G is a small quantity of first order.

Definition 1. If the nonshifted Pfaff action (1) is a quasi-
invariant, in other words, for every infinitesimal transforma-
tions (3), the following relationship

ΔS = −
ðt2
t1

Δ

Δt
ΔGð ÞΔt, ð7Þ

always holds; the transformations (3) are referred to as
Noether’s quasi-symmetric for the nonshifted Birkhoffian
system (2).

Criterion 2. If the following equation

∂Rυ

∂t
aΔυ −

∂B
∂t

� 	
ξ0 +

∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

 !
ξμ − BξΔ0 + Rυξ

Δ
υ + GΔ = 0

ð8Þ
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is satisfied, the transformations (3) are quasi-symmetric.
Equation (8) is called the Noether identity.

For equation (6),

ðt2
t1

Rυ t, aρ
� �

aΔυ − B t, aρ
� �� �

Δt

=
ðα t2ð Þ

α t1ð Þ
Rυ t∗, a∗ρ
� �

a∗Δ
∗

υ − B t∗, a∗ρ
� �h i

Δ∗t∗

+
ðt2
t1

Δ

Δt
G t, aρ
� �

Δt

=
ðt2
t1

Rυ α tð Þ, a∗ρ ∘ α
� �

tð Þ
� �

a∗Δ
∗

υ α tð Þð Þ
h

− B α tð Þ, a∗ρ ∘ α
� �

tð Þ
� �

�αΔ tð ÞΔt +
ðt2
t1

Δ

Δt
G t, aρ
� �

Δt

=
ðt2
t1

Rυ α tð Þ, a∗ρ ∘ α
� �

tð Þ
� � a∗ρ ∘ α

� �Δ
tð Þ

αΔ tð Þ

2
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− B α tð Þ, a∗ρ ∘ α
� �

tð Þ
� �

�αΔ tð ÞΔt +
ðt2
t1

Δ

Δt
G t, aρ
� �

Δt

=
ðt2
t1

Rυ t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� � aυ + εξυ t, aρ

� �� �Δ
t + εξ0 t, aρ

� �� �Δ
"

−B t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� ��

t + εξ0 t, aρ
� �� �ΔΔt

+
ðt2
t1

Δ

Δt
G t, aρ
� �

Δt:

ð9Þ

We have

Rυ t, aρ
� �

aΔυ − B t, aρ
� �

= Rυ t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� � aυ + εξυ t, aρ

� �� �Δ
t + εξ0 t, aρ

� �� �Δ
"

−B t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� ��

t + εξ0 t, aρ
� �� �Δ + Δ

Δt
G t, aρ
� �

ð10Þ

Take the derivative of ε, on both sides of equation(10)
and set ε = 0, we get equation (8).

Theorem 3. If the transformations (3) satisfy Noether identity
(8), then

I = Rυξ
σ
υ +
ðt
t1

∂Rν

∂τ
aΔυ −

∂B
∂τ

� 	
ξ0 − BξΔ0


 �
σ∇∇τ +Gσ = const:

ð11Þ

is the conserved quantity of this system (2).

Proof. From equation (8), we have

∂Rυ

∂t
ξ0 +

∂Rυ

∂aμ
ξμ

 !
aΔυ σ

∇ + Rυξ
Δ
υ σ

∇ − BξΔ0σ
∇

−
∂B
∂t

ξ0σ
∇ −

∂B
∂aμ

ξμσ
∇ + GΔσ∇ = 0: ð12Þ

Using equation (2), we get

∂Rυ

∂t
ξ0a

Δ
υ σ

∇ + ξ0B
∇ − ξσ0B

∇ −
∂B
∂t

ξ0σ
∇ + Rυξ

σ
υ
∇ +GΔσ∇ = 0:

ð13Þ

By nabla indefinite integral of equation (13), we can get
conserved quantity (11).

Example 4.We can study the Hojman-Urrutia problem on
time scales. This problem can be written to be a non-
shifted Birkhoffian system on time scales. Let T = f2n : n
∈ℕ ∪ f0gg, it is

B = 1
2 a3ð Þ2 + 2a2a3 − a4ð Þ2� 

,

R1 = a2 + a3, R2 = 0, R3 = a4, R4 = 0:
ð14Þ

From equation (8), we get

aΔ1 − a3
� �

ξ2 + aΔ1 − a3 − a2
� �

ξ3 + aΔ3 + a4
� �

ξ4

− BξΔ0 + a3 + a2ð ÞξΔ1 + a4ξ
Δ
3 +GΔ = 0:

ð15Þ

It is easy to solve

ξ11 = 1, ξ10 = ξ12 = ξ13 = ξ14 = 0, G1 = 0, ð16Þ

ξ20 = 0, ξ21 = t, ξ22 = 0, ξ23 = 1, ξ24 = 0, G2 = −a1: ð17Þ

The generators (16) correspond toNoether symmetry, and
generators (17) correspond to Noether quasi-symmetry.

Based on Theorem 3, we can get

I1 = a2 + a3 = const, ð18Þ

I2 = a2 + a3ð Þ t + μ tð Þð Þ + a4 − a1 + μ tð ÞaΔ1
� �

= const:
ð19Þ

If we take T =ℝ, we have

I1 = a2 + a3 = const, ð20Þ

I2 = a2 + a3ð Þt + a4 − a1 = const: ð21Þ
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3. Nonshifted Generalized Birkhoffian Systems
on Time Scales

3.1. Nonshifted Generalized Birkhoff’s Equations. The non-
shifted generalized Pfaff-Birkhoff principle on time scales
is [3].

ðt2
t1

δ Rυa
Δ
υ − B

� �
+Λυ t, aρ

� �
δaυ

� 
Δt = 0, ð22Þ

where additional term Λυ : T ×ℝ2n ⟶ℝ, which is of
C1,Δ
rd ðTÞ.
From the principle (22), we have

ðt2
t1

δ Rυ t, aρ
� �

aΔυ − B t, aρ
� �� �

+Λυ t, aρ
� �

δaυ
� 

Δt

=
ðt2
t1

∂Rυ t, aρ
� �
∂aμ

aΔυ δaμ + Rυ t, aρ
� �

δaΔυ

 

−
∂B t, aρ
� �
∂aμ

δaμ +Λυ t, aρ
� �

δaυÞΔt

=
ðt2
t1

−
ðσ tð Þ

t1

∂Rυ τ, aρ
� �
∂aμ

aΔυ

 !
Δτ + Rμ τ, aρ

� �"(

+
ðσ tð Þ

t1

∂B τ, aρ
� �
∂aμ

Δτ−
ðσ tð Þ

t1

Λμ τ, aρ
� �

Δτ

#
δaμ
� �Δ)Δt = 0

ð23Þ

We get

Rμ −
ðσ tð Þ

t1

∂Rυ τ, aρ
� �
∂aμ

aΔυ −
∂B τ, aρ
� �
∂aμ

+Λμ τ, aρ
� �" #

Δτ = const:

ð24Þ

Let hσðtÞ = Ð σðtÞt1
½ð∂Rυðτ, aρÞ/∂aμÞaΔυ − ð∂Bðτ, aρÞ/∂aμÞ +

Λμðτ, aρÞ�Δτ, we have

Rμ −
ðσ tð Þ

t1

∂Rυ τ, aρ
� �
∂aμ

aΔυ −
∂B τ, aρ
� �
∂aμ

+Λμ τ, aρ
� �" #

Δτ

( )∇

= R∇
μ − hσð Þ∇ tð Þ = R∇

λ − σ∇ tð ÞhΔ tð Þ

= R∇
μ − σ∇ tð Þ

ðσ tð Þ

a

∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

+Λμ

" #
Δτ

( )Δ

= R∇
μ − σ∇ tð Þ ∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

+Λμ

" #
= 0:

ð25Þ

Therefore, we get

σ∇ tð Þ ∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

+Λμ

" #
= R∇

μ  μ, υ = 1, 2,⋯,2nð Þ: ð26Þ

Equation (26) is called nonshifted generalized Birkhoff’s
equations. When Λμ = 0, equation (26) becomes nonshifted
Birkhoff’s equation (2).

3.2. Quasi-symmetry and Conserved Quantity

Definition 5. If nonshifted Pfaff action (1) is a generalized
quasi-invariant, that is, for every infinitesimal transforma-
tions (3), the following relationship

ΔS = −
ðt2
t1

Δ

Δt
ΔGð Þ +Λυδaυ


 �
Δt, ð27Þ

always holds, the transformations (3) are referred to as
generalized quasi-symmetric for nonshifted generalized
Birkhoffian system (26).

Criterion 6. If the following Noether identity

∂Rυ

∂t
aΔυ −

∂B
∂t

� 	
ξ0 +

∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

 !
ξμ

− BξΔ0 + Rυξ
Δ
υ +GΔ +Λυ ξυ − aΔυ ξ0

� �
= 0,

ð28Þ

is satisfied, then transformations (3) are generalized quasi-
symmetry.

For equation (27), we have

ðt2
t1

Rυ t, aρ
� �

aΔυ − B t, aρ
� �� �

Δt

=
ðα t2ð Þ

α t1ð Þ
Rυ t∗, a∗ρ
� �

a∗Δ
∗

υ − B t∗, a∗ρ
� �h i

Δ∗t∗

+
ðt2
t1

Δ

Δt
G t, aρ
� �

+Λυ t, aρ
� �

δaυ


 �
Δt

=
ðt2
t1

Rυ α tð Þ, a∗ρ ∘ α
� �

tð Þ
� �

a∗Δ
∗

υ α tð Þð Þ
h

− B α tð Þ, a∗ρ ∘ α
� �

tð Þ
� �

�αΔ tð ÞΔt

+
ðt2
t1

Δ

Δt
G t, aρ
� �

+Λυ t, aρ
� �

δaυ


 �
Δt

=
ðt2
t1

Rυ α tð Þ, a∗ρ ∘ α
� �

tð Þ
� � a∗ρ ∘ α

� �Δ
tð Þ

αΔ tð Þ

2
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− B α tð Þ, a∗ρ ∘ α
� �

tð Þ
� �

�αΔ tð ÞΔt

+
ðt2
t1

Δ

Δt
G t, aρ
� �

+Λυ t, aρ
� �

δaυ


 �
Δt

=
ðt2
t1

Rυ t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� � aυ + εξυ t, aρ

� �� �Δ
t + εξ0 t, aρ

� �� �Δ
"

− B t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� ��

t + εξ0 t, aρ
� �� �ΔΔt

+
ðt2
t1

Δ

Δt
G t, aρ
� �

+Λυ t, aρ
� �

δaυ


 �
Δt:

ð29Þ
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We have

Rυ t, aρ
� �

aΔυ − B t, aρ
� �

= Rυ t + εξ0 t, aρ
� �

, aρ + εξρ t, aρ
� �� � aυ + εξυ t, aρ

� �� �Δ
t + εξ0 t, aρ

� �� �Δ
"

− B t + εξ0 t, aθð Þ, aρ + εξρ t, aρ
� �� �#

t + εξ0 t, aρ
� �� �Δ

+ Δ

Δt
G t, aρ
� �

+Λυ t, aρ
� �

δaυ:

ð30Þ

Take the derivative of ε on both sides of equation (30)
and set ε = 0, we obtain equation (28).

Theorem 7. If the transformations (3) satisfy Noether identity
(28), then

I = Rυξ
σ
υ +
ðt
t1

∂Rυ

∂τ
aΔυ −

∂B
∂τ

−Λυa
Δ
υ

� 	
ξ0 − BξΔ0


 �
σ∇∇τ +Gσ = const:

ð31Þ

is the conserved quantity for the system (26).

Proof. By equation (28), we have

∂Rυ

∂t
ξ0 +

∂Rυ

∂aμ
ξμ

 !
aΔυ σ

∇ + Rυξ
Δ
υ σ

∇ − BξΔ0σ
∇ −

∂B
∂t

ξ0σ
∇

−
∂B
∂aμ

ξμσ
∇ +GΔσ∇ +Λυ ξυ − aΔυ ξ0

� �
σ∇ = 0:

ð32Þ

Using equation (26), we have

∂Rυ

∂t
ξ0a

Δ
υ σ

∇ + ξ0B
∇ − ξσ0B
� �∇ − ∂B

∂t
ξ0σ

∇ + Rυξ
σ
υ

+GΔσ∇ +Λυ ξυ − aΔυ ξ0
� �

σ∇ = 0:
ð33Þ

By nabla indefinite integral of equation (33), we can get
conserved quantity (31).

Example 8. Let T = f2n : n ∈ℕ ∪ f0gg, the nonshifted gener-
alized Birkhoffian system on time scales is

B = 1
2 a3ð Þ2 + a2,

R1 = a3, R2 = a4, R3 = 0, R4 = 0,
Λ1 = 0,Λ2 = 0,Λ3 = 0,Λ4 = −a4:

8>>><
>>>:

ð34Þ

From equation (28), we get

−ξ2 − a3ξ3 − BξΔ0 + a3ξ
Δ
1 + a4ξ

Δ
2 − a4 ξ4 − aΔ4 ξ0

� �
+GΔ = 0:

ð35Þ

Equation (35) has the following solution:

ξ10 = 0, ξ11 = 0, ξ12 = 1, ξ13 = 0, ξ14 = 0,G1 = t, ð36Þ

ξ20 = 0, ξ21 = 1, ξ22 = 0, ξ23 = 0, ξ24 = 0,G2 = 0: ð37Þ
By Theorem 7, the conserved quantities corresponding to

the generators (36) and (37) are

I1 = a4 + 2t = const, ð38Þ

I2 = a3 = const: ð39Þ

4. Nonshifted Constrained Birkhoffian Systems
on Time Scales

4.1. Nonshifted Constrained Birkhoff’s Equations. If the vari-
ables in nonshifted Birkhoffian system are not independent
of each other on time scales, but subject to some constraints,
these constraints are shown as

f β t, aμ
� �

= 0 β = 1, 2,⋯, 2nð Þ: ð40Þ

To calculate the isochronous variation of equation (40),
we have

∂f β
∂aμ

δaμ = 0: ð41Þ

From equation (41), we can get

ðt2
t1

λβ
∂f β
∂aμ

δaμΔt = 0: ð42Þ

By integrating by parts on time scales with equation (42),
we get

ð t2
t1
λβ

∂f β
∂aμ

δaμΔt = δaμ

ðt
t1

λβ
∂f β
∂aμ

∇τ

 !�����
t2

t1

−
ðt2
t1

ðσ tð Þ

t1

λβ
∂f β
∂aμ

∇τ

 !
δaμ
� �ΔΔt = 0,

ð43Þ

i.e.,

ðt2
t1

ðσ tð Þ

t1

λβ
∂f β
∂aμ

∇τ

 !
δaμ
� �Δ

Δt = 0: ð44Þ
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According to nonshifted Pfaff-Birkhoff principle δS = 0
,we get [34].

ðt2
t1

−
ðσ tð Þ

t1

∂Rυ τ, aρ
� �
∂aμ

aΔυ

 !
Δτ + Rμ τ, aρ

� �"(

+
ðσ tð Þ

t1

∂B τ, aρ
� �
∂aμ

Δτ

#
δaμ
� �Δ)

Δt = 0:
ð45Þ

Add equations (44) to (45), we have

ðt2
t1

−
ðσ tð Þ

t1

∂Rυ τ, aρ
� �
∂aμ

aΔυ

 !
Δτ + Rμ τ, aρ

� �"(

+
ðσ tð Þ

t1

∂B τ, aρ
� �
∂aμ

Δτ+
ðσ tð Þ

t1

λβ
∂f β τ, aρ
� �
∂aμ

Δτ

#
δaμ
� �Δ)Δt = 0

ð46Þ

We get

Rμ −
ðσ tð Þ

t1

∂Rυ τ, aρ
� �
∂aμ

aΔυ −
∂B τ, aρ
� �
∂aμ

− λβ
∂f β τ, aρ
� �
∂aμ

" #
Δτ = const:

ð47Þ

Let hσðtÞ = Ð σðtÞt1
½ð∂Rυðτ, aρÞ/∂aμÞaΔυ − ð∂Bðτ, aρÞ/∂aμÞ −

λβð∂f βðτ, aρÞ/∂aμÞ�Δτ, then

Rμ −
ðσ tð Þ

t1

∂Rυ τ, aρ
� �
∂aμ

aΔυ −
∂B τ, aρ
� �
∂aμ

− λβ
∂f β τ, aρ
� �
∂aμ

" #
Δτ

( )∇

= R∇
μ − hσð Þ∇ tð Þ = R∇

λ − σ∇ tð ÞhΔ tð Þ

= R∇
μ − σ∇ tð Þ

ðσ tð Þ

a

∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

− λβ
∂f β
∂aμ

" #
Δτ

( )Δ

= R∇
μ − σ∇ tð Þ ∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

− λβ
∂f β
∂aμ

" #
= 0:

ð48Þ

Therefore, we get

σ∇ tð Þ ∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

− λβ
∂f β
∂aμ

" #
− R∇

μ = 0 μ, υ = 1, 2,⋯,2n ; β = 1, 2,⋯,gð Þ:

ð49Þ

Equation (49) is called nonshifted constrained Birkhoff’s
equations. If the system is nonsingular, by using equations
(40) and (49), we can solve λβ = λβðt, aρÞ. Equation (51)
can be written as

σ∇ tð Þ ∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

− Pμ

" #
= R∇

μ , ð50Þ

where

Pμ = λβ
∂f β
∂aμ

: ð51Þ

We call the system determined by equation (50) as the
corresponding free Birkhoffian system.

4.2. Quasi-symmetry and Conserved Quantity

Definition 9. If nonshifted Pfaff action (1) is a generalized
quasi-invariant, in other words, for every infinitesimal trans-
formations (3), the following relationship

ΔS = −
ðt2
t1

Δ

Δt
ΔGð Þ + Pυδaυ


 �
Δt, ð52Þ

always holds, the transformations (3) are referred to as
generalized quasi-symmetric for the corresponding free
Birkhoffian system (50).

Criterion 10. If the Noether identity

∂Rυ

∂t
aΔυ −

∂B
∂t

� 	
ξ0 +

∂Rυ

∂aμ
aΔυ −

∂B
∂aμ

 !
ξμ − BξΔ0 + Rυξ

Δ
υ

+ GΔ − Pυ ξυ − aΔυ ξ0
� �

= 0,
ð53Þ

is satisfied, then transformations (3) are generalized quasi-
symmetric for the corresponding free Birkhoffian system
(50). If the restriction equation

∂f β
∂aμ

ξμ − aΔμξ0
� �

= 0 β = 1, 2,⋯, gð Þ, ð54Þ

is also satisfied, then transformations (3) are generalized
quasi-symmetric for the nonshifted constrained Birkhoffian
system (40) and (49).

Similar to the derivation of equation (29), from equation
(52), we have

ðt2
t1

Rυ t, aρ
� �

aΔυ − B t, aρ
� �� �

Δt

=
ðt2
t1

Rυ t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� � aυ + εξυ t, aρ

� �� �Δ
t + εξ0 t, aρ

� �� �Δ
"

−B t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� ��

t + εξ0 t, aρ
� �� �ΔΔt

+
ðt2
t1

Δ

Δt
G t, aρ
� �

+ Pυ t, aρ
� �

δaυ


 �
Δt

ð55Þ
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From equation (55), we have

Rυ t, aρ
� �

aΔυ − B t, aρ
� �

= Rυ t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� � aυ + εξυ t, aρ

� �� �Δ
t + εξ0 t, aρ

� �� �Δ
"

− B t + εξ0 t, aρ
� �

, aρ + εξρ t, aμ
� �� �� t + εξ0 t, aρ

� �� �Δ
+ Δ

Δt
G t, aρ
� �

− Pυ t, aρ
� �

δaυ:

ð56Þ

Take the derivative of ε on both sides of equation (56)
and set ε = 0, we obtain equation (53).

Theorem 11. If the transformations (3) satisfy the Noether
identity (53) and the restriction equation (54), then

I = Rυξ
σ
υ +
ðt
t1

∂Rυ

∂τ
aΔυ −

∂B
∂τ

+ Pυa
Δ
υ

� 	
ξ0 − BξΔ0


 �
σ∇∇τ +Gσ = const:

ð57Þ

is the conserved quantity of the system (40) and (49).

Proof. From equation (53), we have

∂Rυ

∂t
ξ0 +

∂Rυ

∂aμ
ξμ

 !
aΔυ σ

∇ + Rυξ
Δ
υ σ

∇ − BξΔ0σ
∇ −

∂B
∂t

ξ0σ
∇

−
∂B
∂aμ

ξμσ
∇ +GΔσ∇ − Pυ ξυ − aΔυ ξ0

� �
σ∇ = 0:

ð58Þ

Using equation (50), we have

∂Rυ

∂t
ξ0a

Δ
υ σ

∇ + ξ0B
∇ − ξσ0B
� �∇ − ∂B

∂t
ξ0σ

∇ + Rυξ
σ
υ

� �∇
+ GΔσ∇ − Pυ ξυ − aΔυ ξ0

� �
σ∇ = 0:

ð59Þ

By nabla indefinite integral of equation (59), we can get
conserved quantity (57).

Example 12. Let T = f2n : n ∈ℕ ∪ f0gg, the nonshifted
constrained Birkhoffian system on time scales is

B = 1
2 a1ð Þ2 + a3ð Þ2 + a4ð Þ2� �

, R1 = a3, R2 = a4, R3 = R4 = 0:

ð60Þ

The constraint equations are

f1 = a1a3 − c1ð Þ2 = 0,
f2 = a1 + a4 − c2 = 0:

ð61Þ

According to equation (49), we have

a∇3 = 2 −λ1a3 − λ2 − a1ð Þ,
a∇4 = 0,
aΔ1 − a3 = λ1a1,
aΔ2 − a4 = λ2:

8>>>>><
>>>>>:

ð62Þ

From equations (61) and (62), we have

λ1 = −
a3
a1

, λ2 = −a1 +
a3ð Þ2
a1

: ð63Þ

Hence, we get

P1 = −a1, P2 = 0, P3 = −a3, P4 = −a1 +
a3ð Þ2
a1

: ð64Þ

According to equation (53), we have

aΔ1 − a3
� �

ξ3 + aΔ2 − a4
� �

ξ4 − a1ξ1 − BξΔ0 + a3ξ
Δ
1

+ a4ξ
Δ
2 − P1 ξ1 − aΔ1 ξ0

� �
− P3 ξ3 − aΔ3 ξ0

� �
− P4 ξ4 − aΔ4 ξ0

� �
+GΔ = 0:

ð65Þ

Equation (65) has the following solutions:

ξ10 = 0, ξ11 = 0, ξ12 = 1, ξ13 = 0, ξ14 = 0,G1 = 0, ð66Þ

ξ20 = 0, ξ21 = 1, ξ22 = 0, ξ23 = 0, ξ24 = 0,G2 = 0: ð67Þ
According to Theorem 11, the conserved quantities

corresponding to the generators (66) and (67) are

I1 = a4 = const, ð68Þ

I2 = a3 = const: ð69Þ

5. Conclusions

Time scale has been widely used in many fields. At present,
most of the researches on time scales are about the shifted case.
In this article, we studied the time-scale version of the non-
shifted variational problem for three types of Birkhoffian sys-
tems. We proposed the nonshifted generalized Pfaff-Birkhoff
principle, derived nonshifted generalized and constrained
Birkhoff’s equation, studied Noether quasi-symmetries for
these nonshifted Birkhoffian systems, and gave the condition
of the symmetry resulting in conserved quantity and obtained
conserved quantities for these nonshifted Birkhoffian systems
on time scales. According to this passage, we also will research
symmetries and time-scale conserved quantities for other non-
shifted dynamical systems, including Lie and Mei symmetries.
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