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The prediction accuracy of concrete compressive strength is important and considered a challenging task, aiming at reducing
costly and time-consuming experiments. Moreover, compressive strength prediction of concrete using blast-furnace slag (BES)
and fly ash (FA) is more difficult due to the complex mix design of a composition. In this investigation, an approach using the
artificial neuron network (ANN), one of the most powerful machine learning algorithms, is applied to predict the compressive
strength of concrete containing BFS and FA. The ANN models with one hidden layer containing 13 neuron number cases are
proposed to determine the best ANN structure. Under the effect of random sampling strategies and the network structures
selected, Monte Carlo simulations (MCS) are introduced to statistically investigate the convergence of results. Next, the evaluation
of the model is concluded over 100 simulations for the convergence analysis. The results show that ANN is a highly efficient
predictor of the compressive strength using BES and FA, with maximum values of the coefficient of determination (R?), root mean
square error (RMSE), and mean absolute error (MAE) of 0.9437, 3.9474, and 2.9074, respectively, on the training part and 0.9285,
4.4266, and 3.2971, respectively, for the testing part. The best-defined structure of ANN is [8-24-1], with 24 neurons in the hidden
layer. Partial Dependence Plots (PDP) are also performed to investigate the dependence of the prediction results of input variables
used in the ANN model. The age of sample and cement content are found to be the two most crucial factors that affect the
compressive strength of concrete using BFS and FA. The ANN algorithm is practical for engineers to reduce costly experiments.

1. Introduction

In view of the global sustainable development, supple-
mentary cementitious materials (SCM) need to be used for
cement replacement in the concrete industry. The most
worldwide available SCM are fly ash (FA), a fine powder and
a by-product of burning pulverized coal in electric gener-
ation power plants, and blast-furnace slag (BS), a by-product
of iron ore processing. In the current context, the developed
industry generates a large amount of industrial waste and
seriously affects the environment. Amongst various by-
products generated by the industries, FA and BEFS are of
great interest to concrete researchers. Taking advantage of
these materials will contribute to reducing environmental
pollution and be also a cost-effective solution for producing

concrete. Besides, the use of BFS and fly ash in concrete as a
partial cement replacement could significantly improve
concrete properties, such as compressive strength and
permeability of concrete, the durability of concrete [1-4],
and the workability of concrete [5]. For these reasons, the
determination of BFS and FA contents for concrete mix
design is essential and meaningful, especially in improving
the compressive strength of concrete.

Numerous experimental studies have been conducted to
determine the BFS content in the concrete mix design. Oner
and Akyuz [6] have proved that the content of BFS to
maximize the strength is about 55-59% of the total binder
content. Shariq et al. [7] have studied the effect of BFS
content on the concrete compressive strength using 20%,
40%, and 60% of BFS and three different water-to-cement
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(W/C) ratios. The compressive strength of concrete con-
taining 40% BFS is higher than those containing 20% or 60%
of BFS for all W/C ratios. Siddique and Kaur [8] have
concluded that 20% of cement replaced with BES can be used
appropriately in structures resistant to high temperature.
Tifek¢i and Cakir [9] have shown that the compressive
strength of concrete using 60% BFS content reached the
highest value at 28 days. Besides, Majhi et al. [10] have
experienced the highest concrete compressive strength by
using 40% BFS replacement.

Moreover, many experimental investigations for deter-
mining the BFS and FA replacement content in concrete mix
design have been performed. Gehlot [11] has evaluated the
compressive strength of concrete containing BFS and FA
with different BES/FA weight ratios, such as 0/0, 10/20, 20/
10, 30/0, and 0/30. It has been found that the higher the
weight ratio of BFS/FA, the higher the compressive strength
of concrete. Li and Zhang [12] also experimented with the
compressive strength of concrete using FA and BES. The
accuracy of the compressive strength prediction is strongly
dependent on the number of experimental tests and the
range of the mixture composition content. Therefore, a new
approach needs to be developed for reducing the time-
consumed and experimental cost due to a high number of
experimental tests. Also, a universal prediction approach
with high prediction accuracy needs to be used.

In recent years, Artificial Intelligence (AI) has been
widely used for modeling many problems in the areas of
science and engineering [13-17]. Al approaches have been
developed to predict different properties of concrete, such as
the shear strength of reinforced concrete beams [18, 19],
corrosion of concrete sewers [20], crack width of concrete
[21], the ultimate strength of reinforced concrete beams [22],
strength of recycled aggregate concrete [23], the compressive
strength of silica fume concrete [24], compressive strength of
geopolymer concrete [25], compressive strength prediction
of concrete using BFS [26-31], or concrete using FA [32-35].
Among Al algorithms, ANN is currently the most powerful
algorithm to simulate complex technical problems [36, 37].
ANN model is capable of solving complex, nonlinear
problems and especially problems in which the relationship
between the inputs and outputs is not easily established
explicitly. As an example, Bilim et al. [30] have used 225 data
samples with six input parameters (including cement con-
tent, ground granulated blast-furnace slag content, water
content, superplasticizer, aggregate content, and the age of
samples) for the development of the ANN model to predict
the compressive strength of concrete. The best value of the
coeflicient of determination for this ANN model is equal to
R*=0.96. Besides, in using 204 data samples, Chopra et al.
[38] have proposed an ANN model containing one hidden
layer with 50 neurons to predict the compressive strength of
concrete using BFS and FA. The performance of such an
ANN model is evaluated by a coefficient of determination of
0.92. Besides, Yeh [39] has used the highest number of data
with 990 data samples to develop an ANN model for pre-
dicting the compressive strength of concrete containing BFS
and FA. In the investigation of Yeh [39], the ANN structure
containing one hidden layer with eight neurons is proposed,
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the accuracy of the ANN model is relatively high with the
highest coefficient of determination of R?=0.922. Overall,
the performance of the ANN model depends significantly on
the database (such as the number of data samples or the
range distribution of variables) and the ANN structure,
reflected by the number of hidden layers and number of
neurons in each hidden layer [40]. Therefore, the deter-
mination of neuron number and the hidden number is
crucial for increasing ANN performance.

Therefore, the primary purpose of this investigation is to
propose an efficient ANN model to improve the compressive
strength prediction performance of concrete containing BFS
and FA, thanks to a significant number of data gathered
from the literature. Furthermore, the efficiency of the
proposed ANN model is determined by (i) determination of
neuron number for one hidden layer using empirical for-
mulations proposed in the literature, (ii) investigation on the
results convergence of each ANN structure, (iii) evaluation
of the prediction performance of each model to determine
the best ANN structure, and (iv) using the best ANN
structure for predicting the compressive strength of con-
crete. The best ANN architecture is evaluated through three
statistical measurements, namely, the coefficient of deter-
mination (R?), mean absolute error (MAE), and root mean
square error (RMSE). Finally, a sensitivity analysis using
Partial Dependence Plots (PDP) is performed to evaluate the
influence of each input variable on the prediction of com-
pressive strength of concrete containing BFS and FA.

2. Research Significance

Predicting concrete compressive strength using supple-
mentary cementitious materials, such as BFS and fly ash,
with high accuracy and reliability plays a crucial role in many
civil engineering applications. Although this research topic
has been the subject of intense researches over the past two
decades (i.e., Yeh [39], Han et al. [41], Boukhatem et al. [27],
Kandiri et al. [28], Boga et al. [29], Behnood et al. [42], Dao
et al. [43], and Bui et al. [44]), there are still problems that
need to be dealt with. First of all, the limited number of data
points and range of input parameters used to construct ML
models put strong constraints that inhibit the applicability of
these models from an engineering point of view. Second, the
reliability of ML models in predicting compressive strength
requires a rigorous assessment approach. Third, from a
practical point of view, the efficiency of an algorithm,
otherwise, the total computation time, should be considered
the most important factor. Therefore, the present work
attempts to address the above-mentioned gaps with the
following ideas:

(1) To the best of the authors” knowledge, the second-
largest dataset containing 1274 data points is used, in
which the collecting process is carefully conducted,
and duplicate samples are removed from the
database

(2) The prediction performance of different one hidden-

layer ANN architectures are evaluated, using semi-
empirical formulas suggested in the relevant
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literature to determine the appropriate number of
neurons

(3) Only single hidden layer ANN models are consid-
ered and developed, with the highest aim to promote
simplicity and boost efficiency

(4) The reliability of ANN models is rigorously assessed
by Monte Carlo simulations

(5) The predictability of the best architecture is shown
more relevant compared with 11 investigations
published in the literature and clearly confirms the
simplicity and effectiveness of the proposed ANN
model

3. Database Construction

In this study, 1274 data samples of experiments on com-
pressive strength of concrete containing BFS and FA are
rigorously gathered from 4 other investigations (cf. Table 1),
including 10 samples from Pitroda [33], 204 samples from
Chopra et al. [38], 990 samples from Yeh [39], and 72
samples from Lee et al. [45]. Different from most of the
works published in the literature, 40 duplicate data points
from the work of Yeh [39] are filtered out of the original
1030 instances, as this might affect the accuracy and reli-
ability of prediction results. The database includes eight
input variables, namely, the cement content (I;), water
content (I,), coarse aggregate or gravel content (I3), fine
aggregate or sand content (I,), blast-furnace slag content
(Is), fly ash content (I4), superplasticizer content (I;), and age
of samples (Ig), along with one output variable, the com-
pressive strength (CS) of concrete. Table 1 summarizes the
database, including the number of data samples collected in
each reference and their percentages of proportion.

Figure 1 describes the database distributions. It can be
seen that most of the input variables in the database
possessed a wide range of values. The cement content is
100 + 610 (kg/m”). The water content is mainly in the range
of 150 +200 (kg/m?). The coarse aggregate or gravel con-
tent is in the range of 800 + 1200 (kg/ m?), with a few values
higher than 1200 kg/m®. In contrast, fine aggregate or sand
content is mainly in the range of 400+ 950 (kg/m>). The
blast-furnace slag content is distributed in the 0+360
(kg/m’) range. The fly ash content varies from 0 to 200
(kg/m?), but the values are mainly in the 60 +175 (kg/m"’)
range. The superplasticizer content possesses a 0+32
(kg/m’) range, but most of the values are in the 5+15
(kg/m®) range. With the age of samples, there are fifteen
values, where the minimum age of the sample is one day,
and the maximum age of the sample is 365 days. Regarding
these values, the range of the concrete compressive strength
(f.) is in the range of 0.5+90 (MPa).

The corresponding correlation analysis with the f. is
displayed in Figure 2. As clearly shown, none of the variables
are significantly correlated. The highest linear correlation
coeflicient is equal to 0.54 between input I; and f.. Therefore,
the eight inputs are relatively independent of each other and
could be used as input variables for the prediction problem.

TaBLE 1: Detail of database collection.

Number of data

Number Reference Percentage (%)
samples
1 Pitroda [33] 10 0.79
Chopra
2 et al. [38] 204 16.01
3 Yeh [39] 990 77.71
4 Lee et al. [45] 70 5.49
5 Total 1274 100

4. Simulation Using Neural Networks

ANN is a powerful machine learning-based data analysis
algorithm, which is a model of bioneural networks. This
machine learning approach attempts to simulate the process
of knowledge acquisition and inference occurring in the
human brain [46]. ANN has been widely used to address
nonlinear regression analysis problems. Backpropagation
neural network (BPNN), a standard training method of
ANN, is often used for regression analysis and practical
applications [47]. A backpropagation network structure is a
combination of different layers, where the first layer is the
input layer, the last layer is the output layer, and the middle
layers are hidden layers connected to both the input and
output layers. Typical backpropagation networks typically
use a gradient descent algorithm like Widrow-Hoff arith-
metic. In this network, weights are changed or moved along
the negative value of the gradient of the executing function.
The term backpropagation is used because it relates to how
the gradual computation of nonlinear multilayer neural
networks is performed. In practice, to design or use back-
propagation neural networks to learn or train linear net-
works to solve a particular problem, the following basic steps
are usually performed: (a) practicing aggregate learned or
trained data; (b) building neural networks; (c) network
training; and (d) application of neural networks to simulate
new data. The block diagram of the backpropagation net-
work is shown in Figure 3.

4.1. Number of Hidden Neurons. An important issue in
designing a network is how many neurons are needed in
each hidden layer. Using too few neurons can lead to either
incomplete signal recognition in a complex dataset or
underfitting. Using too many neurons increases the lattice
time, perhaps too much to train when it is impossible to train
in a reasonable amount of time. A large number of neurons
can lead to overfitting, in which case the network has too
much information, or the amount of information in the
training set does not have enough specific data to train the
network [40]. The best number of hidden units depends on
many factors—the number of inputs, outputs of the net-
work, the number of cases in the sample set, the noise of the
target data, the complexity of the error function, network
architecture, and network training algorithm.

In the majority of cases, there is usually no way to easily
determine the optimal number of neurons in the hidden
layer without having to train the network [48]. The best way
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FIGURE 1: Correlation analysis between f, with the input variables used in this study: (a) cement content; (b) water content; (c) coarse
aggregate or gravel content; (d) fine aggregate or sand content; (e) blast-furnace slag content; (f) fly ash content; (g) superplasticizer content;
and (h) age of samples.
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FIGURE 2: Multicorrelation graph of input and output variables used in this study.
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FIGURE 3: Backpropagation network block diagram.

is to use the trial-and-error method. In fact, it is possible to
use the forward selection or backward selection method to
determine the number of units in the hidden layer. Pro-
gressive selection begins with choosing a reasonable rule for
the performance evaluation of the network. After that, a
small number of hidden units, train, and test are chosen and
then evaluate the network performance. After that, slightly
increase the number of hidden units and conduct and retry
until the error is acceptable, or there is no further significant

improvement. The backward selection, in contrast to the
forward selection, starts with a large number of units in the
hidden layer and then descends. This process is very time-
consuming but helpful in finding the right number of units
for the hidden layer.

4.2. Neural Network Evaluation Procedure. The disadvantage
of the backpropagation algorithm is that its convergence
speed is relatively slow [49]. Therefore, many powerful
optimization algorithms have been used, most of which have
been based on simple gradient descent algorithms. One of
the algorithms to improve the convergence rate or the
learning rate of the neural network is the backpropagation
training network according to the Conjugate Gradient
algorithm.

In conjugate gradient algorithms, the search direction
for all conjugate gradient algorithms is occasionally reset to
the gradient’s negative [50]. When the number of repetitions
is equal to the number of network parameters, namely,
weights and bias, the standard reset point occurs. To im-
prove the efficiency of training, there have been other reset



approaches. In those approaches, Powell [51], based on an
earlier version proposed by Beale [52] which suggests the
technique will restart if there is very little orthogonality left
between the current gradient and the previous gradient. If
very little orthogonality remains between the current and the
previous gradient, the technique will restart. This is tested
with the following inequality:

|91 2 0.2] g (1)

where g, is the gradient of the ky, iteration. If this condition
is satisfied, the search direction is reset to the negative of the
gradient.

4.3. Validation of Models. Evaluating the model’s accuracy is
an essential part of the machine learning modeling process
to describe the model’s performance level in its predictions.
In this study, three measures of statistical performance,
namely, root mean square error (RMSE), mean absolute
error (MAE), and coefficient of determination (R?), are used
to evaluate the difference between results of each network
and its ability to make accurate predictions. In general, these
criteria are popular for quantifying the performance of
machine learning algorithms. More specifically, the mean
squared difference between the real and estimated deter-
mines the RMSE, while the average magnitude of the errors
determines the MAE. R* evaluates the correlation between
the actual and estimated values. Quantitatively, the lower
RMSE and MAE values indicate better performance of the
models. In contrast, higher R* values indicate better model
performance. RMSE, MAE, and R are estimated as follows:

(2)

(3)

R*=1- Z:]Iil(a—j_glj)z) (4)
S (4= 7)

where a; is the actual value; a j is the predicted value; a; is the
average of actual values; and N is the total number of

samples.

5. Methodology Flowchart

The methodology of this study includes three main steps as
follows:

(i) Preparation of the data: in this step, the collected
dataset is randomly divided into two parts: the first
part accounts for 70% of the data and is used to train
the network. The second part is the remaining 30%
of the data and used to test the network’s
performance.
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(ii) Model building and training: in this step, the
training dataset is used to construct the ANN
model. From there, the appropriate structure of the
ANN model is selected.

(iii) Model validation: in this step, the trained models are
tested and validated using the testing dataset. The
predictability of the proposed model is assessed
through statistical criteria such as R*, RMSE, and
MAE.

A schematic diagram of the methodology is illustrated in
Figure 4.

6. Results and Discussion

6.1. Number of Neurons in a Single Hidden Layer of ANN.
In this section, the number of neurons in a hidden layer is
determined through several formulas proposed in the lit-
erature. Eighteen formulas are collected and summarized in
Table 2. In the 18 formulas, the twelve formulas are based on
the input variables to determine the number of neurons in
one hidden layer. The six remaining formulas are based on
both input variables and output variables to determine the
number of neurons in one hidden layer. Based on eight input
variables and one output variable, 18 values of neurons are
determined and shown in Table 2. It is worth noticing that
the adjacent integer values are taken if the calculated values
are not an integer. By doing so, 25 values are determined
using 18 formulas. These values are distributed in the range
from 1 to 255 and displayed in Figure 5.

Figure 5 depicts the neuron number for 24 cases, except
for the case with 255 neurons (not shown in Figure 5 for
better illustration). By removing similar values, a total of 13
values are identified for use in the ANN model. Besides, the
basic parameters of ANN used in this study are presented in
Table 3, including fixed parameters and neuron numbers in
the hidden layer. The number of inputs is equal to 8, and the
only compressive strength of concrete is considered the
output. The sigmoid function is used as the activation
function of the hidden layer, and the linear function is used
as the activation function of the output layer. The training
algorithm with conjugate gradient backpropagation with
Powell-Beale restarts is used.

6.2. Prediction Performance and Statistical Analysis. In this
section, performance criteria of the ANN model with 13
different cases of neuron number are shown in Figure 6,
including (a) coefficient of determination (R?), (b) root
mean square error (RMSE), and (c) mean absolute error
(MAE). A total of 1300 simulations are conducted. The
statistical measurements of the simulations are shown in
Figure 6, highlighting the mean values and standard devi-
ation (Std) over 100 simulations.

It can be seen that the maximum value of R* obtained for
the training dataset is R*=0.967, and the minimum value is
R?>=0.667. Besides, the maximum value of R? obtained for
the testing datasets is R* =0.883, and the minimum value is
R*=0.665. The RMSE values range from 3 to 9.5 for the
training parts, and from 5.75 to 11.7 for the testing parts. The
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Testing part
(30% dataset)
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Training part
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=

FIGURE 4: Methodology flow chart of this study.

results also indicate the MAE values are in the range of 2 + 7
(training datasets) and 3.9 to 7.1 for the testing datasets.
The Std values of each case also are displayed in Figure 7.
It is shown that StD values are high for certain cases of
neuron numbers, such as 1, 2, 3, 8, and 17 neurons. In

particular, the ANN structures containing 1 and 2 neurons
in the hidden layer have the highest Std values. The ANN
structure containing 17 neurons in the hidden layer has high
accuracy with R*=0.94, RMSE = 4.2, and MAE =32 for the
training part, and R?>=0.85, RMSE = 5.9, and MAE = 4.0 for
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TaBLE 2: Summary of different values of neurons in the hidden layer proposed in the literature.

Number Authors Formulas Values Values Reference
computed taken
1 Neville (1986) (3N,/4) 6 6 [53]
2 Neville (1986) 2N, +1 17 17 (53]
3 Hush (1989) 3N; 24 24 [54]
4 Popovics (1990) ((N; + Ny)/2) 4.5 4,5 [55]
5 Gallant (1993) 2N; 16 16 [56]
6 Wang (1994) (2N,/3) 5.33 56 [57]
7 Masters (1994) v (N; + Ny) 3 3 [58]
8 Li et al. (1995) ((VT+8N, -1)/2) 3.53 3,4 [59]
9 Tamura and Tateishi (1997) N; -1 9 9 [60]
10 Lai and Serra (1997) N; 8 8 [61]
11 Nagendra (1998) N;+N, 9 9 [62]
12 Zhang et al. (2003) (2NN} +1 33 33 [63]
13 Shibata and Yusuke (2009) v/ (N; * Ng) 2.83 2,3 [64]
14 Sheela and Deepa (2013) ((4N? +3)/(N? - 8)) 4.63 4,5 [40]
15 Hunter et al. (2012) 2Ni -1 255 255 (65]
16 Ripley (1993) ((N; +N,)/2) 45 4,5 (6]
Kannellopoulas and Wilkinson
17 (1997) 2N, 16 16 [67]
18 Paola (1994) ((2+N, * N, +0,5N, (N2 + N,) - 3)/ (N, + N,)) 1.28 1,2 (68]
35
*
30}
g 20}
b * ‘ : :
Boaspoooo KoK
E .
Z w0l o
* * *
* *
* % * * *
0 ; ; L%k ;
0 5 10 15 20 25
Formulations
FiGure 5: Calculation of neuron number using different formulations proposed in the literature.
TaBLE 3: Summary of different ANN characteristics used in this study.
Parameter Parameter Description
Neurons in input layer 8
Neurons in output layer 1
Hidden layer activation function Sigmoid
Fix Output layer activation function Linear
Training algorithm Conjugate gradient backpropagation with Powell-Beale restarts
Cost function Mean square error (MSE)
Number of hidden layers 1
Investigation Neurons in hidden layer Varying 13 different values

the testing part. However, the Std values of R, RMSE, and reliability with the highest mean value of R, the lowest mean
MAE are high regarding both the training and testing  values of RMSE, MAE, and the lowest values of StD.

datasets, so that the reliability of the ANN model containing Table 4 shows four values of quality assessment criteria
17 neurons is not high. Overall, the ANN model containing (maximum, minimum, average, and Std) over 100 simula-
16, 24, and 33 neurons in 1 hidden layer has the highest  tions with three ANN-16N, ANN-24N, and ANN-33N
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FIGURE 6: Analysis of the results over 100 simulations using different ANN structures: mean value and Std of (a) R?, (b) RMSE, and (c) MAE.
models corresponding to 16, 24, and 33 neurons, respec- 0.0295 for ANN-24N; and 0.885 and 0.0221 for ANN-33N,

tively. According to the testing part results, the mean and Std ~ respectively. For the RMSE criterion, the mean and Std
of R* are equal to 0.8886 and 0.028 for ANN-16N; 0.8895and  values are, respectively, equal to 5.5521 and 0.7268 for ANN-
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FIGURE 7: Analysis on the convergence of prediction results with respect to statistical measurements of different ANN structures over 100

simulations: (a) R? (b) RMSE, and (c) MAE.

16N, 5.5317 and 0.7873 for ANN-24N, and 5.6654 and
0.5431 for ANN-33N. With respect to the MAE criterion, the
mean value and Std values are, respectively, equal to 3.8967
and 0.2493 for ANN-16N, 3.8506 and 0.318 for ANN-24N,
and 3.8979 and 0.3243 for ANN-33N. Overall, thanks to the
highest value of R* and lowest values of RMSE and MAE, the
ANN-24N model is considered better than the other ANN
models. Moreover, the Std values obtained from the ANN-
24N model are the lowest. This means that ANN-24N is the
most reliable model with the highest performance. However,
before any further conclusion, the convergence analysis of
these three ANN models needs to be evaluated.

6.3. Investigation on the Convergence of Prediction Results.
The use of Monte Carlo simulation for convergence analysis
on the results is important, aiming at determining (i) the

suitable number of Monte Carlo simulations and (ii) the
reliability of the prediction results. Figure 7 depicts the
convergence of results for three ANN architectures proposed
in this investigation, namely, the ANN models with 16, 24,
and 33 neurons. It is worth noting that the convergence is
performed for both training and testing datasets for all cases
over 100 simulations. Figures 7(a)-7(c) show the conver-
gence curves of R?, RMSE, and MAE, respectively. It can be
observed that these values are relatively stable after about 50
simulations for both the training and testing parts. It could
be stated that the results obtained by the proposed ANN
model with a different number of neurons in the hidden
layer are converged, even under the random sampling effect.

Regardless of the training phase of the ANN model, the
performance analysis is focused on the testing parts, as the
latter directly reflect the prediction performance of machine
learning models. It can be seen that the 24-neuron ANN
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TaBLE 4: Summary of different quality assessment criteria over 100
simulations with different ANN structures.

ANN-16N ANN-24N ANN-33N
Criteria . . .
Train Test Train Test Train Test

g

Min 0.9077 0.6947 0.8462 0.6882 0.8542 0.7766

Average 0.9365 0.8886 0.9418 0.8895 0.9486 0.885

Max 0.9482 0.9228 0.9574 0.9285 0.9611 0.9201

Std 0.0062 0.028 0.0173 0.0295 0.0145 0.0221
RMSE

Min 3.8059 4.5031 3.4086 4.4266 3.3328 4.8466

Average 4.1591 5.5521 3954 5.5317 3.7171 5.6654

Max 4.9525 10.6746 6.4868 10.9525 6.3695 7.8546

Std 0.1925 0.7268 0.4915 0.7873 0.4261 0.5431
MAE

Min 2.7629 3.3248 2.5026 3.2971 2.4531 3.3841

Average 3.0742 3.8967 29071 3.8506 2.7212 3.8979

Max 3.7582 4.7447 49218 5.1684 4.6705 5.8684

Std 0.1541 0.2493 0.3774 0.318 0.323 0.3243

model (24N) exhibits the best-converged prediction accu-
racy (highest converged values of R?, and lowest converged
values of RMSE and MAE). Moreover, these 3 ANN ar-
chitectures exhibit a low level of fluctuation and require only
about 20 simulations to achieve the converged results.
Therefore, it could be concluded that the ANN model with
24 neurons is the best architecture for predicting the f, of
concrete.

6.4. Prediction Performance of Typical ANN Architecture.
This section is dedicated to the presentation of typical
prediction results of the best ANN architecture containing
24 neurons in a single hidden layer. The correlations between
the predicted and the experimental values are shown in
Figures 8(a) and 8(b) for the training and testing part, re-
spectively, through a regression model. The plot of a linear fit
is performed in each case, represented by a continuous blue
line. Figure 8 demonstrates a high correlation between the
experimental and predicted compressive strength of con-
crete using BFS and FA.

Figures 9(a) and 9(b) show the probability distribution of
errors for the training and testing datasets of the best ANN
model, respectively. Figure 9(a) depicts that the ANN-24N
can successfully predict the compressive strength of concrete
for the training set, where the prediction error is relatively
low. Almost error prediction is equal to about 0 with 370
samples for the training part, and 160 samples for the testing
part. For the testing part, in only two prediction cases, the
errors are found high, with an absolute value equal to
20 MPa.

Table 5 shows different values of performance criteria for
the best architecture of the ANN model including 24
neurons. The best values of R* are 0.9437 and 0.9285 for the
training part and for testing part, respectively. The values of
RMSE, MAE, Err. Mean, and Err. Std for the training dataset
are 5.4480, 4.1365, —0.0563, and 5.4563 and, for the testing
dataset, are 4.9585, 3.9423, 0.6252, and 4.9647, respectively.
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Table 6 shows the comparison of different machine
learning models proposed in the literature with the ANN
model of this investigation. The comparisons are presented
in the form of the machine learning algorithm, input
number, number of data, and performance measure. The
results show the ANN model of this investigation, using only
a single hidden layer, could predict the compressive strength
of concrete with high reliability and higher accuracy than
almost all investigations.

First, it is important to notice that high prediction ac-
curacy is reported with a low number of samples in the
original database. For instance, Saridemir et al. [31], Boga
et al. [29], Han et al. [41], Bilim et al. [30], and Kandiri et al.
[28] have reported the values of R*=0.981, 0.971, 0.961,
0.960, and 0.9409, respectively, with the data points in the
range of 162 to 624. The testing age of concrete samples,
which has been found the most influencing parameter of
concrete compressive strength [43], has not been considered
as input variables in [29, 41] and [31]. Besides, fly ash has not
been considered in the works of Kandiri et al. [28] and Bilim
et al. [30].

Second, regarding the works of Boukhatem et al. [27],
Bui et al. [44], Golafshani and Behnood [69], and Dao et al.
[43], more data points are considered. However, the pre-
diction accuracy of this work is greater (R*=0.9285)
compared with the reported values of R’, ranging from
0.8806 to 0.9216. Notably, the database in this study uses
more samples than the studies mentioned earlier.

Third, the results in Feng et al. [70] reach a higher R?
value (R*=0.9820). However, it is noted that this contri-
bution used 8 inputs with 1030 samples in Yeh’s work,
including 40 duplicate data points. Moreover, 90% of data
are used to train the model, the remaining data to test the
prediction accuracy so that the reported accuracy only
corresponds to the 10% remaining data. In this study, the
classical 70-30 train-to-test ratio is used, which puts more
constraint on the model’s predictability by covering a
broader range of input values and more concrete samples on
the testing phase.

Similarly, Behnood et al. [42] have used the highest
sample amount of concrete in the literature (1912 samples).
This study shows the proposed ANN model can predict the
concrete compressive strength with R*=0.9285, which is
greater than that of Behnood et al. [42] (R*=0.90). It is
worth noticing that the authors have used a train-to-test
ratio of 85/15, compared with a 70/30 ratio of this study.

Overall, these comparisons have confirmed the high
accuracy of the proposed ANN model in ensuring prediction
reliability. Moreover, the single hidden layer ANN model
clearly shows its simplicity and efficiency in total compu-
tation time than other hybrid machine learning approaches.
These results indicate that if the architecture of an ANN
model is carefully selected, it could be effectively used as an
alternative prediction tool for material engineers.

6.5. Sensitivity Analysis. In this section, PDP analysis is
performed and estimated for eight variables, which corre-
spond to 8 input variables used in the ANN model, namely,
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TaBLE 5: Summary of different quality assessment criteria for the
best ANN predictor using 24 neurons in the hidden layer, denoted
as ANN-[8-24-1].

RMSE MAE  Err. mean Err. Std R?
Training set  3.9474 2.9074  —0.0124  3.9496  0.9437
Testing set  4.4266  3.2971 0.1285 44306  0.9285

the cement (kg/m’), water (kg/m’), coarse aggregate or
gravel content (kg/m®), fine aggregate or sand (kg/m?), blast-
furnace slag (kg/m’), fly ash (kg/m’), superplasticizer (kg/
m’), and age of samples (day). Figure 10 shows the PDP
curves of compressive strength of concrete in function of
each input variable.

For the cement content, the PDP values of f, vary from
10 to 60, representing a difference of 50 MPa. With respect

to the water content, the PDP of f, varies from [45 to 25],
which represents 20 MPa of difference. The change in
coarse aggregate content generates a difference of 21 MPa
(from 37 to 58 MPa), whereas, for the fine aggregate, it is
only 6 MPa (from 35 to 41 MPa). Regarding the blast-
furnace slag content, the f, values vary from 34 to 43 MPa,
only representing 9 MPa of difference. Besides, the PDP
values vary from 36 to 65MPa, 37 to 17 MPa, and 18 to
75MPa for fly ash, superplasticizer contents, and age of
samples, respectively.

On the basis of the PDP values, the effect of input
variables on the compressive strength of concrete is most
pronounced with the age of samples, followed by cement, fly
ash, water, coarse aggregate, superplasticizer, blast-furnace
slag, and fine aggregate contents. This order depicts that the
most critical input effect is the age of samples. Further, PDP
investigation shows that most of the effects are positive,
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TaBLE 6: Comparison of different machine learning models for predicting compressive strength of concrete.
Reference Machine learning algorithm Input Number of - Performance
data samples measure
7 inputs: curing temperature, water to binder
Han et al. [41] ANN model ratio, BFS to total binder ratio, water, fine 269 R2=0.9610
aggregate, coarse aggregate, and
superplasticizer
Boukhatem ANN model 5 inputs: cement, water-to-cement ratio, slag 726 RZ —0.9216
et al. [27] content, temperature, age of samples
ANN-16,
.. . 1. . 2
Kandiri et al. Hybnﬂd@e d I.nulUObJ ective ANN :.and a 7 inputs: cement, BFS, BFS grade, water, fine R°=0.941
28] multiobjective slap swarm algorithm aggregate, coarse aggregate, age of samples 624 éNN—7:
(MOSSA), M5P model tree algorithm ’ ’ R*=0.865
MS5P: R=0.884
ANN:
. . . . . . 2_
Boga et al. [29] AI\}N quel and the adaptive neuro- 4 inputs: cure type, curlng period, BES ratio, 162 R“=0.9710
uzzy inference system (ANFIS) CNI ratio ANFIS:
R*=0.665
6 inputs: cement, ground granulated blast-
Bilim et al. [30] ANN model furnace slag, water, hyperplasticizer, 225 R*=0.9600
aggregate, and age of samples
Saridemir et al. . 5 inputs: age of samples, cement, BFS, water, ANN: R*>=0.981
31] ANN and fuzzy logic models ANFIS and aggregate 284 FL: R = 0968
. . o 8 input parameters: cement, BES, fly ash,
. Modified firefly algorithm-artificial - 2_
Bui et al. [44] neural network (MFA-ANN) water, superplasticizer, coarse aggregate, fine 1133 R“=0.9025
aggregate, and age of samples
8 inputs: cement, BFS, fly ash, water, 1;? i%oggg
Feng et al. [70] AdaBoost algorithm superplasticizer, coarse aggregate, fine 1030 ANN~_RZ‘— 0.903
aggregate, age of samples SVM: R®=0.855
Behnood et al 8 inputs: cement, blast-furnace slag, fly ash,
[42] ’ MS5P model tree algorithm water, superplasticizer, coarse aggregate, fine 1912 R*=0.900
aggregate, age of sample
. 8 inputs: cement, silica fume, water, coarse RMSE =8.5389
Golafshani and . . .
Biogeography-based programming aggregate, fine aggregate, superplasticizer, 1030 MAE =6.3882
Behnood [69] : . 2
maximum aggregate size, age of sample BBP: R“=0.8806
. . 8 input parameters: cement, BFS, fly ash, R*=0.8930
Dao et al. [43] Gaussian proces:nrézgzle ssion and ANN water, superplasticizer, coarse aggregate, fine 1030 RMSE =5.46
aggregate, age of samples MAE =3.86
8 inputs: cement, water, coarse aggregate or R*=0.9285
This paper ANN model gravel, fine aggregate or sand, blast-furnace 1274 RMSE = 4.4266
slag, fly ash, superplasticizer, age of samples MAE =3.2971
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except for superplasticizer content with a negative effect. It is
interesting to notice that the negative effect of super-
plasticizer is also proved by an experimental investigation of
Benachai et al. [71]. Besides, the PDP investigation shows
that the optimum water content is equal to 150 kg/m>. With
higher cement and BES contents, the compressive strength
increases. With an important number of data samples
distributed from 75 to 200 kg/m’, the result of the PDP
investigation could be considered reliable in this range,
where the compressive strength is in the range of 35 to

65 MPa. Finally, it could be observed that the compressive
strength strongly increases from 1 to 28 days. After this
period, the compressive strength continues to develop, but at
a slower rate than the previous strength development.

7. Conclusion

In this investigation, a well-known machine learning ANN
algorithm has been introduced to predict the compressive
strength of concrete containing blast-furnace slag and fly
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ash. A number of 1274 experimental results have been
gathered to construct a database and develop the ANN
model. In this database, 70% of data is randomly chosen for
the training phase of ANN, and 30% of the remaining data is
used for the testing phase of the ANN model. Monte Carlo
simulation is performed to determine the necessary number
of simulations for obtaining converged prediction results, in
which 100 simulations are proven a sufficient number of
runs. The analysis shows that the ANN-24N (24 neuronsin a
single hidden layer) is the most stable model and produces
the best prediction performance. The values of R?, RMSE,
and MAE of the best model are, respectively, 0.9285, 4.4266,
and 3.2971 for the testing part. Partial Dependence Plots
(PDP) analysis is used to investigate the dependence of
prediction results of eight input variables in this study. The
age of samples and the cement content are determined to be
the two most important parameters affecting the com-
pressive strength of concrete. The results of this investigation
could help in constructing a reliable soft computing tool to
predict promptly and quickly the compressive strength of
concrete containing blast-furnace slag and fly ash (see
supplementary materials). Once such a tool is carefully built,
the prediction process can reduce the time consumption and
cost of experimental tests.

The limitation of the present work might be the ranges of
inputs and output of the database. Therefore, these ranges
would limit the applicability of the ANN model, and also the
numerical tool in the supplementary materials. To improve
the prediction accuracy and reliability of the ANN model, a
new database should be developed, which is the short-term
research direction of the present work.
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author upon request.
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