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Based on Kogut and Etsion’s model (KEmodel), a statistical method is used to establish amodel of normal contact stiffness of fixed
joint surface during unloading after first loading. Simulation results show that, for the elastoplastic contact, normal contact
stiffness of joint surface is the nonlinear function of mean surface separation during loading and unloading and decreases as the
separation increases. For different plasticity indexes, the normal contact stiffness of joint surface varies differently following the
change of mean surface separation during loading and unloading.

1. Introduction

/e machine tool is the mother of manufacturing industry,
which is assembled by various components. /ere are some
parts that contact each other, namely joint surface. Among
them, the fixed joint surface is one of the widely existing
joint surfaces. Research showed that [1] the ratio of contact
stiffness of fixed joint surface to total stiffness of the whole
machine was more than 60%. /erefore, it is of great sig-
nificance to establish a more accurate contact stiffness model
for the analysis of static and dynamic characteristics of the
machine tool structure.

At present, many scholars at home and abroad have
studied the loading and unloading model of fixed joint
surfaces. In 2002, Lin and Yui [2] studied frictionless contact
between rigid sphere and elastic-fully plastic half-space or
elastic-fully plastic sphere and rigid plane, and proposed
loading and unloading models. In 2003, Yan and Li [3] used
a nonlinear finite element method to conduct numerical
research and analysis on the process of periodic indentation
by a rigid sphere in the elastic-fully plastic half-space. In
2004, Jones [4] proposed two basic models for loading and
unloading of an elastic-plastic rough surface. Unfortunately,
none of the above important research work gave the general
solution of the elastoplastic sphere during unloading. In

view of this, in 2005, Etsion et al. [5] studied the unloading of
loading contact between an elastic-plastic sphere and a rigid
plane loading using a finite element method and gave a
dimensionless relationship between unloading load and
deformation of the sphere, as well as dimensionless ex-
pressions of residual interference and residual curvature of
the sphere after fully unloading, which has universal the-
oretical guiding significance. In 2006, based on the research
work by Etsion et al. [5], Kadin et al. [6] further proposed an
unloading contact statistical model of rough surface elastic-
plastic contact under a single loading and unloading cycle. In
2010, based on the research work by Etsion et al. [5], Zait
et al. [7] presented empirical expressions of residual inter-
ference, contact area, and contact load of the sphere con-
sidering unloading of elastoplastic sphere affected by
adhesive contact. In 2012, Zhao et al. [8] studied the fric-
tionless contact between a power-law hardening elasto-
plastic sphere and a rigid plane and gave the relationship
between contact load and deformation of the sphere, as well
as the expression of residual interference and other variables
during unloading. However, all the above research studies
were aimed at loading and unloading contact models of
sphere and plane. In 2017, Fu et al. [9] established a static
loading and unloading contact model based on the elastic-
plastic unloading contact model of the rough surface of the
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KE model. In 2017, An et al. [10] established a statistical
model of normal contact stiffness of joint surface during
loading and unloading using statistical methods. Because
deformation mechanism has an important influence on the
normal contact stiffness of fixed joint surface in the elastic-
plastic contact problem, the accuracy degree of the model
obtained by fitting the finite element analysis curve of each
stage of elastic-plastic contact evolution has a great influence
on the normal contact stiffness. However, Fu et al. [9] and
An et al. [10] only used an empirical expression to describe
the deformation in the elastic-plastic stage, so its accuracy
needs to be improved. Recently, Nassiraei et al. [11–13]
established a finite element model of the contact surface of
tubular members under loading, which has an important
influence on the global static and dynamic responses of
offshore structures. To sum up, the theoretical model of
contact stiffness during unloading after the first loading of
joint surface is very rare.

Because of this, based on the finite element contact
model of Kogut and Etsion [14], a loading model of a single
asperity was derived in this paper, and an unloading model
of a single asperity was further derived by combining with
the elastic-plastic sphere contact model of Etsion et al. [5].
On this basis, the contact stiffness model during the first
loading and unloading of a fixed joint surface was estab-
lished using the probability and statistics theory, and the
influence law of the separation of joint surface on contact
stiffness during loading and unloading was studied through
model simulation.

2. Model of Normal Contact Stiffness of a
Single Asperity

Figure 1 presents the deformation of a single asperity before
and after contact with a rigid plane, where the dashed lines
show the situation before deformation. /e displacement of
the rigid plane ω is the deformation of the asperity under the
applied of the normal load p. R is the curvature radius of the
asperity summit.

2.1. Model of Normal Contact Stiffness of a Single Asperity
during Loading. /e critical deformation of a single asperity
ωc, when it transforms from the elastic to the elastic-plastic
deformation regime, is given by [5]

ωc �
πKH

2E
 

2
R, (1)

where H is the hardness of the softer material, which is
related to its yield strength by H � 2.8σs [15], K is the
hardness coefficient in the form K � 0.454 + 0.41], where υ
is Poisson’s ratio of the softer material, And E, the com-
prehensive elastic modulus, is given in
1/E � (1 − υ21)/E1 + (1 − υ21)/E2, where E1 and E2 and υ1 and
υ2 are the elastic modulus and Poisson’s ratios of the two
materials, respectively. In this model, the rigid plane is
smooth by E2⟶∞, so the comprehensive elastic modulus
can be simplified as E � E1/(1 − υ12).

When ω≤ωc, a single asperity deforms elastically.
According to Hertz theory [16], the normal contact load
during loading can be expressed as follows:

pel �
4
3
ER1/2ω3/2

. (2)

/erefore, the critical contact load of a single asperity pc

that marks the transition from the elastic to the elastic-
plastic deformation regime can be expressed as follows:

pc �
4
3
ER1/2ω3/2

c . (3)

According to equation (2), the normal contact stiffness
of a single asperity during loading kel is given by

kel �
dpel

dω
� 2ER1/2ω1/2

. (4)

When ωc ≤ω≤ 110ωc, elastic-plastic deformation of a
single asperity occurs. /e normal contact load during
loading can be expressed as follows:

pepl1 �
4.12
3

ER1/2ω3/2
c

ω
ωc

 

1.425

, ωc ≤ω≤ 6ωc, (5)

pepl2 �
5.6
3
ER1/2ω3/2

c

ω
ωc

 

1.263

, 6ωc ≤ω≤ 110ωc. (6)

Similarly, the normal contact stiffness of a single asperity
during this loading is obtained as follows:

kepl1 � 1.957ER1/2ω1/2
c

ω
ωc

 

0.425

, ωc ≤ω≤ 6ωc, (7)

kepl2 � 2.3576ER1/2ω1/2
c

ω
ωc

 

0.263

, 6ωc ≤ω≤ 110ωc. (8)

When ω≥ 110ωc, a single asperity has a completely
plastic deformation, in which there is no stiffness.

2.2. Model of Normal Contact Stiffness of a Single Asperity
during Unloading. According to [5], the parameter that
greatly influences the unloading of the asperity after the first
loading is the maximum deformation during loading ωmax.

R

p

ω

Figure 1: Contact deformation diagram of a single asperity with a
rigid plane.
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When ωmax ≤ωc, only elastic deformation occurs during
unloading after the first loading of the asperity. When
ωmax >ωc, only elastic-plastic or full plastic deformation
occurs during the first loading of an asperity, while partial
elastic recovery deformation or no recovery deformation
occurs during unloading after the first loading of the
asperity.

When ωmax ≤ωc, the normal contact load peu and the
normal contact stiffness keu of the asperity during unloading
can be expressed as follows:

peu �
4
3
ER1/2ω3/2

, (9)

keu � 2ER1/2ω1/2
. (10)

When ωmax >ωc, the deformation of a single asperity
before and after contacting with a rigid plane is shown in
Figure 2, where the thin solid line represents the original
topography of the asperity before loading and the thick solid
line represents the topography of the asperity after fully
unloading. When the loading load reaches the maximum
value Pmax, the deformation of the asperity also reaches the
maximum value ωmax, and the corresponding distance be-
tween the asperity and the rigid plane also reaches the
minimum value dmin. During unloading, due to the existence
of some residual deformation, namely, the residual defor-
mation ωres and residual height of the unloading asperity
zres, its topography is different from that before loading. /e
parameters to characterize the spherical contour point of the
unloaded asperity include residual deformation ωres and
residual nonuniform radius of curvature Rres.

According to [6], the relationship between normal
contact load pepu and unloading deformation of asperity ω is

pepu � pmax
ω − ωres

ωmax − ωres
 

np

, (11)

where the index of the plastic stage is given by
np � 1.5(ωmax/ωc)

− 0.0331.
/e residual deformation ωres and the radius of residual

nonuniform curvature Rres depend on the maximum load at
the beginning of the unloading pmax. According to relations
(5) and (6) between contact load and deformation, the
maximum load pmax can be deduced as follows:

pmax 1 �
4.12
3

ER1/2ω3/2
c

ωmax

ωc

 

1.425

, ωc ≤ωmax ≤ 6ωc,

(12)

pmax 2 �
5.6
3
ER1/2ω3/2

c

ωmax

ωc

 

1.263

, 6ωc ≤ωmax ≤ 110ωc.

(13)

By substituting equations (12), (13) into equation [11],
respectively, and making further differentiation, the
unloading stiffness of an elastic-plastic deformable asperity
can be deduced as follows:

kepu1 �
4.12ER1/2ω3/2

c np

3 ωmax − ωres( 

ωmax

ωc

− 1 

1.425 ω − ωres

ωmax − ωres
 

np− 1

, ωc ≤ωmax ≤ 6ωc, (14)

kepu2 �
5.6ER1/2ω3/2

c np

3 ωmax − ωres( 

ωmax

ωc

− 1 

1.263 ω − ωres

ωmax − ωres
 

np− 1

, 6ωc ≤ωmax ≤ 110ωc. (15)

In the same way, the plastically deformable asperity does
not recover. /ere is no contact stiffness during unloading.

In [5], the ratio relation ωres/ωmax was given as follows:

ωres

ωmax
� 1 −

1
ωmax/ωc( 

0.28
⎛⎝ ⎞⎠ 1 −

1
ωmax/ωc( 

0.69
⎛⎝ ⎞⎠. (16)

3. Statistical Model of Normal Contact
Stiffness of Joint Surface

3.1. Statistical Model of Normal Contact Stiffness of Joint
Surface during Loading. Based on Greenwood and Wil-
liamson’s model (GW model), this paper assumes that there
is no interaction between asperities, and all deformation is

w

wres

Rres

dmin

wmax

zres
d

z

Figure 2: Schematic diagram of a deformed asperity before and
after loading and unloading.
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limited to the contacting asperities. So, the fixed joint surface
is equivalent to the contact between a rough surface and a
smooth rigid plane, as shown in Figure 3. Z is the height of
asperities, d is the distance between the mean of asperity
heights and the rigid plane, h is the distance between the
mean of surface heights and the rigid plane, and ys is the
distance between the mean of asperity heights and the mean
of surface heights, satisfying the relation d � h − ys. /e
rough surface is isotropic, and its morphology is defined by
three independent parameters: the area density of asperities
η, the ratio of the standard deviation of asperity heights to
the standard deviation of surface heights σs/σ, and the radius
of curvature of asperity summit R.

/e relation of the ratio σs/σ can be expressed as

σs

σ
�

��������������

1 −
3.717 × 10− 4

β2




, (17)

where β is a dimensionless surface roughness parameter in
the form:

β � ηRσ. (18)

Assuming that there are N asperities on the nominal
contact area An, the expected number of contact asperities
on the joint surface n is given by

n � N 
∞

d
ϕ(z)dz � ηAn 

∞

d
ϕ(z)dz, (19)

where ϕ(z) is the probability density function of the normal
distribution of asperity heights.

/e distribution function ϕ∗(z∗) of dimensionless as-
perity heights z∗ is described by a dimensionless Gaussian
standard probability density function in the form:

ϕ∗ z
∗

(  �
1
���
2π

√
σ
σs

exp −
1
2

σ
σs

 

2

z
∗

( 
2⎛⎝ ⎞⎠. (20)

/e dimensionless distance y∗s between the mean of
asperity heights and the mean of surface heights is given by
[6]

y
∗
s � h
∗

− d
∗

�
1.5

������
108πβ

 . (21)

/e random dimensionless interference of a single as-
perity can be expressed as follows:

ω∗ � z
∗

− d
∗
. (22)

In this paper, the plastic index form proposed by GW is
adopted:

ψ � ω∗c
σ
σs

 

−1/2

. (23)

According to equation (1), the normal contact stiffness of
the joint surface during loading is

Kl � ηAn 
d+ωc

d
kelϕ(z)dz + ηAn 

d+6ωc

d+ωc

kepl1ϕ(z)dz + ηAn 
d+110ωc

d+6ωc

kepl2ϕ(z)dz

� 2ER1/2ηAn 
d+ωc

d
ω1/2ϕ(z)dz + 0.9785πKHRηAn 

d+6ωc

d+ωc

ω
ωc

 

0.425

ϕ(z)dz

+ 1.1788πKHRηAn 
d+110ωc

d+6ωc

ω
ωc

 

0.263

ϕ(z)dz.

(24)

Smooth rigid flat R
Asperity summit

Mean of asperity heights

Mean of surface heights

d
z

ys

h

Figure 3: Schematic diagram of contact between a rough surface
and a smooth rigid surface.
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/e dimensionless form of equation (24) is

K
∗
l �

Kl

EAn( /σ
� 2β

σ
R

 
1/2


h∗−y∗s +ω∗c

h∗−y∗s

ω∗( 
1/2ϕ∗ z

∗
( dz

∗

+
0.9785πKHβ

E


h∗−y∗s +6ω∗c

h∗−y∗s +ω∗c

ω∗

ω∗c
 

0.425

ϕ∗ z
∗

( dz
∗

+
1.1788πKHβ

E


h∗−y∗s +110ω∗c

h∗−y∗s +6ω∗c

ω∗

ω∗c
 

0.263

ϕ∗ z
∗

( dz
∗
.

(25)

3.2. Statistical Model of Normal Contact Stiffness of Fixed
Joint Surface during Unloading after the First Loading.
/e normal contact stiffness of joint surface during
unloading can be expressed as

Ku �2ER1/2ηAn 
dmin+ωc

dmin

ω1/2ϕ(z)dz

+
1.03(πKH)

3
R
2ηAn

6E
2 

dmin+6ωc

dmin+ωc

np

ωmax − ωres

ωmax

ωc

 

1.425 ω − ωres

ωmax − ωres
 

np− 1

ϕ(z)dz

+
0.7(πKH)

3
R
2ηAn

3E
2 

dmin+110ωc

dmin+6ωc

np

ωmax − ωres

ωmax

ωc

 

1.263 ω − ωres

ωmax − ωres
 

np− 1

ϕ(z)dz.

(26)

/e dimensionless form of the above equation is

K
∗
u �

Ku

EAn( /σ
� 2β

σ
R

 
1/2


h∗min−y∗s +ω∗c

h∗min−y∗s

ω∗( 
1/2ϕ∗ z

∗
( dz

∗

+
1.03(πKH)

3
Rβ

6E
3 

h∗min−y∗s +6ω∗c

h∗min−y∗s +ω∗c

n
∗
p

ω∗max − ω∗res

ω∗max
ω∗c

 

1.425 ω∗ − ω∗res
ω∗max − ω∗res

 

n∗p− 1

ϕ∗ z
∗

( dz
∗

+
0.7(πKH)

3
Rβ

3E
3 

h∗min−y∗s +110ω∗c

h∗min−y∗s +6ω∗c

n
∗
p

ω∗max − ω∗res

ω∗max
ω∗c

 

1.263 ω∗ − ω∗res
ω∗max − ω∗res

 

n∗p− 1

ϕ∗ z
∗

( dz
∗
,

(27)

where n∗p � 1.5(ω∗max/ω
∗
c )− 0.0331.

4. Simulation and Result Analysis of the Model

It can be seen from equation (25) that the dimensionless
loading normal contact stiffness K∗l is a function of the
standard deviation of surface heights σ, the radius of cur-
vature at the initial summit of asperity R, the dimensionless
surface roughness parameter β, the dimensionless surface
mean separation h∗, and so on. It can be seen from equation
(27) that the dimensionless unloading normal contact
stiffness K∗u is a function of the standard deviation of surface
heights σ, the radius of curvature at the initial summit of
asperity R, the dimensionless surface roughness parameter β,
the dimensionless surface mean separation h∗, the dimen-
sionless residual deformation ω∗res, and so on. And, it is not
affected by residual nonuniform curvature radius Rres. In the
simulation analysis, the parameters are given such as the
elastic modulus E1 � E2 � 2.07 × 1011Pa, Poisson’s ratio

υ1 � υ2 � 0.29, the hardness H � 1.96 × 109Pa, the radius of
curvature at the initial summit of asperity
R � 6.89 × 10− 4mm, and the dimensionless surface rough-
ness parameters β and σ/R [17] (shown in Table 1). Equa-
tions (25) and (27) are simulated by using the data of each
variable, and the corresponding results are shown in
Figure 4.

It can be seen from Figure 4 that the normal contact
stiffness of joint surface during loading and unloading is a
nonlinear function of the mean surface separation and
decreases with the increase of the mean surface separa-
tion. When the plastic index is smaller, the contact be-
tween asperities is more elastic, so the normal contact
stiffness curves of joint surface during loading and
unloading are close. When the plastic index is larger, the
plastic deformation cannot recover due to the large
proportion of the plastically deformed asperities, so the
normal contact stiffness decreases rapidly during
unloading.
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In order to verify the effectiveness of the normal
unloading contact stiffness model of joint surface established
in this paper, a comparative analysis is made between the
model in this paper and themodel in [10] (shown in Figure 5).
It can be seen from Figure 5 that the unloading stiffness in
both contact models decreases with increase of mean surface
separation, but there is a large deviation between them.
According to the definition of plastic index ψ in the GW

model, when ψ < 0.6, elastic deformation of asperities occurs
even if the load is very large; when 0.6≤ψ ≤ 1, the defor-
mation of asperities depends on magnitude of load, and the
larger the value ψ is, the larger the proportion of plastic
deformation is. /erefore, when ψ ≤ 1, the normal contact
stiffness of fixed joint surface is larger during unloading.
When ψ > 1, even if the load is very small, the deformation of
asperities is plastic, while the plastic deformation cannot

Table 1: Dimensionless surface roughness parameters [17].

Number β σ/R
1 0.0339 1.600 × 10− 4

2 0.0476 6.576 × 10− 4

3 0.0541 1.144 × 10− 3

4 0.0601 1.770 × 10− 3
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Figure 4: Influence of h∗ on lg(K∗). (a) ψ � 0.73498. (b) ψ � 1.571. (c) ψ � 2.0946. (d) ψ � 2.6232.
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recover, so the normal contact stiffness of fixed joint surface is
smaller during unloading. /erefore, the normal unloading
contact stiffness model of joint surface established in this
paper will be more in line with the actual situation.

5. Conclusions

In this paper, a statistical model of the normal contact stiffness
of fixed joint surface during unloading after the first load is
established, and a simulation analysis is carried out on the
model to study the influence of the mean surface separation
on the normal contact stiffness. /e findings are as follows:

(1) Dimensionless loading and unloading normal con-
tact stiffness decreases with the increase of the di-
mensionless mean surface separation for different
plastic indexes.

(2) /e smaller the plastic index is, the less obvious the
difference between loading and unloading caused by
plastic deformation would be. /erefore, the normal
contact stiffness curve during unloading is close to
that during loading. On the contrary, with the in-
crease of plastic index, the normal contact stiffness
during unloading is obviously less than that during
loading.

(3) However, the larger the plastic index is, the slower
the loading normal contact stiffness decreases, while
the faster the unloading normal contact stiffness
decreases.

Unfortunately, our paper did have some limitations and
shortcomings, which will be verified by supplementary
experiments in the future.
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