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A generalized three-dimensional computational numerical code is developed for Monolithic Microwave Integrated
Circuit (MMIC) structures based on a full wave approach using integral equation techniques. The electromagnetic
properties of the MMIC structures are calculated using a Method of Moments – Galerkin technique based on
integral equations and the relevant Green function to obtain a rigorous formulation. The MMIC structures are
assumed to have an arbitrary geometry involving orthogonal parallelepiped ‘cells’, each one of which is
characterized with finite permittivity and conductivity values. A novel approach is proposed to treat the incident:
reflected and transmitted waves at the two microstrip lines, which stand as input and output of the circuit. Their
current distribution is also being taken into account in terms of incident, reflected and transferred waves. The
derived matrix is being inverted and the obtained results are the unknown coefficients of the plane waves inside
the ’cells’ and also the reflection R and transfer T coefficients. The derived numerical results concern linear
cases, while the examination of non-linear structures have been taken into account in the analytical formulation.
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INTRODUCTION

The continuous applications of microwave and millimeter-wave integrated circuits in micro-

strip and packaging technology have resulted to an emerging research interest about the ana-

lysis of layered electromagnetic structures. Following this fact, the development of CAD

tools for microwave structures based on accurate numerical techniques is imposed. The tradi-

tional circuit theory based on lumped or even distributed parameter element modeling seems

to be inadequate for modern applications especially at frequencies exceeding 30 GHz [1–3].

Thus, as a main problem arise the calculation of the effects related to both the dielectric and

conducting parts of three dimension geometries.

At the present work a general computation algorithm to treat three-dimensional integrated

circuit structures is proposed. The MMIC structures under consideration are assumed to be in

their most general form. In other words, they are three dimensional, finite at size and are

characterized with finite permittivity and conductivity values. This geometrical approach is

the one that expresses in the most possible way the MMIC structural form often met in prac-

tice. Thus, the MMIC structures are assumed to have an arbitrary geometry involving
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orthogonal parallelepiped ‘‘cells’’, each of this is characterized with finite permittivity and

conductivity values as stated above. In order for this approach to be applied properly and

in such a way that most ‘‘physical’’ structures are encountered, a reference structure is

shown in Figure 1 representing the most general form.

A detailed inspection of the geometry is given in the following. As it is seen from Figure 1,

is assumed that the whole structure is placed over a two-layer substrate. This would resemble

the GaAs and SiAl layers, which are the most used substrates in popular libraries (such as the

GEC-Marconi library supported by Libra Touchstone HP-Eesof ). The substrate layers are

characterized also with finite permittivity and conductivity values which can be expressed

as the complex relative permittivities _eers1 and _eers2. This two-layer substrate is grounded on

the bottom side where the system of x-y-z coordinates originates. Following this, the z ¼ 0

plane is the ground plane while at the z ¼ D ¼ d1 þ d2 plane the orthogonal parallelepiped

cells are placed forming the MMIC structures.

The medium above the two layered substrate (that is, above z ¼ D plane) and outside of the

circuit structure is taken to be free space characterized with the free space permittivity

e0 ¼ ð10�9=ð36pÞÞ ðF=mÞ and magnetic permeability m ¼ m0 ¼ 4p� 10�7ðH=mÞ. The mag-

netic permeability m0 also characterizes the whole space; all structures and layers are assumed

to have the same m0.

Above the double layer substrate, a circuit structure consisting of orthogonal parallelepiped

brick shape cells with various dimensions and properties is present, forming the geometry

under consideration. The electromagnetic properties of each unit cell are characterized by

finite values of permittivity and conductivity, or in other words, by the homogeneous complex

relative permittivity value eri
¼ eri

� jðsi=oe0Þ (eri
and si being the real permittivity and con-

ductivity value). The specific cell is denoted by the cell index i, while o is the angular radia-

tion frequency and e0 is the free space permittivity as above. Furthermore, the center of

gravity of the ith cell is given by ðxi
0; yi

0; zi
0Þ. As it is known the propagation constant in a med-

ium with such electromagnetics properties is given by

k ¼ o
ffiffiffiffiffiffiffiffiffi
e0m0

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � 1 � j

s
oe0

� �s
ð1Þ

or k ¼ o
ffiffiffiffiffiffiffiffiffi
e0m0

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � ð1 þ j tan d

p
Þ; tan d given by tan d ¼ �

s
oe0

FIGURE 1 General circuit structure
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As shown from Figure 1 the whole structure is driven by two microstrip lines which act as input

and output of the circuit, assumed to be half-infinite in length, while their current distribution is

being taken into account in terms of incident, reflected and transferred waves. Each strip over

the grounded two layered substrate consists of infinite conductivity due to the perfect conduc-

tor assumption. Thus, the assumption includes diminishingly thin strips where the current sur-

face density substitutes the electric field (which is zero inside the strip). In the whole analysis

that follows, an eþjot time dependence is assumed for all field quantities.

FORMULATION

In order to define the unknown electric field and thus to characterize exactly all the electro-

magnetic properties of the above structure an integral equation approach is implemented.

Starting from the Maxwell equations applied in the specific geometry of the orthogonal

parallelopiped cells, the mathematical formulation of the electromagnetic field in an integral

form is derived in the Po space where the cells represent structure’s sources of excitation.

Using the Maxwell equations, the well-known Helmholtz equation is derived

H2 �EEð�rrÞ þ k2 �EEð�rrÞ ¼ jomv
�JJ ð�rrÞ ð2Þ

where �JJ ð�rrÞ is the current distribution. The above equation is valid in every different volume

with specific electromagnetic characteristics under consideration, respectively. The boundary

conditions along with the degradation of the radiated waves must be applied and the cells are

considered as perturbation of the Po’s space dielectric constant. Thus

Hx �HHð�rrÞ � joe0
�EEð�rrÞ ¼ joðeð�rrÞ � e0Þ �EEð�rrÞ ð3Þ

where an equivalent current distribution �JJ dð�rrÞ can be extracted which satisfying the

�JJ dð�rrÞ ¼ joðeð�rrÞ � e0Þ �EEð�rrÞ ¼ joevderð�rrÞ �EEð�rrÞ ð4Þ

By that way, the perturbations derð�rrÞ in the dielectric constant e0 due to the orthogonal cells

correspond to an equivalent current source �JJ dð�rrÞ with bias current characteristics and depen-

dent from the stimulated unknown electric field �EEð�rrÞ inside the cells. The solution of the

above equations is very well treated in bibliography ½4; 5
 ending to an integral equation

based on the dyadic Green function for the electric field

�EEð�rrÞ ¼ �jomv

ð ð ð
V

��GG�GGð�rr; �rr0Þ � �JJ dð�rr0Þ dV ð�rr0Þ ð5Þ

which can be written also as

�EEð�rrÞ ¼ k2
o

ð ð ð
V

��GG�GGð�rr; �rr0Þ � derð�rr
0Þ �EEð�rr0Þ dV ð�rr0Þ ð6Þ

where �EEjð�rrjÞ is the unknown electric field calculated at the observation points and �EEið�rr
0
iÞ is the

electric field created by the field sources. Equation (6) stands as the basic integral equation

for the formulation of the present analysis. Before proceeding further the dyadic Green’s

function must be described.
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Green’s Function

Due to arbitrary circuit’s geometry used, Eq. (6) is a general one and can be applied in all

geometries along with layered structures, since no particular assumption of the placement

of the cells is made. On that basis, a Green function depending on the specific two-layered

structure must be computed. The origin for the computation of layered structures Green

functions can be found in bibliography [6], while for the present analysis the dyadic

Green function has been already derived [7] and is given in the following for the complete-

ness of the analysis.

��GG�GGð�rr; �rr0Þ ¼
1

ð2pÞ2

ð1
�1

ð
��gg�ggðkx; ky; z; z0Þe jðkxðx�x0Þþkyð y�y0ÞÞ dkx dky ð7Þ

where

��gg�gg ¼ ��gg�gg
sec

þ ��gg�gg
pr

ð8Þ

��gg�gg
sec

and ��gg�gg
pr

being the primary and secondary term respectively and �rrj is the observation vec-

tor, �rr0i is the source vector. The above relations can be written as

��gg�gg
sec

¼ ��gg�gg1 � e�jkzoðzþz0Þ ð9Þ

��gg�gg
pr
¼ ��gg�gg2 � e jkzoðz�z0Þ � uðz0 � zÞ þ ��gg�gg3 � e�jkzoðz�z0Þ � uðz � z0Þ ð10Þ

The terms ��gg�gg1, ��gg�gg2, ��gg�gg3 can be found in their analytical form in [7].

Equation (7) can be written in the following complete form in order to include also the

case where the observation point is within the field source volumes,

��GG�GGð�rr; �rr0Þ ¼
1

ð2pÞ2

ð1
�1

ð
��gg�ggðkx; ky; z; z0Þe jðkxðx�x0Þþkyð y�y0ÞÞ dkx dky �

ẑzẑz

k2
o

dð�rr � �rr0Þ ð11Þ

in other words, that includes the singularity �rr ¼ �rr0.

INTEGRAL EQUATION

Following the previous analysis and assuming that the general form of the unknown electric

field [8] is given by

�EEð�rrÞ ¼ �eeð�rrÞe�jby ð12Þ

(where �eeð�rrÞ denotes the transverse distribution of the electric field in the x-z layer while the

parameter b is the propagation constant). The following integral equation is then derived

��11�11 þ
k2

V

k2
o

derj
ẑzẑz

� �
� �eejð�rrÞ ¼

k2
V

2p

XN

i¼1

deri

ð ð ð
Vi

dx0 dy0 dz0

�

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� �eeið�rrÞ ð13Þ
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The analysis assumes that each elementary cell and the two input and output transmission

lines can both be considered as observation points and field sources. Therefore, the unknown

electric field calculated in a specific elementary cell, is the sum of the contribution of each

source, including the observation cell itself. By that way the electric field of the j-cell at the

position �rr (observation point) is, in fact, the sum of the contributions of the i-cells (field

sources) at position �rr0. Due to the fact that the perturbations are generated in the volumes,

which present electrical characteristics different from the free space, it is obvious that, the

total electric field occurs from the sum of the contributions of the fields generated by the

orthogonal parallelepiped cells which ‘‘disturb’’ the space Po.

This equation is applied for the total number N of the cells that is for j ¼ 1; 2; . . . ;N

where a system of N integral equations is then ensued with unknown coefficients the distri-

butions of the electric fields in the volumes Vj of the N cells. The input and output transmis-

sion lines are also assumed as cells (with half infinite dimension along y axis) with er ¼ 1 as

dielectric permittivity and infinite conductivity since they are perfect conductors [9]. Thus the

derived system includes N þ 2 equations providing the electric field in all volumes and

assuming as filed sources the N cells and the input and output transmission lines.

�EEð�rrÞ ¼ k2
V

XNþ2

i¼1

deri

ð ð ð
Vi

��GG�GGð�rr; �rr0Þ � �EEð�rr0ÞdV ð�rr0Þ

¼

ð ð ð
everyvolume

k2
o deri

XN

i¼1

��GG�GGð�rr; �rr0Þ � �EEcellsð�rr
0Þ þ

��GG�GGð�rr; �rr0Þ � �JJWG1ð�rr
0Þ þ

��GG�GGð�rr; �rr0Þ � �JJWG2ð�rr
0Þ

" #
dV ð�rr0Þ

ð14Þ

where,
�EEcellsð�rr

0Þ is the field ought to the contribution of the N cells
�JJWG1ð�rr

0Þ is the current distribution from the input transmission line and
�JJWG2ð�rr

0Þ is the current distribution from the output transmission line

since the latter considered as perfect conductors.

Assuming that the incident current wave has a cosine dependence regarding variable x its

form [10] is the following

�JJ>p
o ðr0Þ ¼ ŷyJo cos

px

a0


 �
e�jby ð15Þ

where Jo is the wave amplitude which for the sake of simplicity is assumed to be unity. In

relevance the reflected current is

�JJ<a
o ðr0Þ ¼ ŷyRJo cos

px

a0


 �
e jby ð16Þ

where R is the unknown reflection coefficient and the transmitted current is

�JJ>m
o ðr0Þ ¼ ŷyTJo cos

px

a0


 �
e�jby ð17Þ

where T is the unknown transmission coefficient respectively.
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From all the above the final integral formulation that describes the circuitry is given by the

following equation

�EEð�rrÞ ¼

ð ð ð
everyvolume

"
k2

oderi

XN

i¼1

��GG�GGð�rr; �rr0Þ � �EEcellsðr
0Þ þ

��GG�GGð�rr; �rr0Þ � ð �JJ>p
o ðr0Þ þ R �JJ<a

o ðr0ÞÞ

þ
��GG�GGð�rr; �rr0Þ � T �JJ>m

o ðr0Þ

#
dV ð�rr0Þ ð18Þ

Considering the possible positions of the observation vector �rr in the circuitry under consid-

eration the following cases are examined:

Case A where the orthogonal cells are assumed as observation points. From Eq. (18) the

derived new equation is

�EEð�rrÞ ¼

ð ð ð
everyvolume

"
k2

oderi

XN

i¼1

��GG�GGð�rr; �rr0Þ � �EEcellsðr
0Þ þ

��GG�GGð�rr; �rr0Þ � ð �JJ>p
o ðr0Þ þ R �JJ<a

o ðr0ÞÞ

þ
��GG�GGð�rr; �rr0Þ � T �JJ>m

o ðr0Þ

#
dV ð�rr0Þ ð19Þ

which equals to

��11�11 þ
k2

V

k2
o

derj
ẑzẑz

� �
� �eejð�rrÞ

¼

ð ð ð
everyvolume

"
k2

o

2p

XN

i¼1

deri

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� �eeið�rr

0Þ

þ

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� ð �JJ>p

o ð�rr0Þ þ �JJ<a
o ð�rr0ÞÞ

þ

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� �JJ>m

o ð�rr0Þ

#
dx0 dy0 dz0

ð20Þ

Case B where the input transmission line serves as observation volume. Then the derived

equation is the following

�EEWG1ð�rrÞ ¼

ð ð ð
everyvolume

"
k2

oderi

XN

i¼1

��GG�GGð�rr; �rr0Þ � �EEcellsðr
0Þ þ

��GG�GGð�rr; �rr0Þ � ð �JJ
>p
o ðr0Þ þ R �JJ<a

o ðr0ÞÞ

þ
��GG�GGð�rr; �rr0Þ � T �JJ>m

o ðr0Þ

#
dV ð�rr0Þ ð21Þ
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which results in the following equation due to the fact that the line is perfect conductor

0 ¼

ð ð ð
everyvolume

"
k2

o

2p

XN

i¼1

deri

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� �eeið�rr

0Þ

þ

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� ð �JJ>p

o ð�rr0Þ þ �JJ<a
o ð�rr0ÞÞ

þ

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� �JJ>m

o ð�rr0Þ

#
dx0 dy0 dz0 ð22Þ

Case C Respectively to case B when the output transmission line is the observation point

0 ¼

ð ð ð
everyvolume

"
k2

o

2p

XN

i¼1

deri

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� �eeið�rr

0Þ

þ

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� ð �JJ>p

o ð�rr0Þ þ �JJ<a
o ð�rr0ÞÞ

þ

ð1
�1

ð
dkx dky e jðkxðx�x0Þþkyð y�y0ÞÞ ��gg�ggðkx; k 0

y; z; z0Þ

� �
� �JJ>m

o ð�rr0Þ

#
dx0 dy0 dz0 ð23Þ

From all the three cases under consideration a system of N þ 2 equations is being developed

in the following way: N equations (from the N cells) are produced from case A while the

2 last equations are provided from case B and C respectively.

RESOLVING THE EQUATIONS – GALERKIN TECHNIQUE

In order the system to be solved a Method of Moments – Galerkin technique is being imple-

mented. The method presupposes a selection of entire domain basic functions necessary for

the field description in every element of the circuitry. Using the Galerkin technique the sys-

tem of integral equations is converted to an algebraic linear non-homogenous one ½11; 12
.

To this end both the unknown electric field and the field created by the sources are expanded

in terms of piecewise basic functions being a superposition of plane waves as

�eeið�rrÞ 
XMi

m¼1

XNi

n¼1

�ccimn fimnð�rrÞ ¼
X

a¼x;y;z

XMi

m¼1

XNi

n¼1

âacaimn fimnð�rrÞ ð24Þ

where a ¼ x; y; z and caimn and c s
jkl are the unknown expansion coefficients.

Thus, the basic functions are given by the following

f x
imnðx

0Þ ¼ e jkimn
x ðx0�xi

oÞ; f
y

imnð y0Þ ¼ e jkimn
y ð y0�yi

oÞ; f z
imnðz

0Þ ¼ e jkimn
z ðz0�zi

oÞ

f x
jklðxÞ ¼ e jk

jkl
x ðx�xi

oÞ; f
y

jklð yÞ ¼ e jk
jkl
y ð y�yi

oÞ; f z
jklðzÞ ¼ e jk

jkl
z ðz�zi

oÞ
ð25Þ

Then Eq. (25) becomes

�eeið�rr
0Þ ¼

XMi

m¼1

XNi

n¼1

X
a¼x;y;z

âa

 !
caimne jkimn

x ðx0�xi
oÞ � e jkimn

y ð y0�yi
oÞ � e jkimn

z ðz0�zi
oÞ ð26Þ
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and after the implementation of the Galerkin technique the integral equations of the unknown

electric field as stated in cases A, B and C are converted to the following respectively.

For Case A

ð ð ð
Vj

��11�11 þ
k2

V

k2
o

derj
ẑzẑz

� �XMj

m¼1

XNj

n¼1

ŝs
X

s¼x;y;z

cs
jmnŝs

 !

� Eoe jk
jkl

x ðx�x
j
oÞe jk

jkl
y ð y�y

j
oÞe jk

jkl
z ðz�z

j
oÞe jk

jmn
x ðx�x

j
oÞe jk

jmn
y ð y�y

j
oÞe jk

jmn
z ðz�z

j
oÞ dx dy dz

¼

ð ð ð
Vj

ð ð ð
everyvolume

ŝsEoe jk
jkl

x ðx�x
j
oÞe jk

jkl
y ð y�y

j
oÞe jk

jkl
z ðz�z

j
oÞ

"
k2

o

2p

XN

i¼1

deri
�GGð�rr; �rr0Þ

�
XMi

m¼1

XNi

n¼1

X
a¼x;y;z

âacaimn

 !
e jkimn

x ðx0�xi
oÞe jkimn

y ð y0�y i
oÞe jkimn

z ðz0�zi
oÞ

þ �GGð�rr; �rr0Þ ŷyJo cos
px

a0


 �
e�jby þ ŷyRJo cos

px

a0


 �
e jby


 �

þ �GGð�rr; �rr0ÞŷyTJo cos
px

a0


 �
e�jby

#
dx0 dy0 dz0 dx dy dz ð27Þ

For Case B

0 ¼

ð ð ð
V 00

WG1

ŷyEo cos
px

a0


 �
e jby dx dy dz

ð ð ð
everyvolume

"
k2

o

2p

XN

i¼1

deri
�GGð�rr; �rr0Þ

�
XMi

m¼1

XNi

n¼1

X
a¼x;y;z

âa

 !
caimne jkimn

x ðx0�xi
oÞe jkimn

y ð y0�yi
oÞe jkimn

z ðz0�zi
oÞ

þ �GGð�rr; �rr0Þ ŷyJo cos
px

a0


 �
e�jby þ ŷyRJo cos

px

a0


 �
e jby


 �

þ �GGð�rr; �rr0ÞŷyTJo cos
px

a0


 �
e�jby

#
dx0 dy0 dz0 ð28Þ

For Case C

0 ¼

ð ð ð
V 00

WG2

ŷyEo cos
px

a0


 �
e�jby dx dy dz

ð ð ð
everyvolume

"
k2

o

2p

XN

i¼1

deri
�GGð�rr; �rr0Þ

�
XMi

m¼1

XNi

n¼1

X
a¼x;y;z

âa

 !
caimne jkimn

x ðx0�xi
oÞe jkimn

y ð y0�yi
oÞe jkimn

z ðz0�zi
oÞ

þ �GGð�rr; �rr0Þ ŷyJo cos
px

a0


 �
e�jby þ ŷyRJo cos

px

a0


 �
e jby


 �

þ �GGð�rr; �rr0ÞŷyTJo cos
px

a0


 �
e�jby

#
dx0 dy0 dz0 ð29Þ
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Reference to the above analysis the initial system of integral equations has been converted to

an equivalent algebraic one whose general formulation [9] is presented by the following

matrix

��FF�FF1111 � � �
��FF�FF1kli � � �

��FF�FF1klN
��HH�HH1klWG1

��HH�HH1klWG1

..

. ..
. ..

. ..
. ..

. ..
. ..

.

��FF�FFjkl1 � � �
��FF�FFjkli � � �

��FF�FFjklN
��HH�HHjklWG1

��HH�HHjklWG1

..

. ..
. ..

. ..
. ..

. ..
. ..

.

��FF�FFNkl1 � � �
��FF�FFNkli � � �

��FF�FFNklN
��HH�HHNklWG1

��HH�HHNklWG1
��VV�VV WG1kl1 � � �

��VV�VV WG1kli � � �
��VV�VV WG1klN

��WW�WW WG1WG1
��WW�WW WG1WG2
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¼
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where a submatrix Fji is being formulated by the expression sGa or in other words by

��FF�FFji ¼

��FF�FF
xx

ji
��FF�FF

xy

ji
��FF�FF

xz

ji

��FF�FF
yx

ji
��FF�FF

yy

ji
��FF�FF

yz

ji

��FF�FF
zx

ji
��FF�FF
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ji
��FF�FF

zz

ji

2
6664

3
7775 ð31Þ

and �cci the unknown expansion coefficients, R and T the reflection and transfer coefficients

respectively. The dimension of the derived matrix is ðNtot þ 2Þ � ðNtot þ 2Þ where

Ntot ¼ 3xððN1xM1Þ þ ðN2xM2Þ þ � � � þ ðNN xMN ÞÞ ¼ 3x
XN

i¼1

ðNixMiÞ ð32Þ

ANALYTICAL SOLUTION

Reference to the three cases stated above, each equation contains a number of integrals that

allow of analytical solution, while others and particularly those including the Green func-

tions’ expression can only be solved by numerical computation. In the following, case A

is being considered as an example, in order to show the amount of operations involved

and the way the final system was treated in terms of the analytical and numerical

computation [9].

Rearranging terms in case A equations becomes
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ŝs
��GG�GGð�rr; �rr0ÞŷyRE2

o cos
px0

a0

� �

� e jby0e jk
jkl

x ðx�x
j
oÞe jk

jkl
y ð y�y

j
oÞe jk

jkl
z ðz�z

j
oÞ dx0 dy0 dz0 dx dy dz

þ

ðx
j

2

x
j

1

ðy
j

2

y
j

1

ðz
j

2

z
j

1

ðxK22

xK21

ðþ1

yK21

ðzK22

zK21

k2
oderK2

ŝs
��GG�GGð�rr; �rr0ÞŷyTE2
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Considering the first term of the left hand side
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ðŝs
��GG�GGð�rr; �rr0ÞâaÞcaimne jkimn
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which corresponds to the assumption of field sources being the cells inside the circuit after

implementing the Galerkin technique.

This expression can be written in the following way
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where from a simple inspection it is obvious that the integrals corresponding to variables x, y

and z can be solved analytically (with some assumptions taken into account for the latter). For

convinience the above equation can be rewritten as

Eo

k2
o

ð2pÞ2
XN

i¼1

caimnderi

XMi

m¼1

XNi

n¼1

X
a¼x;y;z

ðþ1

�1

ðþ1

�1

IXNN IYNN IZNN ðŝs ��gg�ggâaÞ dkx dky ð36Þ

where the correspondence is self-evident. Thus the IXNN , IYNN can be computed analytically

easily. The analytical solution of the IZNN term depends on the relative position of the j cell

(observation point) and i cell (field sources) towards z-axis. Since dyadic Green function can

be expressed in terms of

��gg�gg ¼ b ��gg�gg1e�jkzoðzþz0Þ þ ��gg�gg2e jkzoðz�z0Þuðz0 � zÞ þ ��gg�gg3e�jkzoðz�z0Þuðz � z0Þc ð37Þ

��gg�gg1 term being the secondary term while ��gg�gg2 and ��gg�gg3 terms refer to the primary one.
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Discrete cases should be examined reference to the step function used. For instance if cell j

lies above cell i (as represented in Fig. 2) then

uðz0 � zÞ ¼ 0 uðz � z0Þ ¼ 1 z > z0:

which results in

IZ
pr
NN ¼

ðz
j

2

z
j

1

ðzi
2

zi
1

e�jkzoðz�z0Þe jk
jkl

z ðz�z
j
oÞe jkimn

z ðz0�zi
oÞ dz dz0

ðþ1

�1

ðþ1

�1

ðŝs ��gg�gg3âaÞ dkx dky ð38Þ

where the first integral term is being solved analytically. Similar results are obtained if cell j

lies beneath i-cell while in case where the cells repose the same projection in z axis all terms

are taken into account.

Propagation Constant

The propagation constant b being complex quantity is given by

b ¼ br � jbi ð39Þ

where br represents the phase rotation and bi represents the dielectric and ohmic loss

(attenuation) in general [9]. It is also assumed that

b ¼ br � jbi ffi br; bi � br ð40Þ

that is, the imaginary part it is assumed relatively small in comparison to the real one allow-

ing the presumption of a real propagation constant only for the incident wave. In other words,

a justified approximation is taken into account assuming that the incident wave propagation

constant is real since the incident wave is free of losses. In all circumstances the propagation

constant is a datum to the analysis and its value is obtained through a way certified for its

correctness. The numerical value of the propagation constant b is obtained from the charac-

teristics of the microstrip line as they are computed from the Computer Aided Design

Software Libra Touchstone of HP-Eesof.

FIGURE 2 Relevant position of i and j cells

GENERAL ALGORITHM FOR 3D MMIC STRUCTURES 281



NUMERICAL SOLUTION – APPLICATIONS AND RESULTS

From the procedure described above it is evident that the same algorithm is pursued in order

to develop the final expressions and therefore to define the formulation of every element of

the final system matrix. It is obvious that for more sophisticated circuits the system becomes

even larger and more complicated. The numerical computation is applied for Green

function’s infinite integrals where a major issue concerning the convergence is encountered.

Simpson method is being used for numerical integration which results to a very large com-

putation time in CPU terms due to the fact that involves double infinite integrals. Regarding

the matrix inversion several methods were implemented in order to ensure the correct results.

As it was mentioned earlier the Method of Moments – Galerkin technique assumes the

field approximation with the superposition of plane waves. By that way, the more plane

waves are used the better field approximation is being made resulting to even more compli-

cated system. On the other hand, some of the formulated expressions involve functions that

oscillate rapidly, which effects the retardation of the convergence. Therefore, the computation

time becomes very large even for elementary applications of simple geometries with several

plane waves superimposed.

This problem has been solved in a satisfactory way with the introduction of Parallel

Processing – High Performance Computing techniques while Multiprocessing machines

were used [13]. By that way a large number of the functions consisting the matrix elements

is being computed simultaneously exploiting the CPU capabilities. Several results [9] that

study different longitudinal discontinuity cases are derived which show the connection

between the field coefficients inside the cells along with R and T coefficients. Specific results

are presented in the following for the structure shown in Figure 3 where the analysis data are

given below:

Frequency of operation: 50 GHz

Substrate Characteristics

1st layer’s height: d1 ¼ 22:7 mm 2nd layer’s height: d2 ¼ 17:1 mm

1st layer’s dielectric constant: er1
¼ 10 2nd layer’s dielectric constant: er2

¼ 12:85

1st layer’s conductivity: s1 ¼ 0:00278 2nd layer’s conductivity: s2 ¼ 0:00278

FIGURE 3 Application structure
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Complex propagation constant: b ¼ 2755:78 � j18:193

Dimensions of microstrip lines and cells:

Input microstrip line dimensions: lx ¼ 30 mm, ly ¼ 0:5 m, lz ¼ 5 mm

Output microstrip line dimensions: lx ¼ 30 mm, ly ¼ 0:5 m, lz ¼ 5 mm

Dielectric cell dimensions: lx ¼ 30 mm, ly ¼ 953 mm, lz ¼ 5 mm

Electrical Characteristics of the Cell

Dielectric constant: er ¼ 9:9
Conductivity: s ¼ 10

The arrow in Figure 3 represents the direction of the assumed one plane wave in the geo-

metry under consideration (weak approximation). The system matrix involves 25 elements

while the numerical results are given below

c x
imn ¼ �1:68 � 10�11 þ j1:88 � 10�11

c
y
imn ¼ 1:98 � 10�3 þ j3:53 � 10�4

c z
imn ¼ �1:16 � 10�4 þ j6:89 � 10�5

R ¼ 0:768 � j0:553

T ¼ �5:028 � 10�2 � j3:61 � 10�2

From the above results it is noticed that despite the weak approximation, the y-component of

the electric field as expressed by the coefficients values is the dominant one since the wave

propagates along the y-axis. A leakage occurs along z-axis, which is predictable due to the

capacitance between the transmission lines and the dielectric cell as well as between

the transmission lines, the ground plane and the dielectric substrate layers. Finally, the

x-component is extremely small in comparison to the others since no significant filed is

expected along x-axis.

As a next step varying some of the structure’s characteristics, several results are derived.

For instance, when the cell’s conductivity becomes larger ðs ¼ 500Þ the results vary as

follows

c x
imn ¼ 2:94 � 10�14 þ j4:67 � 10�14

c
y
imn ¼ 2:06 � 10�6 � j9:65 � 10�6

c z
imn ¼ 2:51 � 10�7 � j1:265 � 10�7

R ¼ 0:865 � j0:597

T ¼ �0:146 � j4:67 � 10�2

From the above results it is shown that the relations between the field components are the same:

the y-component of the electric field is still the larger one while the others are less. For all cases,

the coefficients in general, become less in value, at least two orders of magnitude, in compar-

ison to the previous ones, due to the fact that the cell losses and therefore the field attenuation is

now increased. Similar conclusions are derived for the R and T coefficients, where the latter

is almost 3.5 times larger. That becomes due to the fact that in the second case the electric

field faces less resistance propagating through the cell to the output transmission line.
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NON-LINEAR ANALYSIS

The method described in the previous sections consists of a Generalized Three Dimensional

full wave dynamic solution to analyze MMIC structures. Both the method described and the

results presented refer only to cells with linear characteristics in terms of dielectric permitti-

vity and conductivity. Despite this fact the method described is a general one and with

specific modifications can be applied for non-linear cell mediums without changing vast

the initial assumptions. The analysis for the non-linear case is presented in the following.

A harmonic analysis technique will be introduced in order to solve the non-linear proper-

ties of the circuit. The new issue introduced is the aspect of non-linearity that is confined in a

finite orthogonal parallelopiped region between linear cells. So everything that has been

described in Figure 1 is still valid with the addition that one of the linear blocks can be

viewed as the perturbating non-linear area.

Reference to an excitation consisting of two plane waves at the discrete frequencies o1, o2

the main goal will be to determine the unknown electric field oscillating at the intermediate

frequency (IF) o ¼ o1 � o2ðo1 > o2Þ. In general the unknown electric field inside the 3D

non-linear region could be described with the use of an integral equation as follows:

Eðr;oÞ ¼ Eoðr;oÞ þ
o2

c2

ð ð ð
V

Gðr; r0;oÞX
�

ðr0;oÞEðr0;oÞ dV ðr0Þ ð41Þ

Where Eoðr;oÞ is the incident electric field and X
�

ðr0;oÞ ¼ ðerðr
0;oÞ � 1Þ is the complex

suspectibility while Gðr; r0;oÞ is the Green’s function used [7]. The complex suspectibility

is also connected to the unknown electric field and the charge surface density through the

following relation:

Qðr;oÞ ¼ X
�

ðr;oÞEðr;oÞ ð42Þ

Assuming a weak non-linearity condition the Wiener–Voltera Method could be applied and

the surface charge density could be expressed with the use of a voltera series as:
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 þ � � � þ

)
ð43Þ

where ði ¼ x; y; zÞ and onm ¼ no1 þ mo2. The unknown x1; x2; x3; . . . ; xn functions are con-

nected to the permittivity er. In the previous equation the unknown electric field Ei, has been

expressed as a sum of plane waves. The values of N, M will be set according to the number of

harmonics needed for the most accurate expression of the unknown electric field.
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Equation (43) in the frequency domain becomes:
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where

en1m1
ðrÞ � en2m2

ðrÞ ¼ ei;n1m1
� ðrÞei;n2m2

ðrÞ ¼ e x
n1m1

e x
n2m2
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e y
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ŷy þ e z
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e z
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ẑz
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Equation (44) is the final form of the charge surface density in the frequency field.

Transferring the unknown electric field and the incident one in the frequency domain and

using Eq. (42) and Eq. (41) becomes:

p
XN

n¼�N

XM
m¼�M
n¼m6¼0

½ei;nmðrÞdðo� onmÞ þ e�i;nmðrÞdðoþ onmÞ


¼ p½e y
0;1ðrÞdðo� o1Þ þ e

y
0;2 rð Þd o� o2ð Þ þ cc
 þ

o2
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ð ð ð
V

Gðr; r0;oÞ ~QQðr0;oÞ dV ðr0Þ

ð46Þ

Where cc is the complex conjugate and ~QQðr0;oÞ is given by (44). The previous equation is

valid for each one of the discrete o1;o2; . . . ;onm frequencies. Since the assumption of a

non-linear region has been made, the unknown electric field can be expressed in general

form as follows:

enmðrÞ ¼ eln
nmðrÞ þ denl

nmðrÞ ð47Þ

Equation (47) denotes that the unknown electric field is the sum of two terms. The first term

is the contribution of the linear cells to the total solution and the second the contribution of

the non-linear region. The first term has been determined from the linear analysis so our main

interest is the second term denl
nmðrÞ. Solving Eq. (46) for the intermediate frequency

o ¼ o1 � o2, which is the output frequency of the circuit, it is derived:

ei;1�1ðrÞ þ e�i;�11ðrÞ

¼ 0 þ
ðo1 � o2Þ

2
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ð ð ð
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0Þ þ ei;�1 1ðr
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þ
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2

2c2

ð ð ð
V
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þ X2ðr
0;�o2;o1ÞÞ
 ð48Þ
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In this equation the excitation term does not exist because there is no incident wave at

o ¼ o1 � o2. Returning to Eq. (47) for the frequency o ¼ o1 � o2 stands:

enmðrÞ ¼ eln
nmðrÞ þ denl

nmðrÞ ) e1�1ðrÞ ¼ eln
1�1ðrÞ þ denl

1�1ðrÞ ð49Þ

From the previous equation we may observe that eln
1�1ðrÞ ¼ 0 since there is no excitation at

o ¼ o1 � o2 frequency. So the non-linear term becomes:

denl
1�1ðrÞ ¼

2

c2

ð ð ð
V
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0;�o2;o1ÞÞ
 ð50Þ

Equation (50) is an approximation of the accurate solution since we have made the assump-

tion that the non-linear term denl
1�1ðrÞ does not appear in the linear part of Eq. (48).

Equation (50) is the final form of the non-linear term, which represents the unknown electric

field inside the non-linear region. It can be further simplified if we take into consideration the

observation made from the numerical results of the linear analysis that the ŷy component of the

electric field is the dominant one. So Eq. (50) becomes:

denl
1�1ðrÞŷy ¼

2

c2

ð ð ð
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0;�o2;o1ÞÞ
 ð51Þ

Furthermore since o1  o2  50 GHz (this is a typical value for the operational frequency

from the linear analysis numerical results) it can be assumed that o1 � o2 �!
o1o2

0. Thus

calculating the non-linear term results in calculating the following limit:

denl
1�1ðrÞŷy ¼ lim

O!0

2

c2

ð ð ð
V

dV ðr0ÞO2ŷyGðr; r0;OÞŷy½ðe y
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y�
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ð52Þ

with O ¼ o1 � o2.

At this point, the unknown function X2 must be reviewed. Starting from the charge surface

density Qy in the non-linear region it can be assumed that this region is a square law device.

Thus the charge would be described by the following function:

Qyðr; tÞ ¼ kE2
y ð53Þ

where k is an unknown coefficient. Using the expression of Eq. (53) and rewriting the charge

Qy in a way similar to Eq. (43):

Qyðr; tÞ ¼ kE2
y ¼ k

ðþ1

�1

dt1

ðþ1

�1

dt2dðt � t1Þdðt � t2ÞEyðr; t1ÞEyðr; t2Þ ð54Þ
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the final expression for X2 is then denoted:

X2ðr;o1;o2Þ ¼ k ð55Þ

Substituting Eq. (55) into Eq. (52) the following expression can be derived:

denl
1�1ðrÞŷy ¼

4k

c2

ð ð ð
V

dV ðr0Þŷy lim
O!0

ŷyðO2Gðr; r0;OÞÞŷyðe y
10e

y�
01 Þ ð56Þ

Using the analytical expression of Green’s function from [7] the limit of (56) can be calcu-

lated in the following:

lim
O!0

ðO2ŷyG ŷyÞ ¼ lim
O!0

O2ŷyðGpr þ GsecÞŷy ¼
c2

4p
q
qy2

1

jr � r0j

� �
�

1

jr � r00j

� �� �
ð57Þ

Where r00 ¼ r0 � 2z0ẑz

Using the expression of (57), Eq. (56) finally becomes:

de1�1ŷy ¼
k

p
q
qy2

ð ð ð
V

1

jr � r0j
�

1

jr � r00j

� �
ðe

y
10e

y�
01 Þ dV ðr0Þ ð58Þ

Equation (58) is a very simple final expression providing the unknown electrical field of the

IF frequency. This solution is connected to the relevant linear problem through the expres-

sions of the e10ðrÞ, e�01ðrÞ functions. Actually e10ðrÞ is the solution for the electric field of

the relevant linear problem at the operation frequency o1 and e�01ðrÞ is the solution for the

conjugate electric field of the relevant linear problem at frequency o2. Generalizing this

method which has already been presented the electric field of any harmonic onm could be

determined provided the relevant linear problems at no1, mo2 frequencies have already

been solved. The only difference will be that the approximation used for

Oðo1 � o2 �!
o1o2

0Þ will no longer exist and the final Eq. (24) will also have to include a

double spectral integral of Green’s function. Usually these integrals cannot be solved analy-

tically and numerical methods have to be used. So using [9] the expressions of the e10ðrÞ,

e�01ðrÞ functions are the following:

e
y
i;10 ¼ c

y
i;o1

e
jki
o1

ð y0�yi
cÞ; e

y�
i;01 ¼ c

y�
i;o2

e
�jki

o2
ð y0�yi

cÞ ð59Þ

where index i here denotes the observation block in which the electric field of the linear pro-

blem is calculated.

The c
y
i;o1

, c
y�
i;o2

are the unknown coefficients of the electric field which are calculated

numerically in [9] and ki is the relevant propagation constant. Substituting the expressions

of the electric fields from Eq. (59) into Eq. (58) we have:

de1�1ŷy ¼ c
y
i;o1

c
y
i;o2

e
�jðki

o1
�ki

o2
Þyi

c
k

p
q
qy2

ð ð ð
V

1

jr � r0j

� �
e

jðki
o1

�ki
o2

Þy0 dV ðr0Þ

� c
y
i;o1

c
y
i;o2

e
�jðki

o1
�ki

o2
Þyi

c
k

p
q
qy2

ð ð ð
V

1

jr � r00j

� �
e

jðki
o1

�ki
o2

Þy0
dV ðr0Þ ð60Þ
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Calculating the triple volume integral of the non linear region with dimensions Li
x ¼ xi

2 � xi
1,

LI
Y ¼ yi

2 � yi
1 and Li

z ¼ zi
2 � zi

1 and the double y derivative, the unknown electric field at the

center of the non linear block region with coordinates ðxi
c; yi

c; zi
cÞ can be easily determined

with the use of analytical and numerical methods.

CONCLUSIONS

In conclusion, a generalized 3-D global analysis technique is presented to treat MMIC struc-

tures, using integral equation techniques. The use of Galerkin technique allows the analysis

of arbitrary geometries. Numerical results are presented for specific longitudinal discontinui-

ties while several novelties are being implemented including the three dimensional approach,

the finite conductivities and the treatment of the incident, reflective and transmitting waves in

the input and output microstrip lines of the circuitry.
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