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Background. Human immunodeficiency virus (HIV) is a major health problem in the world, and failure to implement
prevention programs results in an increased number of infections among newborns./e goal of this study was to investigate the
evolution and determinants of cluster of differentiation four (CD4) cell count among HIV-infected children who were under
antiretroviral therapy (ART). Methods. We follow up a cohort of 201 children aged under fifteen years from October 2013 to
March 2017 at Adama Hospital in Ethiopia. To get insight into the data, exploratory data analysis was performed on the change
in the longitudinal CD4 cell count. Results. At the baseline, the average number of CD4 cell counts was 468.5 cells/mm3 of blood
with a standard deviation of 319.11 cells/mm3. Here, we employed the random intercept and the random slope linear mixed-
effects model to analyze the data. Among predictor variables, observation time, baseline age, WHO clinical stage, the history of
tuberculosis (TB), and functional status were determinant factors for the mean change in the square root of the CD4 cell count.
Conclusions. /e finding revealed that the change in the square root of the CD4 cell count increases with an increment of age at
diagnosis. Regarding WHO clinical stages of patients, those who were in stage III and stage IV of the HIV/AIDs disease stages
relatively had lower CD4 cell counts than stage I patients. /is shows the change in the square root of CD4 cell counts of stage
III and stage IV patients was 6.43 and 9.28 times lower than stage I patients, respectively. Similarly, we noticed that observation
time, the history of TB, and functional status were significantly associated with the mean change in the square root of the CD4
cell count.

1. Introduction

HIV is a major health problem in the world, and failure to
implement prevention programs results in an increased
number of infections among newborns. HIV-infected
children should start ART to reduce AIDs-related morbidity
and mortality or to improve their survival time [1].
According to United States Agency for International De-
velopment (UNAIDS) [2], an estimated 1.8 million children
globally were living with HIV of which 1.18 million are in
sub-Saharan Africa. As per the same estimate, there are
180,000 new infected children globally with an estimate of
108,000 (60%) occurring in sub-Saharan Africa, and 111,000
children died due to AIDs and related illnesses globally
followed by 72,000 (65%) children in sub-Saharan Africa. In

Ethiopia, an estimate of 729,089 people live with HIV in-
cluding 80,923 children less than 15 years. As per the same
estimate, there are 21,606 new infections of which 1,276
(5.9%) are children under 15 years. Furthermore, the
number of deaths due to AIDs-related illnesses for the same
period was estimated to be 10,960 in the country and 1,924
(2.4%) were children less than 15 years [3].

As studies reported, children experience more rapid HIV
disease progression making them highly susceptible to
opportunistic infections and death [4]. Antiretroviral
therapy (ART) can restore immune function and has
enormously reduced morbidity and mortality among HIV-
infected children. Due to the advent of ART, many HIV-
infected children can survive to adolescence and adulthood
[5]. Current revised WHO guideline recommends that all
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HIV-infected children should initiate ART irrespective of
the clinical disease stage or degree of immune suppression
[6]. Hence, one of the main interests in HIV clinical studies
is the change in CD4 cell counts of patients who are receiving
ART. /e statistical modeling has greatly contributed to
identifying the predictors related to the change in the CD4
cell count of patients initiating ART. /e objective of this
study was to investigate the evolution and determinants of
the CD4 cell count among HIV-infected children initiating
ART at Adama Hospital in Ethiopia.

2. Cohort-Based Data

/e data used in this study came from a total of 591 children
aged under 15 years old cohort-based retrospective study by
reviewing patients’ ART charts and electronic databases at
Adama Hospital from 2013 to 2017 in Ethiopia [7]. A sample
of 201 children who have full records or a complete history
during the study period was considered in this study, and the
data were retrieved by physicians who were working in the
hospital. /ose who had no full records or an incomplete
history during the study period were excluded from the
analysis. Here, we distinguished cause-effect specific related
factors from various literature reviews. /us, the change in
the longitudinal CD4 cell count per mm3 of HIV-infected
children treated with ART was considered as a response
variable of the study and measured every six months, at the
baseline (first diagnosis), during the first visit (after 6
months), second visit (after 12 months), third visit (after 18
months), fourth visit (after 24 months), fifth visit (after 30
months), and finally at the sixth visit (after 36 months). /e
predictor variables considered in this study were those likely
to affect the CD4 cell count of HIV-infected children in-
cluding the age of children, hemoglobin, weight, gender
(male/female), primary caregiver, caregiver HIV status
(positive/negative), status of tuberculosis (positive/nega-
tive), functional status (ambulatory/bedridden/working),
WHO clinical stage (stage I/stage II/stage III/stage IV), type
of ART, and BMI.

3. Methodology

We conducted exploratory data analysis to investigate
various structures and patterns exhibited in the dataset. /is
consists of obtaining the summary statistics such as mean
and variance for the CD4 cell count. Besides, the individual
profile plots, mean structure, and variance structure plots
were used to gain some insights into the data. While, the
individual profile plots and the variance structure were used
to gain insight into the variability in the data and to de-
termine which random effects to be considered in the linear
mixed model. Also, the mean structure was used to gain
intuition on the time function that can be used to model the
data.

3.1. Linear Mixed-Effect Model (LMM). LMM is the most
frequently used random effects model in the context of
continuous repeated measurements from longitudinal re-
sponses when the measurements are taken on the same or

related subjects at different times; in both cases, the re-
sponses are likely to be correlated [8]. When modeling
longitudinal data, our interest is to study the association
between dependent variable and a set of explanatory vari-
ables [9]. In the LMM, we assume that the dependent
variable is a linear function of independent variables with
regression coefficients that vary randomly from one person
to another. /is variation among individuals arises because
of unmeasured or hidden factors [10]. /e term ‘mixed’ is
used because the LMM includes both fixed and random
effects [11]. /e fixed part represents the mean response,
while the random part is for the individual level responses.
Hence, the LMM provide a general modeling framework for
subject-specific random effects, assumed to follow a normal
distribution and are included to account for the correlation
[12, 13]. Here, the dependent variable was taken on the same
subject at different times with different baseline character-
istics. /e assumed model captures for the correlation of the
CD4 cell count taken on the same subject at different
timepoints. To formalize, let β be a p × 1 vector of unknown
coefficients for the fixed effects part and Xi be the ni × p

design matrix of fixed predictors linking β to the set of
longitudinal measurements of CD4 cell counts labeled as Yi.
Let ui be a k × 1 vector of latent individual random effects
and Zi denote a known ni × k design matrix values of the
random factors linking ui to Yi.

Yi � Xiβ + Ziui + εi,

ui ∼ N(0, D),

εi ∼ N(0, ),

u1, ..., un and ε1, ..., εn are independent,

⎧⎪⎪⎨

⎪⎪⎩

(1)

where Yi is the ni × 1 CD4 cell count for the ith children, and
εi distributed as N(0,Σi) is a vector of residual components,
combining measurement error and serial correlation. /en,
ui is distributed as N(0,Ω), independent of each other. /at
is, cov(ui, εi) � 0. Furthermore, Σi � δ2Ini is the ni × ni

positive-definite variance-covariance matrix for the errors in
subject i, where Ini denotes the ni × ni identity matrix.
Among the commonly used variance covariance structure
for random effects, compound symmetry, heterogeneous
compound symmetry, first-order autoregressive, and un-
structured were considered and compared. Furthermore, to
select the model which appropriately fits the given data,
Akaike’s information criterion (AIC) and Bayesian infor-
mation criterion (BIC) were used.

4. Results and Discussion

4.1. Exploratory Data Analysis. Exploratory analysis of
longitudinal data seeks to discover patterns of systematic
variation across groups of children, as well as aspects of
random variation that distinguish individual children. Ta-
ble 1 displays the summary statistics of the longitudinal CD4
cell count of HIV-positive children in different follow-up
months. During the follow-up periods, the size of the cohort
varied between 201, 185, 137, 125, 115, 92, and 54, re-
spectively, for the baseline (first diagnosis), first visit, second
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visit, third visit, fourth visit, fifth visit, and sixth visit. /e
number of the CD4 cell count of patients between follow-up
periods was decreasing over time indicating that they leave
the study due to several reasons including death, early
withdrawals, lost to follow-up, and other reasons. It can be
seen that the mean of the CD4 cell count of children in-
creases with an increasing rate until 24th month (i.e., 4th visit
time) and start decreasing afterwards. /e same is true for
their standard deviations, increasing until 12th month (i.e.,
2nd visit time) and start decreasing slowly. /e average
number of baseline CD4 cells count was 468.50 cells per
mm3 with a standard deviation of 319.11 per mm3 of blood,
implying that children were at risk at baseline and the av-
erage CD4 cell count start increasing after initiation of ART.

4.2. Individual Profile Plot. Figure 1 shows the individual
profile plot of the longitudinal CD4 cell count of all study
subjects (left) and twenty randomly selected HIV-infected
children’s (right) by the follow-up time. Hence, it can be seen
that some trajectories were steeper while others were almost
horizontal, indicating the possible variability in the slope
and intercept of CD4 cell counts. /e plot also provides
information on variability between CD4 cell counts and
shows there is a change in the CD4 cell count over time.
Some children’ CD4 cell counts increase with an increasing
rate and decrease over time, and the other has the erratic
CD4 cell count. It appears that there is a fluctuation in the
CD4 cell count over time after they initiated ART, and the
variability of the CD4 cell count seemed larger at the be-
ginning and lower at the end (Figure 1 (right)). Hence, there
is variability between children in terms of their CD4 cell
count. So, this is an indication of including random effects
for each child to capture this variability and to allow the CD4
cell count for children within the same child to be correlated.

4.3.Mean Profiles Plot. /e average evolution describes how
the profile of many subpopulations (or the population as a
whole) evolves. /e results of this exploration will be useful
to choose a fixed-effects structure for the linear mixed
model. /e average of the profiles increases over time by the
sex group, the point at which the CD4 count was recorded.
/erefore, the approximately straight-line trajectories linear
time effect in the mixed effect model could be good in fitting
the data (Figure 2).

4.4. Variance Profiles Plot. /e variance of the CD4 cell
count of children showed an irregular pattern over the
follow-up period. It increases at some point and decreases at
another point suggesting a nonconstant variation among
children over the follow-up period. High variation was

observed among male until 12th month and higher for fe-
males afterwards. /e variance of both genders increases at
some point and decreases at another point and suggests
there is no constant variation over time (Figure 3). /ere-
fore, because of the variability in the intercept and slope of
trajectories (Figure 1) and pattern observed in Figure 2, the
mixed effect model could be the candidate model to fit the
data.

4.5. Linear Mixed-Effect Model. Before modeling, normality
of the CD4 cell count was checked, and the data on the CD4
cell count appeared to be right skewed, and then, the square
root transformation of the CD4 cell count was considered to
normalize the data (result not displayed here). In fitting the
linear mixed effect model, a series of covariance structures of
the longitudinal CD4 cell counts of HIV-infected children
were considered. From the possible covariance structures,
compound symmetry, unstructured, first order autore-
gressive, and heterogeneous compound symmetry consid-
ered, first order autoregressive having the smallest AIC and
BIC values (result not displayed here) was considered in the
study. /e random effect to be included in the linear mixed-
effect model was compared based on model selection cri-
teria, and the model with random intercept and random
slope (model 2) has relatively lower AIC and BIC values than
the random intercept (model 1) model and random inter-
cept and quadratic slope model (model 3) (Table 2).

/en, a random intercept and slope model was used in
the linear mixed effect model to predict the mean change of
the square root of the CD4 cell count over time in addition to
potential predictor variables considered in the study as
results are depicted in Table 3.

We found that among potential predictors considered
in the study, the age of children, observation time, WHO
clinical stage of the disease, the history of TB, functional
status of children, and the interaction effect of the follow-
up time with the age and WHO clinical stage were sig-
nificantly associated with the mean change in the square
root of the CD4 cell count at 5% level of significance
(Table 3)./us, being TB positive was associated with lower
in the square root of the CD4 cell count. When all the other
predictor variables were controlled, the change in the
square root of the CD4 cell count was 2.88 times lower for
TB-positive children compared to TB-negative children.
/is result is consistent with a study conducted by Marie-
Quitterie et al. [14]. Regarding the age of children, the
change in the square root of the CD4 cell count increases
with an increment of age at diagnosis in agreement with a
study by Marie-Quitterie et al. [14], and younger children
have good potential for achieving high CD4 counts on ART
[15]. Likewise, children at the stage of working functional

Table 1: Summary statistics of the longitudinal CD4 cell count of HIV-infected children in different follow-up months.

Time Baseline First visit Second visit /ird visit Fourth visit Fifth visit Sixth visit
N (%) 201 (100%) 185 (92.0%) 137 (68.2%) 125 (62.2%) 115 (57.2%) 92 (45.8%) 54 (26.9%)
Mean 468.50 615.05 868.68 874.65 912.56 911.21 893.52
SD 319.11 376.98 387.24 354.37 348.16 336.57 302.82
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Figure 2: Mean profile plot of the longitudinal CD4 cell count by gender.
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Figure 1: Individual profile plot of the CD4 cell count of all samples (left) and twenty randomly selected children’s by the follow-up time
(right).
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Figure 3: Variance profile plots of the longitudinal CD4 cell count by gender.
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status have the higher square root of the CD4 cell count as
compared to those who were bedridden and ambulatory.
/e change in the square root of the CD4 cell count was
1.13 times higher for children in working functional status
compared to ambulatory and for the bedridden was 0.67
times lower compared to ambulatory. Regarding WHO
clinical stages, the estimated coefficient for stage III and
stage IV was negative and significantly different from zero
indicating stage III and stage IV children had a lower CD4
cell count than stage I during the follow-up. Hence, for
those children who are in stages III and IV, the change in
the square root of the CD4 cell count is 6.43 and 9.28 times
lower in the square root of the CD4 cell count compared to
those who are in stage I, respectively. /e findings are
consistent with the study performed by Aboma et al. and
Abdulbasit et al. [15, 16].

5. Conclusions

Among predictor variables, observation time, baseline age,
WHO clinical stage, the history of TB, and functional status
were determinant factors for the mean change in the square
root of the CD4 cell count. Late WHO clinical stages, being
TB positive, being ambulatory, and being bedridden are
indicators of the disease progression. /erefore, children
should need diagnosis and initiate ART early as per the
recentWHO recommendation; HIV-infected children could
better initiate ART treatment early in respective of the
disease marker.
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Table 2: Selection of random effect models to be included in the linear mixed-effect model.
Model Random effect AIC BIC
1 Random intercept 5709.43 5800.55
2 Random intercept and random slopes 5705.43 5786.95
3 Random intercept and quadratic slope 5748.81 5839.93

Table 3: Parameter estimate of the linear mixed-effect model with random intercept and randomslope.

Predictor variables β SE (β) t value p value 95% CI
Intercept 30.12 1.05 28.85 0.001 ∗ (28.05, 32.19)
Observation time 0.17 0.04 4.25 0.001 ∗ (0.08, 0.25)
Age 0.78 0.11 7.09 0.001 ∗ (−1.01, −0.54)
WHO stage; stage I (Ref) — — −5.15 0.010 ∗ —
Stage II −1.17 0.89 −1.31 0.190 (−2.93, 0.58)
Stage III −6.43 1.19 −5.40 0.001 ∗ (−8.78, −4.08)
Stage IV −9.28 1.54 −6.03 0.001 ∗ (−12.34, −6.23)

TB; negative (Ref) — — 1.38 0.034 ∗ —
Positive −2.88 0.66 −4.36 0.001 ∗ (−4.20, −1.57)

Functional status; ambulatory (Ref) — — 1.78 0.045 ∗ —
Bedridden −0.67 0.92 −0.72 0.163 (−2.50, 1.14)
Working 1.13 0.70 1.61 0.010 ∗ (−0.26, 2.52)

Time ∗WHO; time ∗ stage I (Ref) — — 4.50 0.028 ∗ —
Time∗stage II 0.05 0.04 1.25 0.184 (−0.02, 0.14)
Time ∗ stage III 0.16 0.06 2.66 0.014 ∗ (0.03, 0.29)
Time ∗ stage IV −0.23 0.15 −1.53 0.113 (−0.53, 0.05)

Time ∗ age 0.02 0.01 2.00 0.012 ∗ (0.003, 0.02)
Note: β represent the estimated parameters; SE(β) is the standard error of estimated parameters; ∗ represent the significant p value at 5% level of significance;
and Ref denotes the reference category.
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