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Day by day, all the research communities have been focusing on digital image retrieval due to more internet and social media uses.
In this paper, a U-Net-based neural network is proposed for the segmentation process and Haar DWTand lifting wavelet schemes
are used for feature extraction in content-based image retrieval (CBIR). Haar wavelet is preferred as it is easy to understand, very
simple to compute, and the fastest. &e U-Net-based neural network (CNN) gives more accurate results than the existing
methodology because deep learning techniques extract low-level and high-level features from the input image. For the evaluation
process, two benchmark datasets are used, and the accuracy of the proposed method is 93.01% and 88.39% on Corel 1K and Corel
5K. U-Net is used for the segmentation purpose, and it reduces the dimension of the feature vector and feature extraction time by 5
seconds compared to the existing methods. According to the performance analysis, the proposed work has proven that U-Net
improves image retrieval performance in terms of accuracy, precision, and recall on both the benchmark datasets.

1. Introduction
Nowadays, digital image techniques lead to the tremendous
usage of the image retrieval process on the internet. &e image
retrieval system retrieves different images over the internet with
different captions and labels under each image stored in the
database. An image retrieval system that uses content as a
search key for browsing is known as content-based image
retrieval (CBIR) [1].&emain goal of the CBIRmethodology is
to extract meaningful information from images such as color
shape and texture for effective retrieval. &e research com-
munity contributed to CBIR in the direction of image prop-
erties, relevance feedback, fuzzy color, and texture histogram
[2]. &e proposed algorithms, color histogram, based on rel-
evant image retrieval (CHRIR) [3, 4], work with the image’s
low-level features, such as objects’ physical features for image

retrieval. However, these visual features might not reveal the
proper semantics of the image. &ese algorithms may not suit
and may generate erroneous results when considering content
images in a broad database. &erefore, to improve the CBIR
system’s accuracy, region-based image retrieval methods using
image U-Net-based segmentation were introduced [5]:

(i) Haar discrete wavelet transform (H-DWT) is a popular
transformation technique that transforms any image
from the spatial domain to frequency domain. &e
wavelet transformation method represents a function
as a family of essential functions termed wavelets
[2, 6, 7]. Wavelet transform extracts signals at different
scales while input passes through the low-pass and
high-pass filters. Wavelets are increasingly becoming
popular because of their multiresolution capability and
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suitable energy compaction property. Haar wavelet is
used to represent an image by computing the wavelet
transform. It involves low-pass filtering as well as high-
pass filtering operations simultaneously [8]. At each
scale, the image is decomposed into four frequency
sub-bands, namely LowLow, LowHigh, HighLow, and
HighHigh, where Low stands for low frequency and
High stands for high frequency. Haar wavelet’s func-
tion X(t) can be described as

X(t) �

1, 0≤ t≤ 0.5,

−1, 0.5≤ t< 1,

0, otherwise.

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
(1)

Its scaling function χ(t) can be defined as

χ(t)�
1, 0≤ t< 1,

0, otherwise .

(ii) Lifting scheme: it is a well-known approach used for
the second generation wavelets [5]. It has much
potential in CBIR because of its simple structure, low
complexity in computation, convenient construc-
tion, etc. It has proved its potential in performing
iterative primal lifting and dual lifting [9–11] with
multiresolution analysis. Using a lifting scheme, we
can build wavelets having more vanishing moments
and smoothness, thus enabling them to be more
adaptable and nonlinear. &e lifting scheme is used
for designing wavelets and performing wavelet
transformation techniques such as discrete wavelet
transform (DWT).

Most of the traditional techniques used machine
learning techniques, and these techniques work on the
whole image, making it a more time-consuming process.
&erefore, this paper proposed a U-Net-based neural
network for segmentation purposes and Haar DWT and
lifting wavelet schemes were used for feature extraction in
content-based image retrieval (CBIR). Haar wavelet is
preferred as it is easy to understand, very simple to
compute, and the fastest. U-Net-based neural network
(CNN) gives more accurate results than the existing
methodology because deep learning techniques can ex-
tract low-level and high-level features from the input
image, which is the novelty of this research. In Section 2,
we presented a literature survey. In Section 3, we
explained our proposed architecture and methodology.
Section 4 discusses the results of 2 benchmark datasets,
and Section 5 represents the conclusion section.

2. Literature Work

Digital image retrieval and its applications are vast to study.
&ere are many traditional techniques in image retrieval, but
the key issue is that various techniquesmay have different types
of variations, i.e., accuracy, error, and detection rate. Many
research communities [1–16] proved that object detection and
image retrieval error rate are less, as shown in Table 1.

3. Proposed Methodology

In Figure 1, the flowchart describes the proposed meth-
odology in which the image retrieval has to be done. &e
following steps explain the proposed methodology.

3.1. ImageAcquisition. An image is taken as input which has
to be converted into a grayscale image. &e converted image
is then sent to the preprocessing step for further process. In
the acquisition process, the image with Real-World Data is
converted into an array of numerical data. &e image must
be captured with the appropriate camera and converted into
a computerized pattern [22–24].

3.2. Preprocessing. Preprocessing is performed to remove
distortions and other unwanted features while processing
the image and extract the proper portion of the image
corresponding to the analysis of image retrieval using dif-
ferent algorithms [25–27] such as boundary detection.
Preprocessing involves removing unwanted features, resiz-
ing the image, boundary detection, and normalization. &e
image is processed through different phases in pre-
processing, such as resize, boundary detection, and
normalization.

3.3. Segmentation. &ere are various traditional methods to
normalize the image for segmentation, but the U-Net-based
neural network detects the object more efficiently.

&e proposed methodology used 3-layer U-Net archi-
tecture, and it is one of the fully convolutional neural
networks which works with very few training models yet
yields compelling segmentation results. U-Net consists of a
3-layer convolution neural network, ReLU functions, and
pooling functions, and in each layer, the pooling operations
are replaced by the upsampling operators such that the
network’s output gives an image with increased resolution.
U-Net performs the classification on every pixel and gen-
erates the output with the same size as the input. &e U-Net
architecture is symmetric and usually has a U shape. &e left
side of the network is a contracting network, and the right is
expanding network. &e architecture is shown in Figure 2.
Downsampling will be done on the left side of the U-Net
architecture, and on the right side, upsampling will be done.
Each block in the architecture takes an input and passes
through 2 convolution layers, 3× 3 with a stride of 2 and
2× 2 max-pooling with the corresponding cropped feature
map. Table 2 shows the full description of the input image
with 3 phases of downsampling and upsampling. Once the
image is segmented accurately and features can be extracted,
the encoding path, i.e., downsampling, is passed through
3× 3× 3 convolutions. It is followed by ReLU (rectified
linear unit) operation with 16 channels and 2× 2× 2 max-
pooling with stride 2. It consists of 3 phases/layers of
convolution. At each layer, the feature channels get doubled.
In total, 11 convolution layers were taken.

2 Computational Intelligence and Neuroscience
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3.4. Feature Extraction. In this process, the image is reduced
using classification to more manageable parts stored as a
dataset for further image processing [2, 28–31]. &e process
is as shown in Figure 3. &ese large data sets contain many
variables that must be processed and need many computing
resources to process.

&e method of feature extraction used may alter
depending upon the traditional and nontraditional methods
[32–35]. After segmentation, the YUV component of the
input image is extracted as shown in Figure 4. Once the YUV
component was extracted, the Sobel and Canny edge de-
tection and wavelet transformation were applied for in-

Table 1: Comparison of the existing image retrieval techniques.

S. no. Author Year Method/methodology Comments

1 Liying and Lirong
[13] 2017 Scale-invariant feature transform (SIFT) Performs retrieval on more than a single query to

increase the retrieval accuracy.Convolutional neural network (CNN)

2 Dhotre et al. [4] 2017
&e color feature extracted through CHRIR and
wavelet transform performed using multilevel Haar

wavelet transform (MHWT)

Proved to be a faster retrieval method on an
image database with one of the physical features.
Works more accurately with increased retrieval

speed and minimized time.

3 Jayanthi and
Karthikeyan [2] 2015 FCTH, CEDD, HWT, and DWTusing fuzzy linking

and Gabor filters
Database with 1000 color images results in better

recall and average precision of retrieval.

4 &epade and
Shinde [3] 2015

Haar wavelet transforms with Canny edge detection
based on shape features using gradient techniques
such as Prewitt, Laplace, and Sobel, and the slope
magnitude technique with the Manhattan similarity

function

Database with 350 color images

Frei-Chen and Sobel give better performance
than the other algorithms that used Canny

implementation.

5 Jayanthi and
Karthikeyan [2] 2015 HWT and DWT using Gabor filters and fuzzy

linking
Gives good results in average precision and recall

value.

6 Gupta and
Kushwah [8] 2015

Haar discrete wavelet transform (H-DWT), gray
level co-occurrence matrix (GLCM) Improved results in comparison with previous

methods.Support vector machine (SVM)

7 Agarwal et al. [5] 2014 Used color edge detection and DWT Database used was Wang’s image database. Gave
high precision and recall values.

8 Agarwal et al. [5] 2014 Color edge detection, DWT High precision and recall indicate an exemplary
retrieval systemCanny edge detection

9 Ying Chen and Wu
[6] 2011 Uses optical flow to extract the information from the

video; extraction process with Haar wavelet
Locates the feature almost near the query point

using index values.

10 Chatzichristofis
et al. [7] 2010

&e method based on color and edge directivity
descriptor (CEDD) Demonstrated successful retrieval on benchmark

datasets.Utilizes the binary Haar wavelet transform for
extraction

11 Quellec et al. [12] 2010 &e multidimensional wavelet filter bank Can be used in a different dimension of signal
and different lattices.

12 Verma et al. [1] 2009

Texture analysis-based scheme

Own dataset with 100 color images of size
256× 256 pixels each. Accuracy up to 73%.

I level Haar wavelet used for image decomposition
F-norm theory to decrease the dimension of the
extracted feature; fuzzy logic similarity measure

used
13 Huang et al. [10] 2005 Lifting scheme F-norm theory Good at retrieval.

14 Wong et al. [9] 2005 AdaBoost-based face defection method and the
lifting wavelet transform (LFWT) technique

Efficient with small memory to detect the face.
Suits best for multimedia applications

15 Munjal and Bhatia
[17] 2019 UCID dataset used, CEDD and Gabor wavelet

transform (GWT) for feature vector Accuracy� 91.9%.

16 Varish et al. [18] 2020
Fusion of histograms of gradients and invariant

moments, Corel 1K and GHIM-10K dataset used for
validation

Precision� 89% and 90%.
Recall� 17.80% and 3.60.

F-score� 29.49% and 6.92%.

17 Wadhera and
Agarwal [19] 2020

3D center symmetric LBP+Gaussian filter + gray
level co-occurrence matrix (GLCM), STex texture,

and ESSEX face database

Precision� 61% and 97.4%.

Retrieval rate� 97.4%.

18 Ajam et al. [20] 2019 LBP+HSV+ entropy, Corel 10K and Corel 5K
databases used Retrieval rate� 59.51% and 49.13%.

19 Xiaobo et al. [21] 2021 Adaptive threshold + directional LBP, and Corel 1K
database Precision� 67.63%.

Computational Intelligence and Neuroscience 3
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Figure 2: U-Net-based architecture diagram.
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Network
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Figure 1: Flow chart of the proposed system.
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depth feature extraction [36–40]. &e entire sequence of
feature extraction is shown in Figure 3.

3.5. Classification. &e extracted data will be in binary
format, stored in the database during the enrollment pro-
cess, or verified with the existing data during the matching
process [41–47]. If the similarity index of the image is more,
then a similar kind of image will be retrieved. &e similarity
distance is estimated by Manhattan distance, Euclidean
distance and Chebyshev rule. &e mathematical formula-
tions are shown as follows:

DM � |x1 − x2| +|y1 − y2|,

DE �

�������������������

(x1 − x2)
2

+(y1 − y2)
2



,

DCheb � max(|x1 − x2|, |y1 − y2|).

(2)

4. Results

Overall, GUI is prepared for the proposed work using the
MATLAB 2014a tool by taking input of the image as a query
image as shown in Figure 3. &e entire work was performed

Input Image 
(RGB)

Y U

Y1 Y2 (Sobel) V1 V2 (Canny)

V

Combine Y, U & V and Make RGB

Y Cb Cr

Wavelet Wavelet Wavelet

Feature 
Extraction

Concatenation and Intensity Information 

Figure 3: Flow chart of feature extraction technique.

Table 2: Complete description of U-Net-based architecture.

Phases Input image Convolution layers Channels ReLU and max-pooling Output image Sampling type Stride
1 64× 64× 40 3× 3× 3 16 2× 2× 2 32× 32× 20 Downsampling 2
2 32× 32× 20 3× 3× 3 32 2× 2× 2 16×16×10 Downsampling 2
3 16×16×10 3× 3× 3 64 2× 2× 2 16×16×10 Downsampling 2
1 16×16×10 3× 3× 3 32 2× 2× 2 32× 32× 20 Upsampling 2
2 32× 32× 20 3× 3× 3 64 2× 2× 2 64× 64× 40 Upsampling 2
3 64× 64× 40 1× 1× 1 64 2× 2× 2 64× 64×1 Desired sample 2

Computational Intelligence and Neuroscience 5
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on a laptop with the configuration of Intel I3, of NVIDIA
graphics card with 4GB RAM. Various hyperparameters are
used in the architecture. A total of 50 epochs is used while
training the model. &e validation split is considered as 0.1.
It considers 90% of the images for the training purpose and
10% for the testing purpose. &e dropout value is 0.2; it
means that of five inputs, one is excluded from each cycle.
Sixteen filters are used for the convolution purpose, and the
learning rate lies between 0 and 1. For evaluation of the
proposed work, the Corel 1K database and Corel 5K data-
base cover many semantic categories, as shown in Figures 5

and 6. &ese datasets are widely used for content-based
image retrieval techniques. Totally 10800 images are avail-
able in the Corel 1K dataset, and they are divided into 80
different groups according to the various categories. &e
database includes butterflies, horses, bushes, flowers, etc.,
and each category contains more than 100 images. &e users
determine the partitioning of the database into meaningful
featured categories because of image similarity.

Figure 7 shows the overall GUI of the proposed work.
&e proposed work gives high accuracy, precision, and recall
up to 93.1%, 99.77%, and 87.23%, and 88.39%, 84.75%, and

Figure 4: YUV component of the input image.

Figure 5: Sample format of the Corel 1K/Wang database (people, beach, buildings, buses, dinosaurs, elephants, flowers, horses, and
mountains).

6 Computational Intelligence and Neuroscience
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Figure 6: Sample format of the Corel 5K database (butterfly, bear, sunset, card, symbol, tiger, sippy, people, vegetable, cloud, beers, trees,
doors, cars, bridges, waterfalls, bullock cart, revolver, pattern, flag, and art).

Computational Intelligence and Neuroscience 7
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81.01%, respectively, for Corel 1K and Corel 5K datasets, as
shown in Table 3 as well as Figures 8–10. Based on the novel
proposed work, feature extraction time reached 4.187 sec, as

shown in Table 4 and Figure 11. In Corel 1K benchmark
datasets, nine samples were considered for evaluation and
similarity matrices of these datasets are shown in Table 5 and

Figure 7: GUI of the proposed work.

Table 3: Average accuracy, precision, and recall of the retrieval image.

Dataset MTSD accuracy
(%)

Proposed accuracy
(%)

MTSD precision
(%)

Proposed precision
(%)

MTSD recall
(%) Proposed recall (%)

Corel 1K 68.49 93.01 56.34 91.77 — 87.23
Corel 5K 53.39 88.39 54.48 84.75 — 81.01

MTSD Accuracy Proposed Accuracy
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Figure 8: Accuracy comparison of the proposed work with the existing methodology.
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Figure 12. In Corel 5K benchmark datasets, 21 various
samples were considered for evaluation and similarity
matrices of these datasets are shown in Table 6 and Figure 13.
&e overall precision values of the proposed work are high
compared with the existing methodology, and the results are
shown in Table 7 and Figure 14. &e mathematical for-
mulation of the parameters is shown as follows:

accuracy � 100∗
(TP + TN)

N
 ,

recall �
TP

(TP + FP)
,

precision �
TP

(TP + FN)
,

(3)

where TP is true positive, TN is true negative, FN is false
negative, FP is false positive, and N is the size of the dataset.
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Figure 9: Precision comparison of the proposed work with the existing methodology.
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Figure 10: Recall comparison of the proposed work with the existing methodology.

Table 4: Dimension (D) of the feature vector and feature extraction
time.

Methods Dimension Feature extraction time (sec)
MTSD 179 9.1615
Proposed 220 4.1815

Computational Intelligence and Neuroscience 9
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Figure 11: Dimension and time comparison of the proposed work with the existing methodology.

Table 5: Similarity metrics on the Corel 1K dataset.

Group L1 Euclidean Chebyshev
People 91.05 79.81 91.76
Beach 87.87 89.27 89.60
Buildings 83.89 87.99 88.82
Buses 79.70 79.92 90.36
Dinosaurs 89.18 90.59 90.01
Elephants 89.66 90.77 88.16
Flowers 90.71 80.39 89.12
Horses 89.73 91.72 87.36
Mountain 87.57 90.89 89.81
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Figure 12: Similarity metrics on the Corel 1K dataset.
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Table 6: Similarity metrics on the Corel 5K dataset.

Group L1 Euclidean Chebyshev
Butterfly 81.05 79.24 82.29
Bear 82.70 76.98 79.86
Sunset 80.90 75.15 70.18
Card 77.64 79.11 73.56
Symbol 83.57 81.36 79.09
Tiger 81.16 79.11 82.36
Sippy 83.91 80.08 83.01
People 83.63 81.10 81.73
Vegetable 79.51 79.06 80.17
Cloud 84.10 80.25 82.97
Beers 82.19 81.36 83.97
Trees 80.90 78.15 73.00
Doors 78.18 71.02 74.08
Cars 79.26 74.08 74.83
Bridges 76.82 71.59 76.59
Waterfalls 80.45 76.78 81.08
Bullock cart 83.67 79.71 81.11
Revolver 84.01 80.18 83.31
Pattern 79.11 77.01 77.08
Flag 78.08 76.8 73.12
Art 74.19 79.70 70.14
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Figure 13: Similarity metrics on the Corel 5K dataset.

Table 7: Average precision comparison of the proposed work with the existing methodology.

Dataset Precision of [37]
(%)

Precision of [38]
(%)

Precision of [39]
(%)

Precision of [40]
(%)

Precision of [41]
(%) Proposed precision (%)

Corel 1K 75.01 82.09 79.9 69.40 76.60 91.77
Corel 5K — — 62.97 53.90 59.10 84.75

Computational Intelligence and Neuroscience 11
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5. Conclusion

&e U-Net-based architecture makes the proposed work
different from the existing methods, giving a high de-
tection rate. &e U-Net-based neural network detects the
object more efficiently. It is a fully convolutional neural
network (CNN) that works with very few training models
yet yields compelling segmentation results. It is a three-
layered segmentation architecture that improves the
overall accuracy of our content-based image retrieval
system by around 93%. For evaluation of the proposed
work, the Corel 1K database and Corel 5K database are
used. &e results show that accuracy and precision are
very high compared to the existing methodology. &e
feature extraction time of our proposed methodology is
also significantly less compared to the MTSD method.
Hence, we can conclude that our proposed methodology is
very fast, accurate, efficient, and precise compared to the
MTSD method.

Data Availability

&e data used to support the findings of this study are
available from the corresponding author upon request.
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