
Research Article
Adaptive Localizing Region-Based Level Set for Segmentation of
Maxillary Sinus Based on Convolutional Neural Networks

Xianglong Qi ,1 Jie Zhong,2 and Shengjia Cui3

1Liaoning Huading Technology Co., Ltd., Shenyang, Liaoning 110167, China
2JiangSu PangPu Network Technology Co., Ltd., JiangSu, China
3Baidu.com Times Technology (Beijing) Co., Ltd., Beijing, China

Correspondence should be addressed to Xianglong Qi; 2010513@stu.neu.edu.cn

Received 3 September 2021; Revised 30 September 2021; Accepted 13 October 2021; Published 11 November 2021

Academic Editor: Bai Yuan Ding

Copyright © 2021 Xianglong Qi et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we propose a novel method, an adaptive localizing region-based level set using convolutional neural network, for
improving performance of maxillary sinus segmentation. )e healthy sinus without lesion inside is easy for conventional al-
gorithms. However, in practice, most of the cases are filled with lesions of great heterogeneity which lead to lower accuracy.
)erefore, we provide a strategy to avoid active contour from being trapped into a nontarget area. First, features of lesion and
maxillary sinus are studied using a convolutional neural network (CNN) with two convolutional and three fully connected layers
in architecture. In addition, outputs of CNN are devised to evaluate possibilities of zero level set location close to lesion or not.
Finally, the method estimates stable points on the contour by an interactive process. If it locates in the lesion, the point needs to be
paid a certain speed compensation based on the value of possibility via CNN, assisting itself to escape from the local minima. If
not, the point preserves current status till convergence. Capabilities of our method have been demonstrated on a dataset of 200 CT
images with possible lesions. To illustrate the strength of our method, we evaluated it against state-of-the-art methods, FLS and
CRF-FCN. For all cases, our method, as assessed by Dice similarity coefficients, performed significantly better compared with
currently available methods and obtained a significant Dice improvement, 0.25 than FLS and 0.12 than CRF-FCN, respectively, on
an average.

1. Introduction

Nasal diseases are growing common for individuals with
serious impacts on daily life. In America, there are about
16% adults suffering from this trouble, and there are 100
million in China [1]. Acute sinusitis is simple for man-
agement with antibiotic drugs [2]. However, for chronic one,
functional endonasal sinus surgery (FESS) may be the only
solution of relief. FESS contains some processes: maxillary
sinus fenestration, ethmoid sinus resection, etc. [3]. It is
found that a lot of risks may appear in surgery due to great
variations of nasal anatomy, where optical nerves and ca-
rotids have higher possibility to be affected [4]. Segmenta-
tion and the subsequent quantitative assessment of lesions in
medical images provide valuable information for the analysis
of diseases, and quantitative imaging can reveal clues about

lesion characteristic and anatomical structure. For example,
preoperative computed tomography (CT) affords radiolo-
gists the opportunity to prospectively identify anatomic
variant that predispose patients to major surgical compli-
cations [5]. A real-time surgical navigation has joined in
FESS [6]. To make FESS safer, surgeons use navigation
systems that register a patient to his/her CT scan and track
the position of tools inside the patient [7].

)ere are growing evidences that the qualification of
sinuses increases insights into functional outcomes and
requires accurate segmentation which is a challenging task
for a number of reasons. )e heterogeneous appearance of
lesions including large variability in location, size, shape, and
frequency makes it difficult to design effective segmentation
rules. Although the most accurate segmentation results can
be obtained through manual delineation by an experienced
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expert, it costs plenty of tedious time, nearly, 8–10 hours per
case of one patient [8]. Besides, the expertise decides whether
a particular region is a part of the segmentation object. In
order to understand the complexity of maxillary sinus, it is
necessary to conduct wide studies to gain statistical pattern
for drawing conclusions. )erefore, a more accurate, au-
tomatic segmentation algorithm has been required as soon
as possible.

Figure 1 illustrates some of the potential challenges when
proposing a computational approach for the task of automatic
maxillary sinus segmentation. )e figure demonstrates in-
tensity statistics of great difference and shows examples of
lesions in the cavity of maxillary sinus. Lesions can be found at
multiple sites, with different shapes and sizes which misguide
curve evolution as a result of high gradient noisy areas.
Meanwhile, it is generally difficult to derive statistical prior
knowledge to set up a similar description for shape of maxillary
sinus due to common anatomical abnormality [9]. Ideally, an
acceptable solution is able to adjust itself to foreground by
learning from potential features in a few of examples.

Level set is popular as a curve evolution application, es-
pecially for medical image segmentation [10]. Compared with
active contour methods based on points’ motion, it has the
ability to handle image noise, intensity heterogeneity, and
discontinuous object boundaries. Level set methods include
models based on edge [10–12] or region [13–15]. Edge-based
models are sensitive to noise and objects with incomplete
boundaries or low contrast texture. Region-based ones study
spatial statistics of interesting regions to find global minima of
energy functional but lack competence in details. While, in
many examples of great heterogeneous foreground and back-
ground, a local region model has a better performance than the
global one [16–20]. Hybrid models are superior, defining an
energy functional with local and global constraints to obtain a
more robust segmentation with little sensitive initialization.

In level set works, the choice of functional control
parameters is puzzled for a long time. Li et al. [21] give
proof that an inappropriate definition may lead to an in-
ferior segmentation regardless of initialization. As Lankton
et al. described [16], parameters have close relationships
with direction and speed of active contour according to
specific texture feature. A slight change in the group of
parameters even produces entirely different results.
)erefore, the fixed parameters cannot survive under
different spatial distributions of intensity in maxillary sinus
with lesion. Some researches tend to test an optional value
over a series of training set for the entire database of
images, but usually, new images may require additional
experiments to find the best-fitted parameters. As a result,
choosing a fixed set of parameters by trial is a time-con-
suming and laborious process. In addition, most users do
not have enough experience to tune a large number of
parameters optimally. For this reason, an adaptive strategy
is absolutely desirable. If, in the process of segmentation,
parameters could be adjusted dynamically based on specific
texture, the approach has a higher chance of providing a
more accurate segmentation.

Some papers present an algorithm to estimate param-
eters for energy functional before segmentation. Li et al. [21]

introduce a method to adjust parameters of the level set
model according to classification of pixels with intensity.
Unfortunately, the value is initialized once at the beginning
of work and remains constant all the time, which causes a
poor segmentation especially for the object with great
variant lesions. Oliviera et al. [22] provide a mechanism to
evaluate parameters from analysis of the training set which
also can be reused in new images. It is obviously inappro-
priate for sinus cavity with highly diverse lesions. Baillard
et al. [23] devise a solution for the problem of spatial het-
erogeneity and take full considerations for every point
position in every iteration. )at is, a point on the contour at
first determines its status. If it belongs to the object, it should
locally extend outwards. And, if not, it should move in the
opposite direction. )is classification depends on Gaussian
and the shifted Rayleigh statistical distribution models via
training set by maximizing the posterior probability.
However, because of the diversity of lesion, its prediction
accuracy of position would be doubted and discussed
depending on the conventional machine learning method.
Consequently, [21–23] are likely to perform unacceptably
for highly diverse datasets and need more optimizations.

At the same time, deep learning techniques have
appeared as a powerful alternative for supervised learning
applications such as classification, detection, and other areas
[24–27]. Convolutional neural network (CNN) [28, 29] can
learn highly discriminative features and have been wide-
spread with predominance on a variety of problems in-
cluding medical imaging. Ciresan et al. [30] adopt classical
CNN for the segmentation of the neural membrane. Ob-
viously, this strategy has two drawbacks. At first, it costs so
much computing time since the network must be run
separately for each patch, and there is a lot of redundancy
due to overlapping patches. In addition, there is a trade-off
between localization accuracy and the use of context. For
more accurate localization, Ronneberger et al. give a more
elegant architecture U-Net derived from fully convolutional
network (FCN) [31], which consists of a contracting path to
capture context and a symmetric expanding path. Although
the algorithm gains a certain achievement, the result of the
object specifically in edge is too coarse to be accepted for
medical image segmentation. Kamnitsas et al. [32] incor-
porate conditional random field (CRF) into FCN. Details of
segmentation are refined by fuzzy classification based on
relations between position and class of pixels in future. It is a
pity that this method suffers from noises seriously. Assaf
et al. [33] propose to predict the position of active contour
with CNN. As this method focuses on entire contour status
on average, it cannot deal with the irregular shape of object
particularly. )ese methods are proved successful in com-
puter vision applications on medical images. )e idea of
CNN strengthens knowledge of significant features on large
scale of the training set, while a big challenge for appearance
or texture with great distribution in space has come up with
maxillary sinus segmentation. It is impossible to set up a
class-balance training set to describe all possible cases with
lesion.

In this paper, we present a novel improvement of the
level set segmentation using the convolutional neural

2 Computational Intelligence and Neuroscience



network. Our method is a multistage process. A convolu-
tional neural network is used to identify the location of a
point on the zero level set contour. If the point has high
probability close to lesion area, its speed can be compensated
to a certain extent based on output probabilities of CNN. If
not, we believe it has arrived in the target area. )is in-
teractive procedure happens when minimizing the cost
functional over iterations of the level set. It is unnecessary for
a more accurate initial contour at the beginning of seg-
mentation. Contrary to current hybrid level set frameworks,
our method has little dependence on special initialization
and does not include any assumptions about sinuses and
lesion characteristics.)erefore, our proposed algorithm has
the strong adaptiveness in diverse datasets of maxillary sinus
with heterogeneous lesion that include plenty of noise and
abnormal anatomical structure.

To the best of our knowledge, this is the first use of CNN
to identify location of points on the zero level set with some
magnitude of speed compensation, avoiding energy func-
tional from being trapped into local minima and resulting in
a generalized segmentation solution than methods available
to date.

2. Materials and Methods

2.1. EnergyModels. We used two different energy models to
extensively evaluate our proposed adaptive localizing re-
gion-based segmentation algorithm: uniform modeling
energy (UM) and mean separation energy (MS). In this
paper, the innovative method is optimized from local ver-
sion of the level set [16], and energy is given as follows:

E(ϕ) � 
Ωx

δϕ(x)
Ωy

B(x, y) · F(I(y), ϕ(y))dydx + μ
Ωy

δϕ(y)|▽ϕ(y)|dy, (1)

where x and y denote the position of specific pixel located in
the coordinate of current image, B(x, y) represents local
regions centering at every point on the contour, such as a
rectangular or circle, and the function F is a generic internal
energy measure used to describe local adherence to a given
model at each point along the contour. In order to keep the

curve smooth, we add a regularization term as is commonly
done. )erefore, the UM or MS model is selected as possible
candidates for F to be implemented in our proposed
method. By taking the first variation of (1) with respect to ϕ,
we obtain the following evolution equation:

zϕ
zt

(x) � δϕ(x)
Ωy

B(x, y) ·▽ϕ(y)F(I(y), ϕ(y))dy + μδϕ(x)div
▽ϕ(x)

|▽ϕ(x)|
 . (2)
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Figure 1: Inhomogeneous appearance of maxillary sinus shows challenges in research of segmentation. (a) A pair of healthy cavity and
(b–d) lesions, sizes, locations, and shapes which are diffused and reveal the wide spatial distribution. Failed segmentation is more likely
caused by incorrect noisy information. (e) )e average of the normalized intensity histograms of corresponding CT images in maxillary
sinus. Different distributions can be observed easily and demonstrate difficulty for most popular methods.
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2.1.1. Uniform Modeling Energy. A well-known example of
an energy that uses a constant intensity model is the Chan-

Vese energy [13], which we will refer to as the uniform
modeling energy described as

FUM � 
Ωy

λ1Hϕ(y)(I(y) − u)
2

+ λ2 1 − Hϕ(y) (I(y) − v)
2dy. (3)

)e energy model divides region of interest (ROI) into
foreground and background. u and v represent their in-
tensity means, respectively. Set Ω as a bounded subset in R2

and I(y) as the coordinated of a point on image I. Let ϕ(y)

be a signed distance map and Hϕ(y) be the foreground re-
gion. A local version of the UM model can be used by
replacing u and v with their local versions, ux and vx, to

represent the local means of a region divided into exterior
and interior surrounding each contour point, according to
equation (4). λ1 and λ2 are parameters that have impactions
on speed direction and magnitude which have close rela-
tionship with the texture of ROI. )e related derivation
process could be provided in [13]:

FUM � μ
Ωy

δϕ(y)|▽ϕ(y)|dy + λ1
Ωy

I(y) − ux



2
Hϕ(y)dy + λ2

Ωy

I(y) − vx



2 1 − Hϕ(y) dy. (4)

2.1.2. Mean Separation Model. )e mean separation model
is first proposed by Yezzi et al. [34] which we refer to as mean
separation energy:

FMS � 
Ωy

(u − v)
2
. (5)

)is energy functional arrives in minima when fore-
ground and background regions have maximally separate
mean intensities.)ere is a strong assumption that the object
and its background have the largest difference of intensity.
)ere is no restriction on how well regions are modeled by u

and v. In our method, we design the local version of F as

FMS � ux − vx( 
2
. (6)

By substituting the derivative of FMS into (2), we obtain
the local region based on speed flow. )is allows the MS
model to find image edges effectively without considering
the uniformity of global internal or external regions.

2.2. 2e Proposed Method. )e proposed method contains
an interactive hybrid of the localizing level set and CNN,
illustrated in Figure 2, which estimates the probabilities of
points’ location and helps the energy functional escape from
local minima effectively. From borrowed spirits from pre-
vious work [35], we initialize the level set model with a

contour surrounding the segmentation object. In general,
the contour should move to the target as the required speed
as level set functional. However, as the result of noisy dis-
turb, the moving contour may be trapped in the local noises.
)erefore, we predict the real target possible location and
suggest new speed direction and value to accelerate the
moving contour moving state evolving more reasonably.

2.2.1. Speed Compensation. As introduced in Section 1,
difficulties in the segmentation of maxillary sinus are lesions
with uncertain positions, shapes, and intensities. Certainly, a
healthy one can be dealt with readily. Holding higher gray
value, lesions are easy to frustrate evolution of the initial
contour that hardly arrives in the target. In our optimization,
we propose a solution of speed compensation to resolve this
problem. )at is, if speed of a point on the contour is de-
tected close to zero, a devised convolutional neural network
is required to identify features of its local region. For more
accurate result, we train it on a large scale of the training set.
About details, we will discuss it later. )e CNN outputs each
of two classes: boundary of sinus (p1) or lesion (p2). In the
interactive step, we use the probability value of two classes to
give speed compensation, which is calculated using the
following equation based on the MS model:

zϕ
zt

(x) � δϕ(x)
Ωy

B(x, y)δϕ(y) · λ1
I(y) − vx( 

2

Av

− λ2
I(y) − ux( 

2

Au

+ exp λ1 + λ2



1/2

 
1 + p2

1 + p1
−
1
2

  dy + μδϕ(x)div
▽ϕ(x)

|▽ϕ(x)|
 ,

(7)

where λ1 impacts the weight of moving the curve outward
along its normal and, alternatively, λ2 tries to move the curve
inward. Both relative items interact on each other and decide

ultimate magnitude of speed. exp(|λ1 + λ2|
(1/2))(((1 + p2)/

(1 + p1)) − (1/2)) is the term of speed compensation. Our
research relies on an important assumption that any initial
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contour is given inside sinus cavity, since there are plenty of
other sinus components outside bringing with impossibility
to automatic segmentation. For a stable point, if p2≫p1, it
can be paid for a great of velocity and tend to move far away.
If it locates in the region of the maxillary sinus boundary,
p2≪p1, the compensation is nearly zero, maintaining
current status till convergence. We drop the confused
condition, |p1 − p2|≤ 0.2, without considerations in order to
make sure of stability, which is found in very few cases in
validation experiment.

2.2.2. CNN Architecture. For the research of medical image
segmentation, the most unsatisfied results are caused by
heterogeneous texture feature that leaves the energy func-
tional in local noisy minima. Our method generalizes this
problem into a machine learning process with a common
architecture for the CNN.

)e proposed architecture consists of two convolutional
layers followed by three fully connected layers with outputs
of two classes (Figure 3). )e input of the image is sampled
by a point’s local region, and its size is fixed on 32 × 32.)ere
are two convolutional layers at the beginning of our pro-
posed CNN architecture, which includes a 5 × 5 filter and a
2 × 2 max pooling filter, respectively. )e difference between
two layers is the depth and stride. All hyperparameters we
prefer have been tested to perform better than others. A
nonliner activation function is applied to the outputs of the
convolutional layer. In this paper, we choose Leaky ReLU
[36] for network to give a sparse quality decreasing com-
puting complexity and keeping backward propagation
running smooth. To avoid overfitting and increase accuracy
of outputs, we design a batch normalization (BN) filter [37]
before ReLU configuration, which also resolves the problem
of different distributions in training set or prediction. Each
convolutional block of our CNN is illustrated in Figure 4.
We give this light model as considerations of computation
speed and the weight of our proposed program. A more
complicated CNN should be offered, but it will affect the
efficiency of the level set model that accounts for more
computation costs.

2.2.3. Training the CNN. In the project, the cost function of
CNN is selected as cross-entropy loss, which evaluates the
performance of the network after each batch:

Lloss(t, f(ω, x)) � −
1
N



N

n�1


M

m�1
Tm,nlog pm,n  +

η
2
‖ω‖

2
, (8)

where t represents the true label for every training example
and f(ω, x) is the prediction function. When the nth ex-
ample is classified into mth, Tm,n equals 1. Otherwise, Tm,n

equals 0. pm,n is the probability of the nth example being
classified into the mth class. In order to prevent overfitting,
L2-regularization is introduced to penalize the size of the
weights in f(ω, x), where η � 1.0 is the coefficient of reg-
ularization. In the model parameters’ learning, we adopt the
strategy of moving average, including BN filter and sto-
chastic gradient descent (SGD), and decay is set as 0.9997.
With the same decay factor, for searching global minima
effectively, every 10000 training steps, we adjust the learning
rate exponentially based on the number of steps. And, in
fully connected layers, we set dropout and keep probability
0.6 to make sure a sparse network for an acceptable result. To
the initialization of model parameters, truncated Gaussian
weight distribution is used for generation and standard
deviation is 0.1. )e CNN is trained with minibatch sto-
chastic gradient descent with a batch size of 32 images.
Toolkit of experiments depends on SLIM, a high level en-
capsulation of Tensorflow.

2.3. Implementation Details

2.3.1. Without Reinitialization of Level Set and Narrow Band.
Conventional level set has a boring drawback that the
necessary signed distance function (SDF) cannot maintain
special characteristic after some iterations. Common solu-
tion relies on reinitialization recurrently which costs plenty
of computation time and produces numerical errors fre-
quently. Li et al. come up with a regularization idea to resolve
this problem [38] effectively. By appending a SDF regula-
rization term on objective energy functional, the evolu-
tionary process of zero level set contour is able to keep
quality of SDF without reinitialization so that the complexity
of algorithm has been reduced significantly and the final
result is prominent among the peer. To save more com-
putation time, the proposed method calculates the energy
functional only for grid points located within a narrow band
of the distance map, since localizing region-based level set
[16] focuses on the local interior and exterior of points on
the zero level set contour. Besides, through experiments, we
found that the window size of these points outperforms
nearly less than 10, a really ‘narrow’ band ROI.

2.3.2. Training Set and Image Preprocessing. )e training set
of two classes is divided into lesion or not. As we use CNN to
analyze the static point’s local region feature, it certainly
stays at the edge of sinus cavity or lesion. Consequently, in
detail, when constructing the training set, we sampled points
on both conditions in average. )e size of example is 10 × 10
and amplified to 32 by bilinear interpolation. During ex-
periments, we tried different sizes and this group performed
outstandingly. )e number of training patches with two

Extract points of
which speed is
close to zero

Initialize the
level set
function

Predict points’
location on

zero level set

Evolve level set
function

Speed
compensation

Figure 2: Pipeline of the proposed method with speed
compensation.
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classes is collected as 50 thousands, respectively. For inputs
of neural network, normalization of gray values is necessary
for speed and accuracy. Common strategies are often
influenced by noises greatly and insensitive to significant
feature. We apply contrast-limited adaptive histogram
equalization (CLAHE) that enhances two classes’ different
texture feature expressions and reduces interference of
trivial noises. Figure 5 shows a subset of the training set and
corresponding preprocessed feature maps.

2.3.3. Data Augmentation. For enlarging the limited
training set, the augment dataset was created by applying a
combination of elastic and affine distortions. We created
elastic distortions by generating stochastic displacement
field with values within the range of [− 1, 1], convolving these
fields with a range of Gaussian filters, and multiplying the
resulting matrices by a range of constant factors, controlling
the intensity of the deformation. We also tried to adopt
rotation to augment training batches. )e result showed this
approach is limited in improvement of training quality.
)erefore, we did not introduce this design at last.

3. Results and Discussion

3.1. Dataset. In our study, approved by an institutional
review board for restricted domain in our project, we used 50
CT volume scans (12.13GB) by SOMATOM definition
AS + SIEMENS containing maxillary sinus to evaluate the
proposed multitask network BE-FNet. All of them have the
same 512 × 512 in-plane resolution but with a different
number of axial slices. )e spacing between pixels along
ZYX axes of the acquired dataset falls within from
0.5 × 0.35 × 0.35 mm to 0.625 × 0.39 × 0.39 mm. We ana-
lyzed 660 CT images of maxillary sinus with lesions as
training and validation sets. Another 200 images were

selected as the testing set with all possible cases. )e fol-
lowing image acquisition parameters were used: manufac-
tured by SIEMENS, SOMATOM definition AS+; 120 KVP;
500mm data collection diameter; pixel spacing of
0.390625mm; thickness of 0.6mm; 15.2784 CTDvol. All CT
images have isotropic pixels.

In the Section 1, we demonstrated that the size, location,
and heterogeneity of lesion have high diversity of charac-
teristics. A wide extent was found in the full set of images.
)erefore, using a fixed group of parameters in energy
functional for all cases of maxillary sinus is not feasible in
practice. In other words, a novel solution should be supplied
to stop points from falling into local minima. A wide range
of lesion’s intensity distribution illustrates the importance of
and need for speed compensation based on convolutional
neural network that evaluates feature of regions and achieves
global optimum.

For evaluation, two radiologist supplied annotations of
manual segmentation as ground truth with more than five
years of experience. )e final result of our proposed method
was quantitatively compared with the average of the two
radiologists’ marking. For the research on sensitivity of
segmentation to varied initializations, in every image, we
gave five radii 3, 5, 7, 9, and 11 pixels. All initial contours are
located inside cavity of sinus. Some were close to the center
and others near the sinus boundary. )is broad range of
initializations allowed us to evaluate robustness of our al-
gorithm in any case.

3.2. Segmentation Performance. Energy functional of pa-
rameters μ1 � 0.05, λ1 � 1.0, and λ2 � 1.0 was used, as we
tested them with the best performance for all 660 CT images
without speed compensation. Figures 6(c), 6(f), 6(i), 6(l),
and 6(o) show some examples of segmentation for different
cases. Segmentation performance was assessed using the
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Figure 3: CNN architecture.)e input is an 32 × 32 image of a point’s local region. Two convolutional components include a 5 × 5 filter and
2 × 2 max pooling. )ree fully connected layers contain 1600, 500, and 2 nodes, respectively.

32×32

Convolution 5×5 Batch Normalization Leaky ReLU Max Pooling

18×18 18×18 10×10

BN ReLU

Figure 4: An instance of 1st convolutional block with batch normalization, Leaky ReLU, and max pooling.
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Dice similarity coefficient (Table 1). )e Dice coefficient was
calculated relative to each radiologist’s manual marking, and
then, an average Dice score was estimated. Our proposed
segmentation method has high agreement with the manual
markings for different local energy models. Results were
better than the overlap that was measured between the
complete manual annotations of both radiologists, thus
demonstrating the strength of our proposed method.

3.3. Comparison with Fixed Contour Parameter Method.
We compared our method with a state-of-the-art work
energy model of localizing region-based level set based on
fixed parameters [16] (FLS). In this experiment, we chose
μ1 � 0.05, λ1 � 1.0, and λ2 � 1.0 as parameters of energy
functional, since they had the best performance in all
training set without speed compensation. Figure 6 shows
some cases of different maxillary sinus, initial contour, and
final segmentation of the object, using both our proposed
method and FLS. )e left column supplies a series of CT
images with lesions that have uncertain sizes, intensities, and
locations obviously. )erefore, FLS has higher probabilities
to induce the initial contour trapped into edge of lesions.)e
right column proves our method’s advantage.

For quantitative evaluation two method, we acquired
another 200 CT images as testing set. And, the Dice coef-
ficients were averaged on five initial contours. )e statistics
shows that FLS has average Dice coefficients 0.60 ± 0.12 and
0.63 ± 0.10 for the UM and MS model, respectively. )ese
Dice coefficients were significantly lower than the proposed
method. Figure 7 clearly shows that our method outper-
forms the state-of-the-art FLS.

Figure 8 demonstrates the convergence of FLS and our
proposed algorithm on iterations of energy functional. At
the beginning of running, both of them had a tendency to

increase a little and FLS’s extent more great. As expected,
energy decreased with increasing iterations, converging on a
single value; this implies minimization of the energy
functional. For both metrics, substantial convergence was
obtained after more than 60 iterations. Obviously, our
proposed method had a faster speed of convergence. If
adjusted to a proper larger length of the step, both of energy
functional needed fewer times of iterations.

3.4. Comparison to Other State-of-the-Art Methods. We
compared ours to another state-of-the-art approach pro-
posed by Kamnitsas et al. [32]. )e author presented a novel
model integrating fully conventional network (FCN) and
conditional random field (CRF) for segmentation of the
medical image. )is paper devised an cost function which
joined CRF item to describe more accurate classes of pixels
in neighborhood, removing false positive effectively. In
addition, they employed a dual pathway architecture that
processes the input images at multiple scales simultaneously
for accurate localization of the object. )eir innovative
works improved segmentation skill based on full deep
learning and won growing attentions.

We tested Kamnitsas’ method (CRF-FCN) of 2D mode
on the same training or testing datasets. As CRF-FCN is fully
automatic, it did not need any initial contours. On con-
figuration of CRF-FCN hyperparameters, we followed the
authors’ idea including 50 trees andmaximum depth of 30 in
random forest baseline. CRF-FCN supplied 90% confidence
interval of 0.75 ± 0.12 with a large distribution of Dice
coefficients. )ese results enhance the strength of our
proposedmethod, which is significantly better than both FLS
and CRF-FCN.

Figure 9 illustrates results of the CRF-FCN method,
performances of which had completely different accuracies

Figure 5: Examples of two classes and preprocessed inputs. )e two columns on the left show images that were obtained on lesion edge and
related preprocessed ones. )e two columns on the right are from the bone of sinus cavity. All sampled points locate in the center of images
with 32 pixels. By CLAHE analyzing, inputs of different classes stress their obvious features, assisting the CNN network a better performance
of learning and predication.
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(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6: Comparison of FLS with our proposed method. (a, d, g, j, m) Some cases of maxillary sinus with different cases of lesion and the
same initial contours. (b, e, h, k, n) Unacceptable results with FLS. (c, f, i, l, o) Predominant outcomes by our proposed method.
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in a large extent. To sinus with little lesion, it seemed
qualified for segmentation. In the third row, a case filled with
plenty of lesions failed to predict segmentation of dense
pixels. In the research, we found that the performance of
CRF-FCN or similar deep learning skills depends on
whether the class distribution of the training set is balanced.
If cases of specific pattern are seldom or redundant, they
definitely lead the CNN network to stress or ignore corre-
sponding features. Consequently, setting up a class-balanced
training set is crucial but a big challenge for practice because

of the large extent of space distribution for maxillary sinuses.
Moreover, at the end of CRF-FCN, there is a layer of the CRF
model for refinement. It takes more considerations on a pair
of pixels with similar position and intensity into the same
class. Most of lesions hold approximated features with
neighbor regions outside sinus or boundary of cavity, which
also has a negative influence on segmentation. For the
testing set, completely different distributions of class in
maxillary sinus such as size, abnormal structure, and im-
aging level definitely causes a relative lower accuracy. So, if
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Figure 8: Convergence of energy functional on FLS and our proposed method.

Table 1: Average dice coefficient and 90% confidence interval (CI) for the maxillary sinus segmentation using our proposed method based
on CNN estimation.

Our proposed method vs. ground truth
UM model 0.85 ± 0.05
MS model 0.87 ± 0.04
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Figure 7: Average dice coefficient for two methods and 90% confidence interval for maxillary sinus segmentation over five contour
initializations.
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there is another sufficient testing database, it should have a
chance of improvement in evaluation. In a word, inde-
pendent identical distribution (IID) of training or testing
plays an important role especially in segmentation based on
the neural network model.

3.5. Computational Time. We examined the computational
time required by the proposed method to analyze seg-
mentation. All data were trained and predicted using Ten-
sorflow 1.2, and the process of level set happened in

MATLAB R2017b 64 bit on Mac OS. Compared with FLS,
our method needs an additional procedure of estimation for
points till convergence of energy. In addition, the duration of
one prediction for stable points on the zero level set by CNN
was around 0.2s. In statistics, our proposed method costs
30% longer than FLS on average.

3.6. Sensitivity to Initialization. Different initializations of
contours have great impacts on FLS [39, 40]. In the
experiment, we evaluated FLS and ours on five different
initial contours on which total Dice coefficients were
averaged (Table 2). Our proposed method showed better
agreement with the manual marking and smaller
changes in the segmentation performance when it was
applied using different energy models, significantly
better than FLS. )e result revealed that despite with
noisy lesions, our model can deal with substantial de-
viations of the location of the initial contour, holding
great robustness.

(a) (b) (c)

(d) (e) (f )

(g) (h) (i)

Figure 9: Examples of CRF-FCN methods. For explicit expression, masks had been introduced. )e left column represents original CT
images with lesions of different cases. Images of the middle column are ground truth of manual segmentation.)e right column is the result
processed by CRF-FCN.

Table 2: Average dice coefficient and 90% confidence interval (CI)
for the maxillary sinus segmentation, comparison of our proposed
method and FLS.

Our proposed method vs. FLS
Our proposed FLS

UM model 0.85 ± 0.05 0.60 ± 0.12
MS model 0.87 ± 0.04 0.63 ± 0.10
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4. Conclusions

Segmentation of maxillary sinus with lesion faces a problem
that size, location, and heterogeneity are seriously irregular
so that the state-of-the-art method cannot survive. Most of
them are based on gray gradient which result in the active
contour falling in local minima of lesion edge. How to escape
and arrive the object is the key of our research.

In this paper, we present a novel method of an adaptive
localizing region based of the level set using convolutional
neural network. )e algorithm automatically analyzes the
region feature of a stable point on the active contour in every
iteration. If it locates in the lesion, its speed could be
compensated based on the probability of outputs by CNN. If
not, it stays still till the end of iteration. )e proposed
mechanism makes sure the trapped point could evolve
outward. )erefore, our method is adaptive to cases of si-
nuses with possible lesions. Our proposed method shows
high agreement with expert manual marking for a diverse
dataset of CT images. )e variety of spatial texture char-
acteristics in our datasets emphasized the strength of our
adaptive method, which performed well with inhomoge-
neous lesions and with noisy backgrounds.

We compared our results to uniform modeling (UM)
andmean separation (MS)models of local version [16].With
the testing set of 200 images, Figure 6 demonstrates that
fixed parameters of the localizing region-based level set
cannot resolve problems, and most contours stop in local
minima, especially illustrated in the cavities filled with more
lesions. Moreover, our method has obvious predominance
over FLS and is confirmed by statistics on quantitative
evaluation (Table 2).

Kamnitsas’ method (CRF-FCN) [32] is very popular
recently and derived from fully convolutional network and
conditional random field ideas. It has been proved an effi-
cient and effective algorithm compared with the other state-
of-the-art method. With contrast experiment, our proposed
method also outperformed significantly and drawbacks of
CRF-FCN had been stated. Great variations of appearance in
maxillary sinus denote CRF-FCN’s frustration furthermore.

Besides, we discussed the convergence of FLS and our
method. Figure 8 shows that ours has a faster speed of
convergence although it costs 30%more longer computation
time on an average. Meanwhile, experiments also gave the
confidence of insensitivity to initialization of contours. It
implies a great potential of our method in full automatic
segmentation. Consequently, our combination of deep
learning and level set captures the benefits of both ap-
proaches and overcomes their limitations, to achieve sig-
nificantly better results than either method alone.

)e presented work has some limitations. First, whether
μ1, λ1, and λ2 of energy functional are sensitive to our method
is not discussed in the work. In addition, 3D segmentation
based should be a future direction, as well as incorporation of
full automatic segmentation, without any user input. In
summary, the method presented shows more advanced skills
compared with the state-of-the-art level set methods. It
performed better in heterogeneous texture between fore-
ground and background, providing a new area of research.
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)e experimental data used to support the findings of this
study are available from the corresponding author upon
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