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Glioma is the main type of malignant brain tumor in adults, and the status of isocitrate dehydrogenase (IDH) mutation highly
affects the diagnosis, treatment, and prognosis of gliomas. Radiographic medical imaging provides a noninvasive platform for
sampling both inter and intralesion heterogeneity of gliomas, and previous research has shown that the IDH genotype can be
predicted from the fusion of multimodality radiology images. -e features of medical images and IDH genotype are vital for
medical treatment; however, it still lacks a multitask framework for the segmentation of the lesion areas of gliomas and the
prediction of IDH genotype. In this paper, we propose a novel three-dimensional (3D) multitask deep learning model for
segmentation and genotype prediction (SGPNet). -e residual units are also introduced into the SGPNet that allows the output
blocks to extract hierarchical features for different tasks and facilitate the information propagation. Our model reduces 26.6%
classification error rates comparing with previous models on the datasets of Multimodal Brain Tumor Segmentation Challenge
(BRATS) 2020 and -e Cancer Genome Atlas (TCGA) gliomas’ databases. Furthermore, we first practically investigate the
influence of lesion areas on the performance of IDH genotype prediction by setting different groups of learning targets. -e
experimental results indicate that the information of lesion areas is more important for the IDH genotype prediction. Our
framework is effective and generalizable, which can serve as a highly automated tool to be applied in clinical decision making.

1. Introduction

Glioma is the main type of malignant brain tumor in
adults which accounted for approximately 80% of them,
and it can be divided into four grades from I to IV
according to the World Health Organization (WHO) [1].
Despite the frequency of gliomas, the histology and
molecular etiology are variable even in a single pathology
class [2]; hence, recognizing the status is crucial for
precision medicine. Isocitrate dehydrogenase (IDH) is a
general term for IDH1 and IDH2, and previous studies
have proved that the IDH genotype (wild-type or mu-
tation) shows significant impacts on the diagnosis,
treatment, and prognosis of glioma patients [3–6].
However, identifying the IDH genotype by a biopsy is an

invasive and costly procedure that needs a sample of cells
from a patient’s lesion, while radiographic medical im-
aging provides a noninvasive platform for sampling both
inter and intralesion heterogeneity of gliomas. Previous
research has demonstrated the strong correlation be-
tween phenotypes (extracted from medical images) and
genotypes (extracted from gene expression files), and the
prediction of genotypes from phenotypes becomes a fast-
developing research field [7].

At present, there have been constructed high-per-
formance models to predict the genotypes of gliomas
patients across medical images. Regarding this task, an
effective approach is based on radiomics and machine
learning algorithms [8, 9]. Radiomics is a method that
extracted lesion-related features from medical images by
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experienced radiologists using professional software and
data-characterization algorithms [10]. -e high-dimen-
sional images’ data are well represented by the low-di-
mensional radiomics features after the processing of
radiologists, and using these radiomics features allows
researchers to build IDH prediction models more easily.
Although the radiomics feature-based models perform
well on genotype prediction, they still have some limi-
tations. For example, extracting radiomics features de-
pends on radiologists’ judgment is a subjective procedure,
and it is also affected by factors of the environment of
hardware and software. Different radiologists using dif-
ferent software and algorithms may result in slightly
different descriptions of the details of the lesion. Besides,
all raw images should be processed before the predicting
phase, and the low-dimensional features restrict the
models for further investigations. Overall, the model’s
generalization ability and reproducibility are limited by
the high-dependency on manual intervention.

Based on the above observations, researchers intro-
duced deep learning (DL) algorithms into genotype
prediction tasks. DL, as a subclass of machine learning
(ML), reveals a more powerful learning ability. -e an-
notated data are only required for the training phase, and
the well-trained models could receive raw images as input
for various tasks. -e raw images preserve all the in-
formation about the lesions and the organism that allow
the models to finish more complex tasks. Chang et al.
developed a residual convolutional neural network
(CNN) using magnetic resonance (MR) sequence images
[11]. However, in Chang’s work, the MR sequence images
are manually selected from whole 3D brain MR images.
To directly handle the 3D brain MR images, Liang et al.
developed a 3D DenseNet for IDH genotype prediction of
low-grade (grade II and III, known as low-grade gliomas,
LGG) and high-grade (grade IV, known as glioblastoma
multiform, GBM) gliomas’ MR images and achieved an
accuracy of 84.6% on the validation dataset [12]. DL
algorithms also perform well on automatic segmentation
tasks, and previous studies have established many high-
performance models to segment lesion areas from
medical images [13, 14]. Soltaninejad et al. combined DL
and ML algorithms to build superpixel-based and
supervoxel-based models for brain tumor segmentation
and detection [15]. However, these models are incom-
petent to predict gene mutation statuses which are also
important for the treatment of glioma patients. -e at-
tention mechanism is also introduced to improve the
performance of segmentation. Although the attention
mechanism shows potential to be applied to medical
image tasks, it significantly increases the computational
complexity of models, especially for the 3D MR images. It
means that the attention-based models need more cases,
and they are more difficult to be well-trained. Liu et al.
developed a multitask model including segmentation of
brainstem gliomas and prediction of H3 K27M mutation
[16]. -e phenotypes of MR images and IDH genotype are
both important criteria for gliomas’ patients to receive
proper medical treatment; however, it still lacks a

multitask framework for the segmentation of the lesion
areas of gliomas and the prediction of IDH genotype.

-e brain MR images contain the details of normal
tissues and lesion areas. Both normal tissues and lesion areas
may affect the performance of genotype prediction. How-
ever, previous research studies only focused on conducting
the black-box models for the genotype prediction due to
constrained by the single-task model structure, which limits
the reliability as a computer-aided tool for diagnosis and
treatment. Due to the multitask architecture in the SGPNet,
we set up controlled experiments to discuss the influence of
lesion areas for IDH genotype prediction by setting different
groups of learning targets.

In this paper, we focus on a multitask CNN model to
address the challenges of the automatic segmentation of low-
grade gliomas (LGG) and glioblastoma multiform (GBM)
tumor volumes and the prediction of IDH mutation from
MR images (SGPNet). Four types of modalities of MR
images including T1, T1Gd, T2, and T2-FLAIR are pre-
processed and then fed into the SGPNet, and our model
consists of a single backbone with two output blocks, one
each for segmentation and IDH status. In order to effectively
train such a multitask model, we apply a multiloss function
for our network and different learning rates for the different
blocks. -e experimental results indicate that our model
reduces 26.6% classification error rates comparing with
previous models on the datasets of Multimodal Brain Tumor
Segmentation Challenge (BRATS) and -e Cancer Genome
Atlas (TCGA) gliomas’ databases. In addition, we further
study the features of lesion areas which influence the per-
formance of IDH genotype prediction. We believe that these
experiments can prove the information of lesions which is
important for the IDH genotypes prediction and increase the
reliability of the IDH genotypes prediction.

2. Materials and Methods

2.1. Gene Profiles andMedical Images Dataset. In this paper,
we used two datasets of -e Cancer Genome Atlas (TCGA)
and Brain Tumor Segmentation Challenge (BRATS) 2020
databases to conduct our experiments. -e genotype-related
dataset used in this paper is -e Cancer Genome Atlas
(TCGA) [17] which provides various gene data types, in-
cluding gene expression profiling, copy number variation
profiling, and so on. More specifically, -e TCGA dataset
provides four methods to identify gene mutation status in
parallel, including MuSE [18], MuTect2 [19], SomaticSniper
[20], and VarScan2 [21]. We considered one gene to be in
mutation status when more than one of these methods
indicated this gene is mutated. -e BRATS 2020 dataset
[22–24] provides multimodalities brain MR images of LGG
and GBM patients, including T1, T1Gd, T2, and T2-FLAIR
volumes. One of the sources in the BRATS dataset is -e
Cancer Imaging Archive (TCIA) dataset [25], which allows
us to build cross-referenced MR images and gene expression
profiles data according to the project ID in both datasets.-e
subtypes of the segmentation labels include the necrotic and
the nonenhancing (NCR and NET), the peritumoral edema
(ED), the enhancing tumor (ET), and the background. In
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this paper, considering the scale of the datasets and our
research content, we integrate the NCR and NET, ED, and
ETinto the lesion label, and it canmake the evaluation of our
experimental results more concise. Totally, 121 cross-ref-
erenced patients’ data are collected from the above datasets
which include 56 mutant cases and 65 wild-type cases,
respectively.

2.2. Data Processing. -e original MR images have been
manually annotated by clinical experts; each entity consists
of four modalities volumes (T1, T1Gd, T2, and T2-FLAIR)
and the ground-truth segmentation labels, and all those
images have the same shape of 155∗240∗240 pixels. -e data
preprocessing procedure has the following steps. (1) Every
image is cropped to remove the black background. (2)
Following the cropped image is reshaped into the unified
shape of 144∗144∗144 pixels, and then all images except for
segmentation labels are normalized to zero mean and unit
standard deviation. (3)-e four modalities are concatenated
as four input channels. Figure 1 shows the above steps of the
preprocessing procedure. Considering the scale of dataset
size, we also apply the data augmentation technique, and the
operations of shift and flip are randomly chosen with a fifty
percent chance in each training step.

2.3. Model Architecture. In the segmentation task, using
low-level details of the input image is proved to be important
when the size of datasets is limited; as a result, U-Net has
achieved high performance and been widely applied on
medical image segmentation [26–28]. Besides, degradation
is also a common problem when the network architecture is
deep [29]. Inspired by this research, we modify the hyper-
parameters of 3D U-Net and introduce skip-connection into
our model. -e basic shape of our framework is based on the
standard U-Net containing two paths called contracting path
(left side) and expansive path (right side).-ere are five pairs
of blocks employed in the two paths, where the output of the
block in the contracting path is concatenated as part of the
input of the block in the corresponding expansive path.
-ese connections create a quick pathway for information
between high-level and low-level feature maps which is
facilitating the gradient backward propagation and com-
pensating finer details into high-level semantic features [30].
Besides, these connections allow the output blocks to extract
multilevel features for different tasks from the backbone of
SGPNet.

Our proposed network is consisting of one backbone and
two output blocks, illustrated in Figure 2. More specifically,
[Conv (in, out, kernel size, stride)] represents the 3D convo-
lution layer; the items in four-tuple (in, out, kernel size, stride)
represent input channels, output channels, kernel size, and
stride of the convolutional layer, respectively. IN represents the
instance normalization (IN) layer which is designed to remove
the instance-specific contrast information from the input
image [31], and Up is the up-sampling layer. FC represents the
fully connected layer for the prediction of IDH genotype. LR is
the following leaky rectified linear unit (LeakyReLU) activation
function:

LR : ϕ(x) �
x, if x> 0,

0.1x, otherwise.
􏼨 (1)

-e segmentation task and the IDH genotype prediction
task share most of the weights in the backbone. In general,
our network is an end-to-end model, which receives four
channels of MR images as input and outputs the segmen-
tation labels and predicted IDH mutation status.

In the contracting path, we replace the max-pooling
layer in the standard U-Net, with one 3∗3∗3 convolution
with a stride of 2 for down-sampling and double the number
of output channels, followed by two repeated 3∗3∗3 con-
volutions with a stride of 1. LR and IN are also added after
the convolution layer. -e blue dotted line represents the
skip-connection; it adds the output of the first convolution
layer with the output of the last convolution layer in each
block. In the expansive path, the input of each block is the
concatenation of the previous block and the corresponding
feature map from the paired contracting path. -e first
3∗3∗3 convolution integrates the information of concate-
nated input, followed by a 1∗1∗1 convolution that halves the
number of input channels. -e upsampling layer follows
these two convolutions and uses the nearest neighbor in-
terpolation algorithm to double the width and height of the
input features, followed by a 3∗3∗3 convolution to further
half the number of input channels. -ese two output blocks
have also introduced the idea of skip-connection. For the
segmentation and IDH genotype output blocks, the input of
these blocks is from three different levels’ blocks in the
expansive path of the backbone.

2.4. Evaluation Metrics. In this section, we use four metrics
to assess SGPNet including specificity (SP), sensitivity (SN),
accuracy (ACC), and area under the receiver operating
characteristic curve (AUC) for IDH status prediction task
and dice similarity coefficient (DSC) for segmentation task.
Specificity (SP) measures the proportion of negatives that are
correctly predicted, as in equation (2), and sensitivity (SN) is
the measurements of true positive rate, as in equation (3).
ACC is the fraction of the total samples that are identified
correctly, as in equation (4). AUC calculates the probability
that a randomly selected positive example ranked above a
randomly selected negative one. Dice similarity coefficient
(DSC) is designed to score how closely the predicted seg-
mentation labels matched the annotated ground-truth
segmentation labels, as in equation (5).

SP �
TN

TN + FP
, (2)

SN �
TP

TP + FN
, (3)

ACC �
TN + TP

TN + TP + FN + FP
, (4)

DSC �
2∗TP

(TP + FP) +(TP + FN)
. (5)
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-ere are four definitions introduced to calculate the
above items: true positive (TP) is the quantity of the correctly
predicted positive class, likewise, true negative (TN) is the
number of correctly predicted negative class. False positive
(FP) is the quantity of incorrectly predicted positive class,
and false negative (FN) is the quantity of incorrectly pre-
dicted negative class.

2.5. Implementation Details. Considering the evaluation
metrics, cross-entropy and dice loss are the objective
functions of our network. In the task of gene mutation
prediction, the IDH status is encoded into two labels (wild-
type and mutation). -e binary cross-entropy (BCE) loss
function L1 is used to calculate the similarity between the
predicted labels and ground-truth labels, which is defined as
follows:

L1 � − 􏽘 y log􏽢y +(1 − y)log(1 − 􏽢y) , (6)

where 􏽢y represents the model’s prediction of class possi-
bilities and y represents the ground-truth labels.

-e dice loss function is aimed to calculate the spatial
overlap accuracy of predicted segmentation labels compared
with manually annotated labels which are defined as follows:

L2 � 1 − DSC � 1 −
2∗TP

(TP + FP) +(TP + FN)
. (7)

-e ground-truth segmentation labels contain more
information than the IDH mutation status, so it may be not
ideal to weigh segmentation error equally with classification
error. In order to integrate the above loss functions, we
define the total loss as follows:

L � L1 + k∗L2, (8)

where k is the parameter to balance the segmentation error
and classification error. In order to dynamically balance the
dice loss and classification loss, the parameter k in the total
loss function is defined as (L2/L1 + L2), so the total loss
function can be given by the following formula:

L � L1 +
L2

L1 + L2
∗L2. (9)

We set different learning rates for different parts of our
network. In particular, the learning rate is set to 0.0001 for
the backbone and segmentation labels output block, and it is
set to 0.00005 for the IDH status prediction block. Moreover,
we adopt learning rate scheduling with cosine annealing
during the training phase. -e weights of our network are
optimized by the Adam [32] method with a minibatch size of
two.

3. Experiments and Results

In this section, we present a series of experiments to
demonstrate the performance of the proposed multitask
model; we test SGPNet on the BRAST and TCGA datasets
and compare SGPNet with three existing models. Fur-
thermore, we discuss the impact of the lesion’s information
for the IDH status prediction task. Overall, 121 gliomas cases
are involved including 56 mutant cases and 65 wild-type
cases. -e reproducibility of the results is verified in fivefold
cross-validations, and the final results are the average of the
cross-validations.

3.1. Multitask Model for Segmentation and IDH Genotype
Prediction. In order to evaluate the performance of our
proposed model, we compare SGPNet with three different
models. ACC, SE, SP, and AUC metrics are utilized to

T2-
Flair

T1Gd

T1

T2

Crop
Resize and

normalization Concatenation

Figure 1: -e diagram of our image preprocessing procedure of four modalities volumes (T2-Flair, T1Gd, T1, and T2) which includes
following steps. Crop: remove the black background; Resize and Normalization: each modality volume is resized into a unified shape and
then normalized to zero mean and unit standard deviation; Concatenation: each modality volume is concatenated into one image.
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quantitatively evaluate the performance of the prediction of
IDH genotype, and the DSC metric is used to evaluate the
performance of the segmentation task. Table 1 shows the

ACC, SN, SP, AUC, and DSC of all models on the per-
formance of the IDH genotype prediction task and seg-
mentation task. Figure 3 illustrates the qualitative
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Figure 2: Architecture of the SGPNet and the details of parameters. -e SGPNet consists of a single backbone with two output blocks, one
each for segmentation and IDH status. -e backbone contains two paths called contracting path (left side) and expansive path (right side).
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(a) (b) (c)

(d) (e) (f )

Figure 3: Illustration of the performance of segmentation task of the SGPNet: (a–d) the 3D T2-Flair, T1Gd, T1, and T2 volumes of a glioma
patient in the axial, coronal, and sagittal slices after data preprocessing; (e) the ground-truth segmentation labels of the lesion; (f ) the
segmentation results are predicted by the SGPNet.

Table 1: Comparisons of the proposed and other deep learning-based models on cross-referenced TCGA and BRATS datasets.

Method ACC SN SP AUC DSC
Liang et al. [12] 0.846 0.785 0.880 0.857 —
Chang et al. [11] 0.857 — — 0.940 —
3D U-Net [27] — — — — 0.920
SGPNet (only segment) — — — — 0.937
SGPNet (multitasks) 0.895 0.907 0.883 0.949 0.935
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segmentation results of lesion areas with our SGPNet, which
demonstrates that the SGPNet can determine the boundary
of the lesion accurately.

Different from single-task segmentation and classifica-
tion models, the SGPNet not only can segment the lesions of
gliomas but also predicts the IDH genotype depending on
the brain MR images. -e positive predictive value (PPV)
and negative predictive value (NPV) of the SGPNet achieve
0.894 and 0.908, respectively. Moreover, these experimental
results show that our proposed model reduced 26.6%
classification error rates compared with previousmodels and
performed well on gliomas’ lesions segmentation.

3.2. )e Comparisons with Different Groups of Learning
Targets. -e brain MR images contain the details of normal
tissues and lesion areas. Both normal and lesion areas may
possibly influence genotype prediction.-e multitask model
structure allows us to set different groups of learning targets
to investigate if the information of lesion areas or the whole-
brain MR images may be more likely to influence the
genotype prediction, which might increase the reliability as a
computer-aided tool for diagnosis and treatment. In this
section, we carry out three controlled experiments for
analysing the relationship between the genotypes and
phenotypes by training SGPNet with different groups of
learning targets: (1) SGPNet is only trained with IDH ge-
notype; (2) SGPNet is trained with ground-truth segmen-
tation labels and IDH genotype; and (3) SGPNet is trained
with randomly generated tensor as segmentation labels and
IDH genotype. Table 2 shows the performance of IDH
genotype prediction across three controlled experiments.
Figure 4 compares the comparative ROC curves of different
experiments.

-e total loss function is simplified as a single-task ob-
jective function L1 when SGPNet is only trained with IDH
genotype labels. After that, SGPNet is considered as a classifier
of IDH genotype, and the performance of SGPNet is worse
than Liang et al. and Chang et al. [11, 12]. One important
reason is that Liang et al. and Chang et al. crop the lesion areas
as the models’ input, while our model receives whole-brain
MR images as input, which increases the difficulty for the
model to extract useful features considering the limited in-
formation of IDH genotype labels. When the ground-truth
segmentation labels are added as learning targets, the per-
formance of the model is significantly improved. However,
the first experiment uses a single-task objective function L1,
while the second experiment uses the multitask objective
function L. To further discuss the influence of the objective
function, we set up the third experiment that regards ran-
domly generated segmentation labels as learning targets. It
means that the segmentation output block learns the wrong
features of lesion areas while the IDH status output block can
still learn the features of the whole MR images; as a result, the
performance of the model is significantly cut down. After
comparing these experimental results, we can infer that the
ground-truth segmentation labels promote the performance
of IDH genotype prediction, and the lesions information is
more important to predict the IDH genotype.

4. Discussion

Developing an automatic segmentation of 3D gliomas lesion
is a challenging task, considering the wide variability in
tumor size, form, and strength. Furthermore, the mutation
status of IDH can be used as a qualified biomarker for
selecting diagnostic and therapeutic approaches for gliomas
patients. Previous studies have focused on the prediction of
genotypes from medical images [8, 9, 11, 12]; however, these
single-task models show the limitation of their practicality
and scalability. However, it still lacks a multitask model for
segmentation and IDH genotype prediction of gliomas.
Besides, there is no research to compare the influence of the
images’ features of whole MR images and lesion areas to the
prediction of IDH genotype.

-e SGPNet is an end-to-end framework designed to
address the challenges of segmentation and IDH genotype
prediction of gliomas. In Section 3.1, the experimental results
indicate the significant improvement of the performance of
IDH genotype prediction, and the prediction error rates
reduce 26.6%, comparing to the models of Liang et al. and
Chang et al. [11, 12]. Due to the multitask model architecture,
in Section 3.2, we further discuss if the information of
gliomas’ lesions or whole MR images is more likely to affect
the prediction of IDH genotype by setting different learning
target groups. -e experimental results indicate that pro-
viding the ground-truth segmentation labels as learning
targets will promote the performance of IDH genotype
prediction comparing with other experiments. Overall, we
infer that the information of lesion areas is more important
for IDH genotype prediction, which increases the reliability as
a computer-aided tool for diagnosis and treatment.

In clinical practice, the diagnosis of glioma is usually
made by experts based on the various MR images and gene
mutation statuses. -e different modalities of MR images
can reflect different characteristics of the lesions. For
example, T1 provides anatomical information, and T2 is
sensitive to the edema area and reflects the morphological
information of tumors [33]. -e SGPNet can integrate
multimodality MR images to predict the boundary of
lesion areas and the IDH genotype of the patients, and it
can reduce doctors’ workload and help doctors to choose
the proper treatment for the patients. -e SGPNet is
feasible for segmentation and genotype prediction be-
cause the backbone of our framework is designed to learn
the intrinsic information of patients’ lesions. Meanwhile,
the framework of SGPNet can be used to segment other
tissue lesions or predict other genotypes when it is well-
trained on the corresponding dataset. -e SGPNet can be
also applied to multicenters and larger-scale multi-
sequence MR image datasets because the backbone in our
models is generic for any MR image collected from dif-
ferent institutions, equipment, and modalities. Moreover,
increasing the scale of training datasets can improve the
generalization ability of the SGPNet. Generating proba-
bility density distributions for different tissue types is also
an effective approach to reduce noise reduce environ-
mental noise and improve generalization ability [34].
-erefore, the design of an automatic multitask model for
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gliomas has superior clinical value. In the future, we will
further develop our framework and apply the SGPNet to
more types of diseases and genes.

5. Conclusion

In this paper, we present a novel multitask 3D framework
named SGPNet for automatic segmentation of gliomas
lesions and prediction of IDH mutation status from MR
images. Our framework employs a backbone for learning
the intrinsic MR image information, two output blocks for
segmentation and IDH genotype prediction of gliomas.
-e experimental results indicate that our architecture
achieves a better IDH genotype prediction performance
on public TCGA and BRATS 2020 datasets comparing
with previous studies and achieves a good result on the
segmentation task. Furthermore, we compare the influ-
ence of the images’ features of whole MR images and
lesion areas to the prediction of genotype and the ex-
perimental results, indicating that the information of
patients’ lesions is more significant for the prediction of
IDH genotype. In summary, the accurate segmentation of
glioma lesion regions and prediction of IDH mutation
status will improve therapeutic criteria and assist doctors
in diagnosis and treatment.
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