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Around 5% of the world population suffers from hearing impairment. One of its main barriers is communication with others since
it could lead to their social exclusion and frustration. To overcome this issue, this paper presents a system to interpret the Spanish
sign language alphabet which makes the communication possible in those cases, where it is necessary to sign proper nouns such as
names, streets, or trademarks. For this, firstly, we have generated an image dataset of the signed 30 letters composing the Spanish
alphabet. )en, given that there are static and in-motion letters, two different kinds of neural networks have been tested and
compared: convolutional neural networks (CNNs) and recurrent neural networks (RNNs). A comparative analysis of the ex-
perimental results highlights the importance of the spatial dimension with respect to the temporal dimension in sign inter-
pretation. So, CNNs obtain a much better accuracy, with 96.42% being the maximum value.

1. Introduction

Over 15% of the global population suffers from some form of
disability and this rate is continuously growing (expected to
double by 2050), according to the World Health Organi-
zation (WHO) [1]. Although there are several types of
disability, all those people experience social and economic
barriers when included in society. )is is especially critical
when it leads to communication exclusion, as it is the case of
people with hearing loss (around 5% of the worldwide
population [2]).

With the aim of overcoming this issue, a great variety of
hearing aids have been developed. However, the use of these
devices depends on the level of person’s hearing loss. As a
consequence, those aids are not adequate for hard-hearing
and deaf community and, consequently, alternative ways to
communicate are required. In this sense, there are a number
of options such as sign language, lip reading, and using text;
and their use will determine their form of communication.
Nevertheless, although the sign language is learnt just as
easily as hearing children learn spoken language when they

are immersed in a signing community [3], it can also result
in social isolation, since few people know this language. In
addition, it is not an international language, which further
complicates the communication process.

In this regard, some efforts can be found in the literature.
One of the first attempts of recognising sign language
without using datagloves is that presented by Starner and
Pentland [4]. For that, one-colour images were processed by
using the user’s skin tone such that the user’s hand shape,
orientation, and trajectory were extracted. )is data was the
input to a Hidden Markov Model (HMM) for signed word
recognition. In their experiments, a subset of the American
Sign Language (ASL) was used. In particular, the considered
words were the following:

(i) Pronouns: I, you, he we, you (plural), and they
(ii) Verbs: want, like, lose, do not want, do not like, love,

pack, hit, and loan
(iii) Nouns: box, car, book, table, paper, pants, bicycle,

bottle, can, wristwatch, umbrella, coat, pencil, shoes,
food, magazine, fish, mouse, pill, and bowl
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(iv) Adjectives: red, brown, black, gray, and yellow

So, a total of 478 sentences together with extra infor-
mation about with the context were used to train and test the
system by getting an accuracy of 87.9% in training and 84.7%
in test at a rate of 10 frames per second. With the purpose of
improving their results, some features, such as the hand area,
the length of the major axis of the first eigenvector, and the
change in x- and y-positions of the hand, were added to help
solve the ambiguity when the user’s hands crossed. In this
case, the accuracy increased up to 94.1% in training and
91.9% in test, while the best results were 81% and 74.5%,
respectively, when no grammar context was used.

Along this line, Zaki and Shaheen [5] presented another
ASL recogniser. In this case, the first step consisted in hand
detection and tracking by means of a skin colour thresh-
olding. )en, Principal Component Analysis (PCA) was
used as a descriptor of hand configuration and orientation.
Finally, HMM was in charge of sign classification. )is
approach got an accuracy of 89.1% on the RWTH-BOSTON-
50 dataset [6], which is composed of 50 American words
signed by three people.

Another example is the work presented by Cooper et al.
[7], where a subunit extraction is combined with HMM to
get a German sign classification. )eir experimental results
show an accuracy of 85.1% on a 40-sign test set.

Going a step further, Pigou et al. [8] proposed Con-
volutional Neuronal Networks (CNNs) together with an
Artificial Neural Network (ANN) to recognise 20 Italian
gestures from the ChaLearn Looking at People 2014 dataset
[9]. So, depth and gray images are input to a two-stream
CNN of three layers each, where 2D convolutions and max
pooling operations are combined. In this way, hand and upper
body features are extracted. From those features, an ANN
composed only of rectified linear units (ReLUs) with one
hidden layer provides sign classification. )is combination
resulted in an accuracy of 91.70% on the validation set.

When entire sentences are considered, temporal seg-
mentation and sentence synthesis are required. From this
starting point, Fang et al. [10] presented DeepASL, a mul-
tilayer architecture for the translation of American Sign
Language (ASL) sentences. So, 3D coordinates of the skel-
eton joints of fingers, palms, and forearms provided by Leap
Motion are used to extract the key characteristics of ASL
signs. )ese characteristics feed to a hierarchical bidirec-
tional deep Recurrent Neural Network such that its output is
translated by using Connectionist Temporal Classification
(CTC). )is system was evaluated by using the following
words:

(i) Pronouns: who, I, you, what, we, my, your, and
other

(ii) Nouns: time, food, drink, mother, clothes, box, car,
bicycle, book, shoes, year, boy, church, and family

(iii) Verbs: want, do not want, like, help, finish, need,
thank you, meet, live, can, and come

(iv) Adjectives: big, small, hot, cold, blue, red, ray, black,
green, white, old, with, without, nice, bad, sad,
many, sorry, and few

(v) Adverbs: where, more, please, and but

)ese words were combined to generate 100 meaningful
sentences for DeepASL evaluation. )e results show a Top1-
WER of 16.1± 3.7%, which means that, for a 4-word sen-
tence, there is only an average of 0.64 words requiring either
substitution, deletion, or insertion. In a similar way, Zhang
et al. [11] proposed MyoSign, a deep learning-based system
for ASL sentence recognition. As DeepASL, MyoSign uses a
bidirectional Long Short-TermMemory (LSTM) followed by
CTC. However, instead of images, EMG signals together
with 3-axis accelerometer, gyroscope, and acceleration are
the input for MyoSign. )ese signals are processed by a
Convolutional Neural Network (CNN) that feeds into the
bidirectional LSTM. An evaluation over 100 sentences
resulted in an accuracy of 92.4%. Along this line, several
approaches have been also proposed in the literature
([12–14]).

Despite the wide research in this area, each work has its
own limitations in terms of cost, image preprocessing, and
sign classification, as stated in [15]. In this paper, we analyse
several deep learning architectures for Spanish Sign Lan-
guage. In this sense, two different approaches are considered:
spatial dimension and spatiotemporal analysis. In addition,
we have created a dataset due to the lack of research on
Spanish Sign Language.

1.1. Contributions. )e specific contributions of this paper
are as follows:

(i) Building our own dataset of over 8300 images be-
longing to the Spanish sign language alphabet

(ii) Training and comparison of different CNNs as well
as our own architecture for static Spanish sign
letters interpretation

(iii) Training and comparison of different Recurrent
Neural Networks (RNNs) together with our pro-
posed approach for Spanish sign language
interpretation

(iv) Analysis of performance in terms of Spanish sign
language interpretation

2. LSE Dataset

As mentioned above, the sign language is not an interna-
tional language. As a consequence, on the way to design a
sign language recogniser and interpreter, it is necessary to
create a dataset for each language with the signs to be learnt,
except for the American Sign Language that has some public
datasets [16, 17].

)is lack of available data led to building our own
dataset. For that, ten people (eight men and two women)
were recorded while signing the Spanish sign language al-
phabet as depicted in Figure 1. As shown, a total of 18 letters
are represented by a static gesture, whereas 12 letters require
motion to be signed. )is fact resulted in considering dif-
ferent deep learning techniques to properly recognise and
interpret each letter.
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An issue to be considered is that each person signifies by
using their active or dominant hand. So, a right-handed person
signifies with the right hand and, in fact, their main signed area
is located between the right shoulder and the centre of the chest
unlike left-handers. For this reason, all the subjects were re-
quired to signify all the letters during several seconds (between
10 and 20 seconds) firstly by using their dominant hand and
then by their other hand. )ese recordings resulted in 8300
samples of hand gestures. More precisely, Table 1 shows the
image dataset distribution among the Spanish alphabet letters.

)e whole dataset was recorded using the RGB camera
located in the head of a SoftBank Robotics Pepper robot [18].
)is camera provides a resolution up to 2560×1920 at 1
frame per second. However, in our case, a 640× 480 reso-
lution at 30 frames per second was used. So, the signers were
located in front of the robot at a distance between 1.5 and 2.5
metres from the robot, as shown in Figure 2, such that the
robot was recording the images composing our dataset.

Although, as we can see in Table 1, there is a little imbalance
in the samples of the dataset, it does not affect in an important
way to the recognition. )at is because the imbalanced letters
(d, n, ñ, and t) differ in the spatial dimension from the rest,
meaning that there is no problem for the system to recognise,
for example, letter d from the rest of the alphabet even having
less data for training. On the other hand, some letters such as a
and e havemore samples than the rest; that is because those two
letters may get confused between them so a bit more samples
help to reduce that confusion.

Since the designed system must pay attention to signer’s
hands and arms, the RGB images were processed to extract
those features. With that purpose, Openpose [19, 20] was
used. )is open-source library detects anatomical keypoints
on single images in real time through a multistage Con-
volutional Neural Network (CNN). So, its 2D keypoint
detector outputs 135 keypoints per person: 25 keypoints
correspond to the human skeleton; 40 keypoints represent
the hands, while 70 keypoints are used for the face (see
Figure 3(a)). According to the signing specifications, 46
keypoints are used in this work as illustrated in Figure 3(b).
)ese keypoints are connected by lines and drawn on
240× 320 colour images such that the left side is coded
in red, while the right side is blue-coloured as shown in
Figure 4. All these generated 240× 320× 3 images are the
ones composing our dataset.

3. Sign Language Interpretation

Sign language recognition can be described as an image
classification task, where an input image will output its
corresponding meaning. In this sense, current approaches
make essential use neural network techniques. In particular,

CNNs have been proven to be very successful in image
recognition. However, a challenging issue is to find a way to
distinguish two letters whose only difference is to be moved
or not, like l and ll. As a solution, RNNs could be considered,
since they are designed to take a series of inputs and provide
an output based on temporal analysis and the learnt
meaningful relationships between the input data. From this
starting point, several architectures of both types are ana-
lysed and compared. Note that both types of architectures
have been compared with the aim to study the influence of
the spatial and temporal dimensions in the sign language
interpretation.

3.1. Convolutional Neural Network (CNN) Approaches.
)e issue of sign interpretation can be defined as a visual
classification task. In this context, a popular approach is
Convolutional Neural Networks (CNNs). )is approach is

Figure 1: Spanish alphabet in sign language.

Table 1: Data composition of our own dataset for the Spanish
alphabet.

Letter Left-hand sign Right-hand sign Total
a 227 227 454
b 222 222 444
c 192 192 384
ch 136 146 282
d 59 51 110
e 201 201 402
f 166 166 332
g 117 100 217
h 144 172 316
i 115 115 230
j 104 133 237
k 168 168 336
l 180 180 360
ll 139 138 277
m 173 173 346
n 90 90 180
ñ 61 53 114
o 175 175 350
p 122 122 244
q 184 189 373
r 152 152 304
rr 116 109 225
s 130 130 260
t 63 63 126
u 134 134 268
v 93 96 189
w 112 104 216
x 140 132 272
y 54 120 174
z 206 179 385
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inspired in the human visual cortex. )e underlying idea is
to use multiple layers that perform discrete convolutions
together with activation functions and other operations like
pooling to get a classification tag. In the following sections,
the CNNs used in this paper are presented.

3.1.1. VGG. VGG is a deep CNN architecture introduced by
Simonyan and Zisserman [21]. As illustrated in Figure 5, this
well-known architecture is basically composed of four types
of layers: convolutional, max pooling, activation, and fully
connected. In particular, this architecture addresses an
important aspect of CNNs: depth. )erefore, it uses very
small receptive field (3× 3 with a stride of 1 (the smallest size
to capture the notion of left/right, up/down, centre)). )ese
small-size convolution filters allow VGG to have a large
number of layers, which leads to an improved performance.
Although this model supports up to 19 layers, the archi-
tecture with 16 layers (VGG-16) is used in this paper.

3.1.2. Inception V3. Inception V3 [22] is the third version in
the Inception network family. )e first version (Inception
V1) had 7 million parameters and was presented as

GoogLeNet in 2015. It introduced the Inception module,
where the input simultaneously goes through 1× 1, 3× 3,
and 5× 5 convolutions to look at both cross-channel cor-
relations and spatial correlations. )e introduction of batch
normalization together with other architecture refinements
led to the second version (Inception V2). On its behalf,
Inception V3 included additional factorization ideas in
convolution layers to reduce the dimensionality and the
overfitting problem. )is fact resulted in a reduction of a

(a) (b)

Figure 2: Sample of image capture. (a) Pepper capturing images while person signing. (b) Image captured by Pepper for the dataset.

Original image Detected keypoints

(a) (b)

Figure 3: Openpose keypoints. (a) All the 135 Openpose keypoints linked by lines. (b) Arm and hand joints provided by Openpose.

Figure 4: Image dataset sample with colour-coded sign elements.
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third of the parameters. In addition, an efficient grid size
reduction was also introduced, reducing the computational
cost while keeping the efficiency.)e fourth and last version,
Inception V4 (also called Inception-ResNet), added residual
connection like ResNet’s own.

In particular, in this paper, Inception V3 is used. )e
layout of this architecture can be seen in Figure 6.

3.1.3. Xception. Xception [23] is a neural network inspired
by Inception. However, unlike Inception, Xception is based
on the assumption that cross-channel correlations and
spatial correlations in the feature maps are entirely
decoupled. So, the Inception modules are replaced for
depthwise separable convolutions (a point-wise convolution
(1× 1 convolution) followed by a depthwise convolution (a
channel-wise nxn spatial convolution)). Broadly speaking,
Xception can be defined as a linear stack of depthwise
separable convolution layers with residual connections like
ResNet’s own.

3.1.4. ResNet. Residual Network (ResNet) [2, 24] is one of
the most popular deep neural networks for image classifi-
cation. In contrast to prior networks that increase the
network depth to get a higher performance, ResNet intro-
duced the concept of identity connection between layers by
resulting in residual blocks like that illustrated in Figure 7.
Basically, these connections skip one or more layers to
obtain identity maps. Given that these connections do not
add neither extra parameters nor computational complexity,
they avoid an increase in the model training error when
getting deeper. As previously, a family of ResNet models
have been implemented scaling up from 18 to 200 layers.

In this paper, 50-layer ResNet is used. )is network can
be summarised as follows: an initial convolution and max
pooling perform input downsampling. After that, four stages
combining convolutional layers with identity connections
are performed such that the channel width is doubled in each
stage, while the size of the input is reduced to half. Finally, an
average pooling layer followed by a fully connected one
provides a classification tag.

3.1.5. EfficientNet. EfficientNet [6] arose from the search of a
new way to scale CNN models such that a better accuracy
and efficiency were achieved. So, unlike the conventional
practice to arbitrarily increase the CNN depth (number of
layers), width, or input image resolution, a compound
scaling method to uniformly scale all of them is proposed.
For that, a set of fixed scaling coefficients are obtained from
the relationship between the three dimensions. )en, these
coefficients are used to scale the baseline model up to the
desired size or computational budget.

From this starting point, seven models have been de-
veloped based on the baseline CNN model shown in Fig-
ure 8.)ese models were called EfficientNet-Bi, where i goes
from 0 (the baseline model) to 7, the model with higher
depth, width, and input resolution. In this paper, the in-
termediate model has been used, that is, EfficientNetB3.

3.1.6. Our Own Architectures. In addition to the previous
state-of-the-art CNNs, we also propose three different ar-
chitectures to learn and interpret the sign language. So, as
depicted in Figure 9, a combination of several kinds of layers
(e.g., convolution, 2D convolution, fully connected, pooling,
etc.) has been used as follows:

LSE-CNN1: this architecture is composed of 6 layers.
So, visual features of the 224× 224× 3 input images are
extracted by means of the first four convolutional
layers. All these layers use 5× 5 kernels, although the
number of filters changes by being 20 for the first two
layers and 50 for the two last ones. )e feature array is
then flattened and processed by two fully connected
layers such that the first one counts with 200 units,
while the second one uses the total number of classes.
LSE-CNN2: this is a more simplified architecture where
a 2D convolutional layer with 64 filters feeds another
2D convolutional layer with 32 filters (both of them
with a kernel size of 3× 3). After flattening, a fully
connected layer is applied for classification.
LSE-CNN3: in this case, not only is the extraction of
visual features based on convolutional operations, but
also pooling layers are used. In particular, as shown in
Figure 9, each convolutional layer is followed by a
maxpooling layer such that the feature maps are
downsampled by summarising the most activated
presence of a visual feature in each step. In addition, the
number of filters corresponding to the convolutional
layers is doubling in each step going from 16 to 256.
Again, a fully connected layer is applied after flattening
for image classification.

3.2. Recurrent Neural Network (RNN) Approaches.
Recurrent neural network (RNN) is a type of neural network,
where inputs and outputs are temporally connected by
means of loops. )is fact makes them applicable to tasks
where time and sequence must be taken into account like
hand-writing recognition or speech recognition.

One of the most well-known and powerful RNNs is the
Long Short-Term Memory (LSTM) network. )ese net-
works were proposed by [25] with the aim to remember
information while avoiding the vanishing gradient
problem. For that, it uses a cell state regulated by gates.
Given its efficiency including the temporal dimension-
ality, LSTMs were also used in our study. So, as illustrated
in Figure 10, the first proposed architecture (LSE-RNN1)
uses an LSTM layer with 32 units followed by a dense layer
to interpret the sign language. On the contrary, the LSE-
RNN2 uses two consecutive LSTM layers, each with 32
units and whose result inputs to a dense layer. )at is, the
difference between the two proposed RNN architectures is
the number of used LSTM units. )us, both architectures
get as input a sequence of 224 × 224 × 3 images. Note that
the length of this input image sequence is variable, since it
depends on the performed sign and the signing person. In
particular, in our case, this length varies between 2 and 10
images.

Computational Intelligence and Neuroscience 5



4. Experimental Results

As previously mentioned, two types of signs can be dis-
tinguished: those requiring motion and those static. So,
firstly, the interpretation of sign language is analysed by only
considering the spatial dimension and, consequently, the
static signs are used. )en, the analysis is extended by taking
into account both spatial and temporal dimensions. In this
case, all the alphabet letters are considered.

4.1. First Experiment: Static Signs. )e first experiment
consists in the evaluation of the performance when static
signs are considered. As illustrated in Figure 11, there are 18
static signs in the Spanish sign language. So, the key issue is
the spatial distribution of the hand fingers signing the
different letters. Note that there are some letters that can lead
to confusion. In particular, the letters f, s, and t could be
difficult to distinguish, since the difference in the position of
the ring finger is subtle.
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Figure 5: VGG-16 architecture [21].

Figure 6: Inception V3 architecture [22].
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Given that the analysed architectures work with different
input sizes, all of them were adapted to start with a
224 × 224 × 3 image size. )erefore, the first step was to
resize all the 320 × 240 dataset colour images to the re-
quired dimensions. )en, the data was divided into three
subsets as follows: 70% of the samples were used for
training, 15% were used for test during the training, and
the remaining 15% were used for performance validation.
Note that most of the samples chosen for validation belong
to a person whose images were not used for neither
training nor test. Next, the several architectures were
trained from scratch during 50 epochs on an Intel(R)
Core(TM) i7-8700 CPU at 3.20 GHz with a GeForce RTX
2080 Ti. )e accuracy obtained on the validation set to-
gether with the test set (that used during training) is
summarised in Table 2. As can be observed, except for the
VGG-16 architecture, all the accuracies are greater than
85% in both validation and test, getting a maximum
validation accuracy of 96.16% (3.84% error rate) for the
best model, that is, Efficient-NetB3. Note that the test
result is higher than the validation result because all the
validation set was not previously seen.

It is worth noting that, in the case of VGG-16 archi-
tecture, it seems to provide random results. Given the high
number of parameters to be adjusted (i.e., 134 387 551), a
longer training was performed. As illustrated in Figure 12,
the VGG-16 accuracy curve is fluctuating. )is fact is a
consequence of overfitting. So, VGG-16 architecture is not
able to properly extract the desired information from the
provided data.

An analysis of the results shows that, as expected, the
most confused letter is s, since it can be mainly confounded
with f and t, as illustrated in the confusion matrix of the best
model in Figure 13.

Another issue to be taken into account is the compu-
tational cost in processing an image and interpreting the
sign. In this regard, Table 3 shows the times in seconds for
each architecture. Although the best model provides a good
performance with only 0.04339 seconds per frame, the best

processing time is obtained with our proposed architecture
LSE-RNN1. However, this architecture gets much lower
accuracy falling down up to 89.24% which implies a loss of
almost 7%. On the contrary, another of our proposed ar-
chitectures, LSE-CNN3, only requires 0.00199 seconds per
frame. In this case, this architecture has also been shown to
be efficient in the sign language recognition, since a vali-
dation accuracy of 94.37% is achieved (only an accuracy of
1.79% is lost). (Figure 13)

4.2. Second Experiment::eWhole Alphabet. Once the static
sign recognition is analysed, the next experiment involves all
the Spanish Sign Language alphabet. In this case, there are
some letters requiring motion to be performed which means
that temporal dimension must be considered. As previously,
the data was resized to 224× 224× 3, divided into training,
validation, and test (70%, 15%, and 15%, respectively) and
input to the different architectures. In this case, the number of
epochs was increased to 100 with the aim to properly learn the
temporal pattern. In addition, a variable sequence size was
established for the RNNs architectures, since each sign re-
quires a different number of frames to be performed. Note
that the static signs were grouped according to the person
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Figure 9: Our own CNN architectures. (a) LSE-CNN1. (b) LSE-CNN2. (c) LSE-CNN3.
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Figure 10: Our own RNN architectures. (a) LSE-RNN1. (b) LSE-RNN2.

Table 2: Experimental results on static Spanish alphabet letters
with 50 epochs.

Architecture Accuracy (validation) (%) Accuracy (test) (%)
VGG-16 8.51 8.51
Inception V3 93.87 95.87
Xception 90.99 92.37
ResNet50 95.99 98.37
EfficientNetB3 96.16 96.75
LSE-CNN1 87.36 86.61
LSE-CNN2 86.73 87.86
LSE-CNN3 94.37 95.74
LSE-RNN1 89.24 89.61
LSE-RNN2 87.23 88.86
Values in bold correspond to the best obtained results.
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signing, the used hand, and the changes in position. )is
experiment leads to the results illustrated in Table 4. As
previously, except for VGG-16 architecture, all the validation
accuracies are above 85%. In this case, the best model is
ResNet50 with a validation accuracy of 96.42% (3.58% error
rate), although EfficientNetB3 gets the second best result (like
Xception) with a validation accuracy of 95.77% (only a loss of
0.65%).)e precision lost for the case of LSE-CNN3 increases
up to 3.58%. On the contrary, the RNNs present a low val-
idation accuracy without reaching the 87%. )e main reason
for that lies in the fact that spatial dimension has a much

greater weight in the interpretation task because the position
of fingers is quite different from one letter to another. )e
only exception is four pairs of letters whose only difference is
movement: l-ll, n-ñ, r-rr, and u-v. )is displacement can lead
to a misclassification in some samples. Nevertheless, in the
view of results, it seems that CNNs learn the position dis-
placement to properly distinguish between these pairs of
letters. Moreover, a feature of the signing process is that the
participants changed the starting position depending on the
motion requirement (or lack thereof). )is is not the case of
the triplet f-s-t that still confuses the networks.
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Figure 12: VGG16 accuracy curve for 150 epochs.

Table 3: Computational cost per image when running on an Intel(R) Core(TM) i7-8700 CPU at 3.20GHz with GeForce RTX 2080 Ti.

Architecture Time per frame (secs)
VGG-16 0.06389
Inception V3 0.01976
Xception 0.04341
ResNet50 0.03587
EfficientNetB3 0.04339
LSE-CNN1 0.03187
LSE-CNN2 0.00675
LSE-CNN3 0.00199
LSE-RNN1 0.00043
LSE-RNN2 0.03758

Figure 11: Spanish static signs considered for the first experiment.
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5. Conclusions

In this paper, we have presented a new Spanish Sign alphabet
dataset composed of over 8300 colour images which was
obtained by representing the person’s upper limbs. )en, we
have discussed several ways to recognise the Spanish Sign
alphabet distinguishing between two types of signs: those
requiring movement and those static. )is fact implies the
analysis of both spatial and temporal dimensions. For that
reason, two different types of architectures have been
studied: CNNs, focused on the spatial dimension, and
RNNs, aimed to process temporal sequences. So, a total of 10
architectures have been used in this paper such that five of
them are well-known state-of the-art approaches, while the
other five correspond to our own proposals.

)e experimental results revealed that spatial dimension
has much greater weight than temporal dimension in sign
interpretation, since the RNNs got the lowest results. )is is
mainly due to the importance of the finger’s position in front
of the movement needed to sign, at least, in the Spanish Sign
Language alphabet. )us, these results show the general-
ization capability of CNNs in spatiotemporal data that can
contribute to the broader research field on automatic sign
language recognition. However, it is important to consider
that subtle differences in fingers’ position can make CNN
approaches fail, as brought to light by the triplet f-s-t.

In addition, a temporal analysis was also performed. )e
models with the best accuracies take over 0.04 seconds per
frame. A special attention is paid to one CNN architecture
proposal, LSE-CNN3, which only takes 0.00199 seconds,
while its accuracy is just reduced 1.79% for static signs and
3.58% for the whole alphabet with respect to the best model.

As future work, we plan to extend the dataset and the
comparative study to include words and sentences aimed to
completely cover the communication problem. In addition,
the adaptation to other sign languages will also be analysed.
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Figure 13: EfficientNetB3 confusion matrix on the validation test when static signs are considered.

Table 4: Experimental results on the whole Spanish alphabet letters
for 100 epochs.

Architecture Accuracy (validation) (%) Accuracy (test) (%)
VGG-16 5.53 5.53
Inception V3 94.79 95.93
Xception 95.77 97.8
ResNet50 96.42 97.31
EfficientNetB3 95.77 96.99
LSE-CNN1 86.17 85.76
LSE-CNN2 87.88 87.96
LSE-CNN3 92.84 93.00
LSE-RNN1 86.25 86.62
LSE-RNN2 86.74 86.74
Values in bold correspond to the best obtained results.
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