
Research Article
AdaCN: An Adaptive Cubic Newton Method for Nonconvex
Stochastic Optimization

Yan Liu , Maojun Zhang, Zhiwei Zhong, and Xiangrong Zeng

School of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Xiangrong Zeng; zengxrong@foxmail.com

Received 4 July 2021; Revised 30 September 2021; Accepted 15 October 2021; Published 10 November 2021

Academic Editor: Paolo Gastaldo

Copyright © 2021 Yan Liu et al./is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this work, we introduce AdaCN, a novel adaptive cubic Newton method for nonconvex stochastic optimization. AdaCN
dynamically captures the curvature of the loss landscape by diagonally approximated Hessian plus the norm of difference between
previous two estimates. It only requires at most first order gradients and updates with linear complexity for both time and
memory. In order to reduce the variance introduced by the stochastic nature of the problem, AdaCN hires the first and second
moment to implement and exponential moving average on iteratively updated stochastic gradients and approximated stochastic
Hessians, respectively. We validate AdaCN in extensive experiments, showing that it outperforms other stochastic first order
methods (including SGD, Adam, and AdaBound) and stochastic quasi-Newton method (i.e., Apollo), in terms of both con-
vergence speed and generalization performance.

1. Introduction

Stochastic gradient descent (SGD) [1] is the workhorse
method for nonconvex stochastic optimization in machine
learning, particularly for training deep neural networks
(DNNs). During the last decades, many accelerated first
order variants of SGD are widely used due to their simplicity
and versatility, including the accelerated SGD (ASGD)
methods using Nesterov scheme [2], momentum [3] and
heavy-ball method [4], and the adaptive methods such as
AdaGrad [5], AdaDelta [6], RMSProp [7], and Adam [8].
Recently, Adam has become the default optimization
method for many deep learning applications because of its
rapid convergence speed and relatively insensitive choices of
hyperparameters [9], and it also has engendered an ever-
growing list of modifications, such as AdamW [10],
NosAdam [11], AMSGrad [12], AdaBound [13], Radam [14],
Sadam [15], and Adax [16], to name a few. /e main dif-
ference between the ASGD methods and the adaptive
methods is the former scales the gradients in different di-
rections uniformly while the latter uses adaptively element-
wisely scaled learning rates, which usually causes that the
latter is able to converge faster and less sensitive to the

learning rate than the former. However, it has been observed
that the adaptive methods may converge to bad/suspicious
local optima, leading to worse generalization ability than the
ASGD methods [17], or fail to converge because of unstable
and extreme learning rates [13].

/e abovementioned methods, belonging to the sto-
chastic first order method family, only use gradient infor-
mation and do not consider the curvature of the loss
landscape, thereby leading to their suboptimal behavior in
algorithmic iterations. Instead, existing stochastic second
order methods can capture and exploit the curvature
properties of the loss landscape by incorporating both
gradient and Hessian information. For example, stochastic
Newton methods are typical ones that adopt exact stochastic
Hessians. However, computing the full Hessian for training
large-scale DNNs is prohibitively expensive, and thus it is
necessary to approximate it or avoid directly computing it in
algorithmic iterations. According to the way of approxi-
mating the stochastic Hessian matrix, stochastic second
order methods for training large-scale DNNs can be broadly
categorized into two branches: the stochastic quasi-Newton
(SQN) methods approximate the Hessian as a series sum of
first order information from prior iterations, such as AdaQN

Hindawi
Computational Intelligence and Neuroscience
Volume 2021, Article ID 5790608, 11 pages
https://doi.org/10.1155/2021/5790608

mailto:zengxrong@foxmail.com
https://orcid.org/0000-0002-2015-4301
https://orcid.org/0000-0002-1424-9523
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5790608


[18], SdLBFGS [19], and Apollo [20]; the stochastic second
order Hessian-free methods compute the Hessian-vector
product exactly through an efficient procedure proposed in
[21], such as AdaHessian [22] which approximates the
Hessian diagonal using Hutchinson’s method based on the
Hessian-vector product, which is significantly more costly
than SQN methods.

Recently, based on a classic method in the nonstochastic
setting, the cubic regularized Newton method [23], the
stochastic adaptive regularization methods using cubics
(SARC) [24–26] are proposed to address relatively small-
scale nonconvex stochastic optimization problems, and they
find the minimizer of a local second order Taylor approx-
imation with a cubic regularization term at each iteration. It
is observed that the SARC methods are able to escape saddle
points more efficiently, leading to better generalization
performance than most of the abovementioned stochastic
first order and second order methods [23, 27] in relatively
small-scale machine learning problems. More recently, a
variant of SARC combining with negative curvature (SANC)
is proposed in [28] with even better generalizability since a
direction of negative curvature also benefits escaping strict
saddle points [29, 30]. Unlike previous SARC methods, the
SANC uses independent sets of data points of consistent size
over all iterations to attain stochastic gradient and Hessian
estimators, making it more practical than SARC. However,
SARC and SANC use a Krylov subspace method to itera-
tively solve a cubic regularized Newton subproblem and use
a trust region-like scheme to determine if an iteration is
successful or not and update only when it is successful,
which hinders their applications in large-scale nonconvex
stochastic optimization (in the sense of large datasets and/or
high-dimensional parameter spaces). /erefore, these
existing cubic regularized Newton methods are not suitable
for training large-scale DNNs.

In this work, we develop a novel adaptive cubic Newton
method, AdaCN, for large-scale nonconvex stochastic op-
timization, and it can inherit the superiority of SARC and
SANC methods (i.e., great generalizability), but tackle their
aforementioned challenges (i.e., unsuitable for training
large-scale DNNs). AdaCN is designed for nonconvex
stochastic optimization through dynamically capturing the
curvature of the loss function by diagonally approximated
Hessian and the norm of difference between previous two
estimates. It only requires at most first order gradients and
updates with linear complexity for both time and memory,
thus it is quite suitable for large-scale nonconvex stochastic
optimization problems. In order to reduce the variance
introduced by the stochastic nature of the problem, AdaCN
hires the first and second moment to implement an expo-
nential moving average on iteratively calculated gradients
and approximated Hessians, respectively. /erefore, these
moments are able to not only accelerate convergence speed
but also smooth the noisy curvature information and get an
approximation to the global curvature information, avoiding
misleading local gradient and Hessian information which
can be catastrophic. /e superiority of AdaCN can be il-
lustrated with two simple 2D functions (one is convex and
the other is nonconvex, and these two functions give hints to

local behavior of optimizers in deep learning), as shown in
Figure 1, where we show the trajectories of different opti-
mizers. As can be seen, AdaCN can converge much faster
than stochastic first order methods such as SGD and Adam
and stochastic quasi-Newton method Apollo. Furthermore,
we will experimentally show the superiority of AdaCN
through image classification tasks: LeNet [31] on Mnist and
VGG11 [32], ResNet34 [33], and DenseNet121 [34] on
CIFAR10 and CIFAR100 [35] dataset; and language mod-
eling task: LSTM [36] on Penn Treebank [37] dataset.

Notation: we use italics letters α, β to denote scalars, bold
lowercase letters x, y to denote vectors, and bold uppercase
letters A, B to denote matrices. For vectors, we use ‖ · ‖ to
denote the l2-norm.

2. Formulation of Adaptive Cubic
Newton Method

2.1. Problem Statement. In this paper, we consider the fol-
lowing stochastic optimization problem:

min
x∈Rd

f(x) � Eξ∼D[f(x; ξ)], (1)

where f is a continuously differentiable function and pos-
sibly nonconvex, x ∈ Rd is the parameter to be optimized,
and E denotes the expectation with respect to x, a random
variable with the distribution D. A special case of (1) that
arises frequently in supervised machine learning is the
empirical risk minimization (ERM) problem [38]:

min
x∈Rd

f(x) �
1
n

􏽘

n

i�1
fi x; ξi( 􏼁, (2)

where fi: R
d⟶ R is the loss function corresponding to

the i-th data instance, and n is the number of data samples
that is assumed to be extremely large.

2.2. Newton Update from Cubically Regularized Model.
We begin with a stochastic Newton (SN) method. At a high
level, we sample two independent mini-batches Sg and SB at
each iteration, and the stochastic gradient and Hessian es-
timators, say, gk and Bk, can be defined as

gk �
1
Sg

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘
i∈Sg

∇fi x; ξi( 􏼁,

Bk �
1
SB

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽘
i∈SB

∇2fi x; ξi( 􏼁.

(3)

In each iteration of the SN method, gradient descent
finds the minimizer of a local second order Taylor expansion

xk+1 � argmin
x

f xk( 􏼁 + gT
k x − xk( 􏼁 +

1
2
x − xk( 􏼁

TBk x − xk( 􏼁,

(4)

and its corresponding Newton update is shown as

xk+1 � xk − B− 1
k gk. (5)

2 Computational Intelligence and Neuroscience



For large-scale stochastic optimization problems, the
stochastic Hessian Bk is properly approximated. For ex-
ample, AdaQN [18], SdLBFGS [19], and Apollo [20] (be-
longing to stochastic quasi-Newton methods) approximate
Bk as a series sum of first order information from prior
iterations, while AdaHessian [22] (one of the stochastic
second order Hessian-free methods) approximates the
Hessian diagonal using Hutchinson’s method [39] based on
the Hessian-vector product.

A new principled variant of the SN method that could
enjoy global convergence guarantees is proposed in [23], and
it finds the minimizer of the following cubically regularized
second order approximation of f with gk, Bk and a sufficient
large ρ> 0:

xk+1 � argmin
x

f xk( 􏼁 + g
T
k x − xk( 􏼁 +

1
2
x − xk( 􏼁

T

Bk x − xk( 􏼁 +
ρ
6
x − xk

����
����
3
,

(6)

where xk is the value at k-th iteration. By first order opti-
mality conditions, we set the derivative of the objective to
zero, which immediately yields

gk + Bk x − xk( 􏼁 +
ρ
2

x − xk

����
���� x − xk( 􏼁 � 0, (7)

which is a nonlinear system and can be approximated by a
linear one as follows:

gk + Bk x − xk( 􏼁 +
ρ
2

xk − xk− 1
����

���� x − xk( 􏼁 � 0, (8)

yielding a novel Newton update:

xk+1 � xk − Bk +
ρ
2

xk − xk− 1
����

���� · I􏼒 􏼓
− 1
gk, (9)

where I represents the identity matrix with the same size as
Bk. Comparing (5) with (9) additionally makes use of the
norm of difference between previous two estimates, leading
to better performance since it captures more curvature
information.

2.3. Updating Bk. /e stochastic Hessian Bk can be updated
based on the weak secant equation [40, 41]:

Bk � argmin
B

B − Bk− 1
����

����,

s.t. sT
kBsk � sT

k yk(weak secant equation),

(10)

where sk � xk − xk− 1 and yk � gk − gk− 1. /e solution of the
above problem with Frobenius matrix based on the varia-
tional technique in [42] is given by

Bk � Bk− 1 +
sT

k yk − sT
kBk− 1sk

sk

����
����
4
4 + ε

Diag s2k􏼐 􏼑, (11)

where Diag(v) is the diagonal matrix with diagonal elements
from vector v. Further, with rectifying operation which
guarantees the positive-definiteness, the updated cubic
Newton becomes

xk+1 � xk − D− 1
k gk, (12)

where

Dk � max abs Bk +
ρ
2

xk − xk− 1
����

���� · I􏼒 􏼓, θ · I􏼒 􏼓, (13)

-40

-25.3

-10.7

4.0

18.7

33.3

48.0
-20 -13.3 -6.7 0.0 6.7 13.3 20.0

SGD
Adam
Apollo
AdaCN

Optimal Point

Start Point

(a)

-1

-1

-0.7

-0.7

-0.3

-0.3

0.0

0.0

0.3

0.3

0.7

0.7

1.0
1.0

Optimal Point
Start Point

SGD
Adam
Apollo
AdaCN

(b)

Figure 1: Trajectories of SGD, Adam, Apollo, and AdaCN on a convex function (a) and a nonconvex function (b), respectively. Parameters
of two experiments are set as follows: the learning rates of AdaCN, Apollo, Adam, and SGD are set to 2 × 10− 3, 2 × 10− 3, 3 × 10− 2, and
5 × 10− 4, respectively. For SGD and Apollo, β � 0.9, whereas for AdaCN and Adam, β1 � 0.9 and β2 � 0.9./emodel is trained for 2.5 × 103
epochs. (a) Loss function is f(x, y) � (x + y)2 + (x − y)2/10. (b)f(x, y) � (x − 1)2 + 100(y − x2)2.

Computational Intelligence and Neuroscience 3



where θ is a positive parameter, and the cost of computingD
is marginal since Bk is diagonal, abs(V) takes absolute values
of all the elements of the matrix V. It is worth mentioning
that, according to equations (5) and (12), max(·, ·) operation
enables Dk to prevent the step size from becoming arbitrary
large since there exists zero value in Bk.

2.4. Moments for gk and Dk. In this paper, we adopt the
moments for gk and Dk, given by

mk⟵ β1mk− 1 + 1 − β1( 􏼁gk,

Vk⟵ β2Vk− 1 + 1 − β2( 􏼁Dk ⊙Dk,
(14)

where ⊙ denotes the elementwise multiplication, and
β1, β2 ∈ (0, 1) are the first and second moment hyper-
parameters that are also used in Adam [8] and its many
variants. /e moments are further bias corrected as

􏽢mk⟵
mk

1 − βk
1􏼐 􏼑

,

􏽢Vk⟵
Vk

1 − βk
2􏼐 􏼑

.

(15)

Using the first and second moment amounts to carrying
out an exponential moving average on iteratively updated
stochastic gradients and approximated stochastic Hessians
plus the norm of difference between previous two estimates,
which can smooth the noisy curvature information and get
an approximation to the global curvature information,
avoiding misleading local gradient and Hessian information
which can be catastrophic.

To summarize, the complete algorithm of AdaCN is
given in Algorithm 1, in which at most first order gradients
are required, and Bk, Dk, Vk, and 􏽢Vk are all diagonal.

/erefore, AdaCN updates with linear complexity for both
time and memory.

3. Experiments

In this section, we access the performance of AdaCN on
learning tasks: image classification and language modeling,
comparing with stochastic first order optimizers such as
Adam [8], SGD [1], AdaBound [13], and stochastic second
order optimizer Apollo [20], listed in Table 1. For image
classification, we investigate models by LeNet [31] on Mnist
and VGG11 [32], ResNet34, and DenseNet121 [34] on
CIFAR10 and CIFAR100 [35], while for language modeling,
LSTM [36] on Penn Treebank [37] is tested. Moreover, the
robustness to hyperparameters is tested, through comparing
AdaCN and Apollo with different values of ε and learning
rate. /e results are shown in the following subsections.

3.1. Experiments Setup. We perform a careful hyper-
parameter tuning in experiments as follows. AdaCN: we set
θ � 1, β1 � 0.9, β2 � 0.999, ε � 10− 8, and ρ � 5 × 0.9200− k at
k-th iteration./e learning rate η � 0.4 forMnist dataset, 0.2
for CIFAR datasets, and 30 for Penn Treebank dataset. SGD:
the momentum is set to 0.9, while the learning rate is
searched among a × 10b􏼈 􏼉 where a ∈ 1, 2, 3, 4, 5, 6, 7, 8, 9{ }

and b ∈ − 3, − 2, − 1, 0, 1{ }. Adam, AdaBound, and Apollo: the
learning rate is searched as SGD, and other parameters are
set as their own default values in the literature.

3.2. Image Classification. At first, we evaluate the conver-
gence and generalization of AdaCN on image classification.
We use LeNet on Mnist and VGG11, ResNet34, and Den-
seNet121 on CIFAR10 and CIFAR100 dataset.

Require: ng //Mini-batch size
Require: η //Stepsize
Require: β1, β2 ∈ [0, 1)//Parameters of exponential moving average
Require: ε, ρ, θ//Positive parameters
Require: x0, g0,B0,m0,V0//Initialize variables as zero vectors or zero matrices
Require: k⟵ 0//Initialize timestep

(1) While xk not converged do
(2) k⟵ k + 1
(3) sample Sg⟵ ξi􏼈 􏼉

ng

i�1
(4) gk⟵ (1/|Sg|)􏽐i∈Sg

∇fi(x, ξi)//Stochastic gradient at timestep k
(5) sk⟵ xk − xk− 1
(6) yk⟵ gk − gk− 1
(7) Bk⟵Bk− 1 + ((sT

k yk − sT
kBksk)/‖sk‖44 + ε)Diag(s2k)//Update diagonal Hessian

(8) Dk⟵ max(|Bk + (ρ/2)‖xk − xk− 1‖ · I|, θ)

(9) mk⟵ β1mk− 1 + (1 − β1)gk

(10) Vk⟵ β2Vk− 1 + (1 − β2)Dk ⊙Dk

(11) 􏽢mk⟵mk/(1 − βk
1)

(12) 􏽢Vk⟵Vk/(1 − βk
2)

(13) xk+1⟵ xk − η􏽢V
− (1/2)

k 􏽢mk

(14) end while
(15) return xk+1

ALGORITHM 1: AdaCN.

4 Computational Intelligence and Neuroscience



Mnist. Results on Mnist are shown as Figure 2: the curves of
train and test accuracy on Mnist and Table 2, from which we
can see that AdaCN achieves the best convergence speed and
classification accuracy.

CIFAR10. We report the results on CIFAR10 in Figure 3 and
Table 3. For all three network architectures, AdaCN obvi-
ously outperforms other optimizers with comparable con-
vergence speed and best classification accuracy.

CIFAR100. Results on CIFAR100 are shown in Figure 4 and
Table 4. For VGG11, AdaCN is better than Adam and
Apollo, but worse than SGD and AdaBound in terms of
convergence speed and classification accuracy. For ResNet34
and DenseNet121, AdaCN achieves the best classification
accuracy.

3.3. Language Modeling. On language modeling, we ex-
periment with 1, 2, 3-layer LSTM model on Penn Treebank
dataset. As Figure 5 and Table 5 show, AdaCN can also keep
fastest convergence speed and achieve the lowest perplexity
among the optimizers for 1, 2, 3-layer LSTM.

Finally, we explore the effects of the hyperparameters
including ε and learning rates on the performance of
AdaCN, respectively. /e results on CIFAR10 dataset are
reported in Figures 6 and 7, where the values of ε are
ranging from 10− 3 to 10− 7 in a log-scale grid on ResNet34
and learning rate ranging from 5 × 10− 3 to 2 × 10− 1 on
VGG11, respectively. As can be seen, the test accuracies of
AdaCN are above 95% for all values of ε, while Apollo
achieves an accuracy consistently below 95%. Moreover,
the results validate the robustness of AdaCN to ε and
learning rate.

Table 1: Summaries of the settings used in experiments.

Task Dataset Network type Architecture Optimizer

Image
classification

Mnist Convolutional neural
network

LeNet

AdaCN, Apollo, Adam, SGD,
AdaBound

CIFAR10
CIFAR100

VGG11, ResNet34,
DenseNet121

Language
modeling

Penn
Treebank Recurrent 1, 2, 3-layer LSTM

0 2 4 6 8 10 12 14 16 18 20
Epoch

AdaCN
Adam
Apollo

SGD
AdaBound

100

95

90

85

80

75

70

65

60

Tr
ai

n 
Ac

cu
ra

cy

LetNet

(a)

0 2 4 6 8 10 12 14 16 18 20
Epoch

AdaCN
Adam
Apollo

SGD
AdaBound

100

95

90

85

80

75

70

65

60

Te
st 

Ac
cu

ra
cy

LetNet

(b)

Figure 2: /e curves of train and test accuracy on Mnist. (a) Train Accuracy. (b) Test Accuracy.

Table 2: Test accuracy of LeNet on Mnist.

Model Adam SGD AdaBound Apollo AdaCN
LeNet 0.984 0.981 0.987 0.988 0.989
/e best result is shown in bold.

Computational Intelligence and Neuroscience 5



0 25 50 75 100 125 150 175 200
Epoch

99

96

93

90

87

84

81

Tr
ai

n 
Ac

cu
ra

cy

VGG11

(a)

0 25 50 75 100 125 150 175 200
Epoch

90

87

84

81

78

75

72

Te
st 

Ac
cu

ra
cy

VGG11

(b)

0 25 50 75 100 125 150 175 200
Epoch

99

96

93

90

87

84

81

Tr
ai

n 
Ac

cu
ra

cy

ResNet34

(c)

0 25 50 75 100 125 150 175 200
Epoch

96

94

92

90

88

86

84

82

80

Te
st 

Ac
cu

ra
cy

ResNet34

(d)

0 25 50 75 100 125 150 175 200
Epoch

99

96

93

90

87

84

81

Tr
ai

n 
Ac

cu
ra

cy

DenseNet121

(e)

0 25 50 75 100 125 150 175 200
Epoch

96

95

94

93

92

91

90

89

88

Te
st 

Ac
cu

ra
cy

DenseNet121

(f )

Figure 3: /e curves of train and test accuracy on CIFAR10. (a) Train accuracy of VGG11 on CIFAR10. (b) Test accuracy of VGG11 on
CIFAR10. (c) Train accuracy of ResNet34 on CIFAR10. (d) Test accuracy of ResNet34 on CIFAR10. (e) Train accuracy of DenseNet121 on
CIFAR10. (f ) Test accuracy of DenseNet121 on CIFAR10.

Table 3: Test accuracy of VGG11, ResNet34, and DenseNet121 on CIFAR10.

Model Adam SGD AdaBound Apollo AdaCN
VGG11 88.40 89.72 90.60 88.90 91.34
ResNet34 93.02 93.62 94.75 94.79 95.15
DenseNet121 92.79 93.07 94.58 94.85 95.52
/e best results are shown in bold.

6 Computational Intelligence and Neuroscience



0 25 50 75 100 125 150 175 200
Epoch

100

95

90

85

80

75

70

65

60

Tr
ai

n 
Ac

cu
ra

cy
VGG11

(a)

0 25 50 75 100 125 150 175 200
Epoch

Te
st 

Ac
cu

ra
cy

70.0

67.5

65.0

62.5

60.0

57.5

55.0

52.5

50.0

VGG11

(b)

0 25 50 75 100 125 150 175 200
Epoch

100

95

90

85

80

75

70

65

60

Tr
ai

n 
Ac

cu
ra

cy

ResNet34

(c)

0 25 50 75 100 125 150 175 200
Epoch

Te
st 

Ac
cu

ra
cy

80

75

70

65

60

55

50

ResNet34

(d)

0 25 50 75 100 125 150 175 200
Epoch

100

95

90

85

80

75

70

65

60

Tr
ai

n 
Ac

cu
ra

cy

DenseNet121

(e)

0 25 50 75 100 125 150 175 200
Epoch

Te
st 

Ac
cu

ra
cy

80

75

70

65

60

55

50

DenseNet121

(f )

Figure 4: /e curves of train and test accuracy on CIFAR100. (a) Train accuracy of VGG11 on CIFAR100. (b) Test accuracy of VGG11 on
CIFAR100. (c) Train accuracy of ResNet34 on CIFAR100. (d) Test accuracy of ResNet34 on CIFAR100. (e) Train accuracy of DenseNet121
on CIFAR100. (f ) Test accuracy of DenseNet121 on CIFAR100.

Computational Intelligence and Neuroscience 7



AdaCN
Adam
Apollo

SGD
AdaBound

0 25 50 75 100 125 150 175 200
Epoch

140

130

120

110

100

90

80

Te
st 

Pe
rp

le
xi

ty

1-layer LSTM

(a)

AdaCN
Adam
Apollo

SGD
AdaBound

0 25 50 75 100 125 150 175 200
Epoch

120

110

100

70

90

80

60

Te
st 

Pe
rp

le
xi

ty

2-layer LSTM

(b)

AdaCN
Adam
Apollo

SGD
AdaBound

0 25 50 75 100 125 150 175 200
Epoch

120

110

100

70

90

80

60

Te
st 

Pe
rp

le
xi

ty

3-layer LSTM

(c)

Figure 5: /e curves of test perplexity on Penn Treebank for 1, 2, 3-layer LSTM. Lower is better. (a) Test perplexity for 1-layer LSTM.
(b) Test perplexity for 2-layer LSTM. (c) Test perplexity for 3-layer LSTM.

Table 4: Test accuracy of VGG11, ResNet34, and DenseNet121 on CIFAR100.

Model Adam SGD AdaBound Apollo AdaCN
VGG11 58.96 66.01 65.92 58.50 65.51
ResNet34 71.39 76.98 76.88 76.42 77.11
DenseNet121 71.85 79.35 79.00 79.01 79.50
/e best results are shown in bold.

8 Computational Intelligence and Neuroscience



0 25 50 75 100 125 150 175 200
Epoch

ε-1e-3
ε-1e-4
ε-1e-5

ε-1e-6
ε-1e-7
ε-1e-8

100

98

96

94

92

90

Tr
ai

n 
Ac

cu
ra

cy

AdaCN

(a)

0 25 50 75 100 125 150 175 200
Epoch

ε-1e-3
ε-1e-4
ε-1e-5

ε-1e-6
ε-1e-7
ε-1e-8

100

98

96

94

92

90

Tr
ai

n 
Ac

cu
ra

cy

Apollo

(b)

0 25 50 75 100 125 150 175 200
Epoch

ε-1e-3
ε-1e-4
ε-1e-5

ε-1e-6
ε-1e-7
ε-1e-8

90

92

94
95
96

88

86

84

82

80

Te
st 

Ac
cu

ra
cy

AdaCN

(c)

0 25 50 75 100 125 150 175 200
Epoch

ε-1e-3
ε-1e-4
ε-1e-5

ε-1e-6
ε-1e-7
ε-1e-8

90

92

94
95
96

88

86

84

82

80

Te
st 

Ac
cu

ra
cy

Apollo

(d)

Figure 6:/e curves of train and test accuracy of ResNet34 on CIFAR10 with respect to different values of ε. (a) Train accuracy of AdaCN on
CIFAR10. (b) Train accuracy of Apollo on CIFAR10. (c) Test accuracy of AdaCN on CIFAR10. (d) Test accuracy of Apollo on CIFAR10.

Table 5: Test accuracy of 1, 2, 3-layer LSTM on Penn Treebank dataset.

Model Adam SGD AdaBound Apollo AdaCN
1-layer LSTM 86.86 86.14 85.68 84.90 83.40
2-layer LSTM 68.81 68.54 68.58 69.71 68.17
3-layer LSTM 64.91 64.50 65.18 66.37 63.26
/e best results are shown in bold.

Computational Intelligence and Neuroscience 9



4. Conclusion

We have proposed AdaCN, a novel, efficient, and effective
adaptive cubic Newton method for nonconvex stochastic
optimization. /is method is designed for large-scale
nonconvex stochastic optimization problems which are the
core of state-of-the-art deep learning literature. Experi-
mental results on image classification tasks and language
modeling task demonstrate the superiority of AdaCN, in
terms of convergence speed and generalization
performance.

Data Availability

/e data used to support the findings of this study are open
datasets which could be found in general websites, and the
datasets are also freely available.

Conflicts of Interest

/e authors declare that they have no conflicts of interest.

Acknowledgments

/is research was supported in part by the Neural Science
Foundation of Hunan Province (Grant No. 2019JJ50746)
and National Nature Science Foundation of China (Grant
No. 61602494).

References

[1] H. Robbins and S. Monro, “A stochastic approximation
method,”7e Annals of Mathematical Statistics, vol. 22, no. 3,
pp. 400–407, 1951.

[2] Y. Nesterov, “A method of solving a convex programming
problem with convergence rate o (1/k̂2),” Soviet mathematics-
Doklady, vol. 269, 1983.

[3] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the
importance of initialization and momentum in deep learn-
ing,” in Proceedings of the 30th International Conference on
Machine Learning, vol. 28, no. 3, pp. 1139–1147, 2013.

[4] B. T. Polyak, “Some methods of speeding up the convergence
of iteration methods,” USSR Computational Mathematics and
Mathematical Physics, vol. 4, no. 5, pp. 1–17, 1964.

0 25 50 75 100 125 150 175 200
Epoch

100

90

80

70

60

50

40

Tr
ai

n 
Ac

cu
ra

cy
AdaCN

(a)

0 25 50 75 100 125 150 175 200
Epoch

100

90

80

70

60

50

40

Tr
ai

n 
Ac

cu
ra

cy

Apollo

(b)

0 25 50 75 100 125 150 175 200
Epoch

90

80

70

60

50

40

Te
st 

Ac
cu

ra
cy

AdaCN

(c)

0 25 50 75 100 125 150 175 200
Epoch

90

80

70

60

50

40

Te
st 

Ac
cu

ra
cy

Apollo

(d)

Figure 7: /e curves of train and test accuracy of VGG11 on CIFAR10 with respect to different values of learning rate. As can be seen,
AdaCN is more robust to learning rate. (a) Train accuracy of AdaCN on CIFAR10. (b) Train accuracy of Apollo on CIFAR10. (c) Test
accuracy of AdaCN on CIFAR10. (d) Test accuracy of Apollo on CIFAR10.

10 Computational Intelligence and Neuroscience



[5] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Ma-
chine Learning Research, vol. 12, pp. 2121–2159, 2011.

[6] M. D. Zeiler, “Adadelta: an adaptive learning rate method,”
p. 5701, 2012, http://arxiv.org/abs/1212.5701.

[7] A. Graves, “Generating sequences with recurrent neural
networks,” 2013, http://arxiv.org/abs/1308.1250850.

[8] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” in Proceedings of the 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 2015.

[9] S. Ruder, “An overview of gradient descent optimization
algorithms,” 2016, http://arxiv.org/abs/1609.04747.

[10] I. Loshchilov and F. Hutter, “Decoupled weight decay reg-
ularization,” in Proceedings of the 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 2019.

[11] H. Huang, C.Wang, and B. Dong, “Nostalgic adam: weighting
more of the past gradients when designing the adaptive
learning rate,” in Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2019,
pp. 2556–2562, Macao, China, August 2019.

[12] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of
adam and beyond,” 2019, http://arxiv.org/abs/1904.09237.

[13] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient
methods with dynamic bound of learning rate,” in Proceedings
of the 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 2019.

[14] L. Liu, H. Jiang, P. He, W. Chen, J. G. X. Liu, and J. Han, “On
the variance of the adaptive learning rate and beyond,” 2019,
http://arxiv.org/abs/1908.03265.

[15] G. Wang, S. Lu, W. Tu, and L. Zhang, “Sadam: a variant of adam
for strongly convex functions,” in Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, pp. 2556–2562, Macao, China, August 2019.

[16] W. Li, Z. Zhang, X. Wang, and P. Luo, “Adax: adaptive
gradient descent with exponential long term memory,” 2020,
http://arxiv.org/abs/2004.09740.

[17] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht,
“/e marginal value of adaptive gradient methods in machine
learning,” in Proceedings of the Annual Conference on Neural
Information Processing Systems 2017, pp. 4148–4158, Long
Beach, CA, USA, December 2017.

[18] N. S. Keskar and A. S. Berahas, “Adaqn: an adaptive quasi-
newton algorithm for training rnns,” in Proceedings of the
Annual Conference on Neural Information Processing Systems
2017, pp. 4148–4158, Long Beach, CA, USA, December 2017.

[19] X. Wang, S. Ma, D. Goldfarb, and W. Liu, “Stochastic quasi-
newton methods for nonconvex stochastic optimization,” SIAM
Journal on Optimization, vol. 27, no. 2, pp. 927–956, 2017.

[20] X. Ma, “Apollo: an adaptive parameter-wise diagonal quasi-
newton method for nonconvex stochastic optimization,”
2020, http://arxiv.org/abs/2009.13586.

[21] B. A. Pearlmutter, “Fast exact multiplication by the Hessian,”
Neural Computation, vol. 6, no. 1, pp. 147–160, 1994.

[22] Z. Yao, A. Gholami, S. Shen, K. Keutzer, and M.W. Mahoney,
“Adahessian: an adaptive second order optimizer for machine
learning,” 2020, http://arxiv.org/abs/2006.00719.

[23] Y. Nesterov and B. T. Polyak, “Cubic regularization of newton
method and its global performance,” Mathematical Pro-
gramming, vol. 108, no. 1, pp. 177–205, 2006.

[24] N. Tripuraneni, M. Stern, C. Jin, J. Regier, and M. I. Jordan,
“Stochastic cubic regularization for fast nonconvex optimi-
zation,” 2017, http://arxiv.org/abs/1711.02838.

[25] J. M. Kohler and A. Lucchi, “Sub-sampled cubic regulariza-
tion for non-convex optimization,” 2017, http://arxiv.org/abs/
1705.05933.

[26] E. H. Bergou, Y. Diouane, and S. Gratton, “A line-search
algorithm inspired by the adaptive cubic regularization
framework and complexity analysis,” Journal of Optimization
7eory and Applications, vol. 178, no. 3, pp. 885–913, 2018.

[27] P. Xu, F. Roosta, and M. W. Mahoney, “Second-order opti-
mization for nonconvex machine learning: an empirical
study,” in Proceedings of the 2020 SIAM International Con-
ference on Data Mining, Cincinnati, OH, USA, May 2020.

[28] S. Park, S. H. Jung, and P. M. Pardalos, “Combining stochastic
adaptive cubic regularization with negative curvature for
nonconvex optimization,” Journal of Optimization7eory and
Applications, vol. 184, 2020.

[29] S. J. Reddi, M. Zaheer, S. Sra et al., “A generic approach for
escaping saddle points,” in Proceedings of the International
Conference on Artificial Intelligence and Statistics, AISTATS
2018, vol. 84, pp. 1233–1242, Playa Blanca, Lanzarote, Canary
Islands, Spain, April 2018.

[30] Y. Xu, J. Rong, and T. Yang, “First-order stochastic algorithms
for escaping from saddle points in almost linear time,” in
Proceedings of the Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, pp. 5535–5545,
Montreal, Canada, December 2018.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[32] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proceedings of
the 3rd International Conference 180 on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 2015.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 2016.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 2017.

[35] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Handbook of Systemic Autoim-
mune Diseases, Elsevier, Amsterdam, Netherlands, 2009.

[36] S. Hochreiter and J. Schmidhuber, “LSTM can solve hard long
time lag problems,” in Proceedings of the 9th International
Conference on Neural Information Processing Systems, vol. 9,
pp. 473–479, Denver, CO, USA, December 1996.

[37] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz,
“Building a large annotated corpus of English: the penn
-treebank, Comput,” Linguistics, vol. 19, pp. 313–330, 1993.

[38] V. N. Vapnik, Statistical Learning 7eory, pp. 99–106, John
Wiley & Sons, Hoboken, NJ, USA, 1998.

[39] H. Avron and S. Toledo, “Randomized algorithms for esti-
mating the trace of an implicit symmetric positive semi-
definite matrix,” Journal of the ACM, vol. 58, no. 2, p. 8, 2011.

[40] J. L. Nazareth, “If quasi-newton then why not quasi-cauchy,”
SIAG/OPT Views-and-News, vol. 6, pp. 11–14, 1995.

[41] J. E. Dennis and A. H. Wolkowicz, “Sizing and least-change
secant methods,” SIAM Journal on Numerical Analysis,
vol. 30, no. 5, 1993.

[42] M. Zhu, J. L. Nazareth, and H. Wolkowicz, “/e quasi-cauchy
relation and diagonal updating,” SIAM Journal on Optimi-
zation, vol. 9, no. 4, pp. 1192–1204, 1999.

Computational Intelligence and Neuroscience 11

http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1308.1250850
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/2004.09740
http://arxiv.org/abs/2009.13586
http://arxiv.org/abs/2006.00719
http://arxiv.org/abs/1711.02838
http://arxiv.org/abs/1705.05933
http://arxiv.org/abs/1705.05933

