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At night, buoys and other navigation marks disappear to be replaced by fixed or flashing lights. Navigation marks are seen as a set
of lights in various colors rather than their familiar outline. Deciphering that the meaning of the lights is a burden to navigators, it
is also a new challenging research direction of intelligent sensing of navigation environment. *e study studied initiatively the
intelligent recognition of lights on navigation marks at night based on multilabel video classification methods. To capture
effectively the characteristics of navigation mark’s lights, including both color and flashing phase, three different multilabel
classification models based on binary relevance, label power set, and adapted algorithm were investigated and compared.
According to the experiment’s results performed on a data set with 8000minutes video, the model based on binary relevance,
named NMLNet, has highest accuracy about 99.23% to classify 9 types of navigation mark’s lights. It also has the fastest
computation speed with least network parameters. In the NMLNet, there are two branches for the classifications of color and
flashing, respectively, and for the flashing classification, an improved MobileNet-v2 was used to capture the brightness char-
acteristic of lights in each video frame, and an LSTM is used to capture the temporal dynamics of lights. Aiming to run on mobile
devices on vessel, the MobileNet-v2 was used as backbone, and with the improvement of spatial attention mechanism, it achieved
the accuracy near Resnet-50 while keeping its high speed.

1. Introduction

In recent years, various AI technologies have been utilized to
research smart ship [1, 2] and intelligent navigation [3, 4],
among which intelligent sensing of navigational environ-
ment is the first important ability [5]. For collecting in-
formation of navigational environment, addition to the
traditional ECDIS (Electronic Chart Display and Informa-
tion System), Radar, and AIS, recognizing navigational
environment from camera became a new way and challenge.
It is expected to supplement effectively the autonomous
sensing abilities of vessel, even finally replace the bridge
watchkeeping.

For navigation safety, the most important objects should
be recognized include the dynamic ship objects and navi-
gational features, such as channel and restricted areas.

Generally, these features are marked by aids to navigation,
which consist primarily of buoys and beacons [6]. Both
floating buoys and fixed beacons may be collectively called
“navigation marks”; they have distinctive shapes, colors, top
marks, and other auxiliary markings, which can be observed
during daytime to indicate their purpose. Navigation marks
also have different lights to be identified at night.

For intelligent sensing of navigational environment, many
studies about ship classification and detection based on deep
learning techniques have been carried out gradually [7, 8];
however, few research focused on the recognition of naviga-
tional features so far. In 2019, we started a research on the
recognition of navigation marks during daytime and proposed
a classification model based on ResNet-50 and a multiple scale
attention mechanism [9]. In this article, we research the rec-
ognition of navigation marks at night features.
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During daytime, the recognition of navigation marks can
be performed by observing their shape, color, and other
visual features. However, at night, navigation marks dis-
appear, and the methods by observing their appearance from
image will be not working anymore. In this case, the lights on
navigation marks become the most important feature to
identify and ascertain their purpose.

Different with road traffic light, the lights on navigation
marks are distinctive in both color and flashing character-
istic. For example, the light of port lateral marks may show
two red flashes within a 5 seconds period, and the light of
starboard lateral marks may show two green flashes within a
5 seconds period. So, to identify different type of the lights,
video instead of single image is needed. Furthermore, there
are many types of lights, which are defined by the combi-
nation of four types of color (red, green, yellow, and white)
and more than ten types flashing characteristics. Obviously,
the classification of navigation mark’s lights can be regarded
as multiple labels classification problem.

*erefore, this article studied the visual recognition of
navigation mark’s lights based on video and multilabel
classificationmethods, and its contributions are summarized
as follows:

(1) Utilizing deep learning technologies to recognize the
lights on navigation marks at night.

(2) A novel method is proposed to extract the flash
characteristic of navigation mark’s light. We use the
V channel of the image as the input to complete the
recognition of flash characteristic.

(3) We design a feature extraction network for the color
characteristic of navigation mark’s light based on the
attention mechanism. Meanwhile, we use the
lightweight model as the baseline model. *e new
model has better results in speed and accuracy.

(4) Finally, we propose an NMLNet (Navigation Mark’s
Light Network) to capture the light features in-
cluding color and flashing characteristic from video
for the classification of navigation mark’s lights.

*e remainder of the article is organized as follows.
Section 2 provides the overview of related researches. Sec-
tion 3 presents the proposed models for the classification of
navigation mark’s lights. In Section 4, the experimental
results are analyzed and discussed. *e conclusions and
future works are given in Sections 5 and 6.

2. Related Works

2.1. Recognition of Traffic Light. In some extent, the lights on
navigation marks have similar color characteristic with
traffic lights. *e accurate recognition of traffic lights is also
an important part of both driving assistance systems and
autonomous vehicles.

*ere are two types of methods for traffic light recog-
nition: model based and learning based [10]. As traffic lights
have a well-defined structure in terms of color and shape
information, most earlier methods for traffic light detection
and recognition were model based [11]. For example, Diaz

et al. (2012) presented a technique to detect suspended traffic
lights based on colors and features, such as black area of
traffic lights or area of lighting lamps [12]. Zhang et al. (2014)
proposed a model for traffic light recognition, which was
built by the combination of color, shape, and geographic
information [13]. However, because the model-based
methods were not robust when assumptions were not strictly
observed, learning-based methods especially deep learning
methods were introduced. Fernandes et al. (2014) employed
CNN (Convolutional Neural Network) to recognize the state
of traffic light [14]. Weber et al. (2014) proposed a camera-
based system for real-time detection and classification of
traffic lights based on CNN, called DeepTLR [15]. Jensen
et al. (2017) applied the YOLO (You Only Look Once) to
detect traffic lights based on the public LISA Traffic Light
data set [16]. Behrendt et al. (2017) studied a deep learning
approach to traffic lights and proposed a traffic light detector
and a traffic light tracker [17]. Muller and Dietmayer (2018)
presented a deep learning approach based on SSD (single
shot detection) for traffic light detection and achieved high
accuracy on the DriveU Traffic Light Dataset [18]. Compared
with the model-based methods, the learning-based methods
tend to be more robust, especially, as the large annotated
data set of traffic lights are becoming publicly available and
the performance of deep learning-based methods is im-
proved greatly over previous methods.

According to the experiment on the recognition of traffic
lights, deep learning-basedmethod is selected to research the
recognition of navigation mark’s lights in this article.
However, due to the navigationmark’s lights have both color
and flashing characteristic, more complex model with regard
to video and multilabel classification is needed.

2.2. Video Classification. For video classification, there is a
recent trend to learn feature representations with deep
learning from video data. A commonly used method is to
treat a video clip as a collection of frames, features of each
frame are captured by a deep CNN model, such as Coo-
gleNet, VGGNet, and ResNet, and then averaged into
representations of the video, which are finally inputted to
standard classifiers, such as SVMs for recognition [19].*ere
are also many works focusing on applying end-to-end CNN
models to learn hidden spatiotemporal patterns for video
classification [20]. A. Karpathy et al. (2014) provided an
extensive empirical evaluation of CNNs on large-scale video
classification and explored CNNs that account for temporal
connectivity in videos [21]. Tran et al. (2015) also proposed a
simple approach for spatiotemporal feature learning using
deep 3D convolution [22].

However, because 3D CNN and spatiotemporal patterns
in video are too complex, the training of the end-to-end is
usually time consuming. Simonyan and Zisserman (2014)
proposed a two-stream approach, which breaks down the
representation learning of video into two separate parts, a
spatial CNN for spatial feature learning and a temporal CNN
for temporal clues [23]. Wang et al. (2016) presented a
framework for action recognition in videos and proposed a
temporal segment network-based ConvNet, which operates
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on a sequence of short snippets sparsely sampled from the
entire video instead of working on single frame, to tackle the
inability of the traditional two-stream ConvNets in mod-
eling long-range temporal structure [24]. Carreira et al.
(2017) introduced a new two-stream inflated 3D ConvNet,
I3D, in which filters and pooling kernels are expanded into
3D to learn spatiotemporal features from video [25].
However, it is hard for ConvNet to tackle complicated ac-
tions happening over a long time due to failing to consider
the order of frames [20]. *erefore, recently, RNN (Re-
current Neural Network) is used in many researches to
account for the temporal dynamics in videos. Wu et al.
(2015) presented that LSTMs (Long Short Term Memory)
and CNNs are highly complementary and fused them to
jointly model spatiotemporal clues for video classification
[26]. Donahue et al. (2017) proposed a Long-term Recurrent
Convolutional Networks for video recognition problems, in
which a CNN processes the variable-length visual input and
its outputs are then fed into an LSTM to produce a variable-
length prediction finally [27].

*e attentionmechanism has been leveraged generally in
deep learning because it enables a neural network to focus on
a subset of inputs that are directly related to the targeted
semantic class. For video classification, the attention
mechanism is also helpful to identify themost discriminative
spatiotemporal volumes. Sharma et al. (2015) proposed an
LSTM-based action recognition model with a soft-attention
mechanism to highlight the learned relevant parts in video
frames [28]. Li et al. (2016) applied motion-based attention
derived from optical flow images in convolutional LSTM
models to discover relevant spatiotemporal volumes and
achieve better action localization [29].

According to the research trend on video classification,
to classify navigation mark’s lights accurately and efficiently,
two-stream framework with long-range temporal structure
and attention mechanism was selected.

2.3.MultilabelClassification. Multilabel classification means
the task has more than two target labels, and its methods can
be grouped into two strategies: problem transformation and
adapted algorithm. Problem transformation tries to trans-
form multilabel problem into single label problem by the
way of binary relevance or label power set, and adapted
algorithm extends and adapts existing specific learning al-
gorithms to handle directly the multilabel problem [30],
such as multilabel k nearest neighbors (ML-KNN) and
multilabel decision tree (ML-DT) [31].

Deep neural network can be used as powerful classifier in
the problem transformation methods, and it is also powerful
enough to be adapted directly to tackle multilabel classifi-
cation problems. Jesse Read and Fernando Perez-Cruz
(2014) used a deep learning approach with Restricted
BoltzmannMachines for a variety of multilabel classification
contexts, which outperformed a number of competitive
methods in an empirical evaluation [32]. Maxwell et al.
(2017) presented a multilabel classification method based on
deep learning classifier to predict chronic diseases, such as
diabetes, hypertension, and fatty liver, in patients, and the

results showed that it gave much higher accuracy than SVM
and ML-KNN [33]. Baltruschat et al. (2018) cast the pa-
thology detection into a chest X-ray multilabel classification
problem and investigated several CNN-based approaches by
adapting the last dense layer to match the label number and
adding a sigmoid activation function; the result showed that
an optimized architecture based on ResNet achieved best
performance [34]. Janwe et al. (2018) presented an approach
for automatic, multilabel, semantic, video concept detection,
using an adapted deep CNN and a foreground-driven
concept co-occurrence matrix (FDCCM) based on TREC-
VID video data set [35]. Jabreel et al. (2019) presented a deep
learning-based system for multiple emotion classification in
Twitter, in which deep learning was exploited to solve the
transformed binary classification problems [36]. Liu et at.
(2019) proposed an LSTM-based network structure to detect
multilabel events in a given surveillance video data set, and
the experimental results showed that it outperform the
SVM-based method for visual event detection [37].

In the context of classification of the lights on navigation
marks, their features can be mapped into two labels, color
and flashing. Obviously, deep neural network would be the
best classifier; however, which strategy to adopt deep neural
network is still needed to investigate and compare further.
*e binary relevance approach has disadvantage of training
multiple classifiers, but in this case, there is only two labels
without obvious correlation. *e label power set approach is
hard to scale for large number of label combinations, but it
works fine with lesser combinations. *e adaptive method
may be the most powerful modeling ability, but it is also
harder to train. So, in this article, three different models
based on binary relevance, label power set, and adapted
algorithm were investigated and compared to find the best
method to tackle the multilabel classification problem of
navigation mark’s lights.

3. Classification of Navigation Mark’s Lights

Before introducing the multilabel video classification model
of navigation mark’s lights, the classification standard of
navigation mark’s lights is described.

3.1. Labels for Classification of Navigation Mark’s Lights.
*ere are three features to describe the lights on navigation
marks: color, phase, and period. Colors of lights include
white (W), red (R), green (G), and yellow (Y). Phase is the
light changing pattern within a compete cycle. Period is the
time in seconds of a complete cycle. *ese features of light
are noted on the nautical charts next to the light in a form
such as “FI R (2) 5s.” Here, “FI” is a type of phase char-
acteristic, “R” is the red color of light, and “(2) 5s” means the
light flashes twice every 5 seconds. Table 1 lists the most
common types of light’s phrase characteristic.

Navigation mark has different light to ascertain its
purpose. Under IALA A, the port lateral mark may have a
light of “FI R (2) 5s,” and the starboard lateral mark may
have a light of “FI G (2) 5s”. *ere are four cardinal marks if
lighted use white quick flash lights: the north cardinal mark
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has continuous quick flash “Q”, the east cardinal mark has a
light of “Q (3) 10s,” the south cardinal mark has a light of “Q
(6) + LFI 15s,” and the west cardinal mark has a light of “Q
(9) 10s”; they can be easily remembered from thinking of a
clock dial. For the marks indicating isolated dangers, the
light consists of a white flash such as “Fl (2) 5s”. Safe water
marks typically have a white flashing light with Morse code
A, “Mo (A) W 10s”. For the special purpose marks, they may
have yellow lights with any phrase characteristics that is not
used for white lights, for example, “FI (4) Y 8s”. In China,
there are seven types of special marks for different purposes,
such as anchorage, prohibited area, and so on, they are
typically lighted with different Morse code, such as Q (“Mo
(Q) Y 12s” for anchorage), P (“Mo (P) Y 12s” for prohibited
area), and so on.

*e recognition of lights is most important way to
identify different type of navigation marks at night. In this
article, the classification of navigation mark’s lights was
treated as multilabel classification problem. *e color label
has four values of red (R), green (G), yellow (Y), and white
(W). *e phrase characteristic and period were combined as
flashing label, for example, “FI (2) 5s” should be labeled as a
flashing time series “0.5s (flash) + 1.0s (dark) + 0.5s
(flash) + 3.0 (dark)” in practice. Table 2 shows the flashing
time series of some different flashing labels.

3.2. Model Based on Binary Relevance

3.2.1. Network Structure. In the network of model-based
binary relevance, there are two branches for the classifi-
cations of color and flashing, respectively. As shown in
Figure 1, Network-C is the classifier for color label, and
the Network-F is the classifier for flashing label. *e two
labels are finally comb to obtain the category of navigation
mark’s light. *e calculation formula is shown in equation
(1), and the Network Structure flow is shown in
Algorithm 1.

Y � F LSTM X
V

􏼐 􏼑 + X
RGB

􏼐 􏼑,

X
V
i � MobileNet − V2 X

V
i􏼐 􏼑,

X
RGB
i � MobileNet − V2 X

RGB
i􏼐 􏼑.

(1)

Y is the label of navigation mark’s light, XVorRGB is the
V-Channel or RGB format Original Video, XVorRGB

i is a
frame in XVorRGB, and F is merge labels.

In the Network-C, a deep convolutional neural network
(MobileNet-V2) is used to extract the color features from
very frame of the original video. For the case of navigation
mark’s lights, colors are divided into five categories: green,
red, white, yellow, and none. So, the color label of a video
segment will be marked as a sequence of color, such as [red,
red, red, none, none, none, red...]. And, before the final label
combination, the color sequence will be further summarized
as a single label that is the most frequent color except “none”.

Network-F has a two-part architecture, the spatial part
MobileNet-V2 is used to capture the brightness character-
istic of lights in each video frame, and in the temporal part,
LSTM is used to capture the temporal dynamics and output
the flashing label such as “FI(1) 4s.”

For MobileNet-V2, the original video input is replaced
by its V-channel portion. Every frame of the original video is
a color image with red (R), green (G), and blue (B) channels;
however, to extract the light flashing characteristics, the RGB
color is too redundant, the HSV color model with hue (H),
saturation (S), and value (V) channels is more suitable to
eliminate redundant information. In HSV color space, “H” is
the color portion, “S” presents the amount of gay in a
particular color, and “V” describes the brightness of the
color. Just the brightness information of V-channel is
enough to extract the flashing characteristics of navigation
mark’s light. So, to reduce the network’s parameters, each
frame of the original video is converted to HSV model, and
only V-channel is retrained as Figure 2 shows.

3.2.2. Spatial Attention. In order to be able to be applied in
mobile device on vessel, MobileNet-v2 with high compu-
tation speed is used as the backbone of both Network-C and
Network-F for feature backbone of both Network-C and
Network-F for feature extraction. However, the accuracy of
MobileNet-v2 is lower than ResNet and other more complex
network structures. So, it is necessary to improve classifi-
cation accuracy using some tricks such as attention mech-
anism, which is proved helpful to identify the most
discriminative subset of inputs.

Table 1: Common types of light’s phase characteristic.

Symbol Type Describe Example
F Fix *e light is always on.

FI Flashing *e duration of light is less than the darkness, and flashing frequency does not
exceed 30 times per minute.

Q Quick flashing *e duration of light is less than the darkness, and the flashing frequency is at least
60 times per minute.

VQ Very quick
flashing

*e duration of light is less than the darkness, and the flashing frequency is at least
100 times per minute.

Iso Isophase *e light consists of both a light and a dark interval with equal duration.
Oc Occulting *e duration of light is more than the darkness.
LFI Long flashing *e light has one long flash at least 2 seconds in a period.
Mo(Letter) Morse code *e light shows flashes according to Morse code.
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*e attentional mechanism in the image classification in
order to make the model focus on the relevant information
and ignore irrelevant information. Spatial attention and
channel attention are two important technologies. Spatial
attention is to find the regions of the feature map that are
most relevant to the task. Channel attention is assigning
weight to different channels. For this study, it is crucial to
find the location of the navigation mark’s light. *erefore,
we optimized MobileNet-v2 by the spatial attention.

Figure 3(a) shows the original inverted residual module
of MobileNet-v2, and Figure 3(b) shows the improved

module in which a spatial attention branch is added. *e
new attention branch includes a maxPool layer, avgPool
layer, and a conv 3× 3 layer, which has Sigmoid as activation
function. It would give each feature a corresponding weight
and let the final feature vector map more effectively on the
target areas. Figure 4 shows the effect of spatial attention
mechanism, the above are original images, and the bottom
ones describe the attention areas captured by the improved
MobileNet-v2. From the attention area pictures, it can be
observed that the lights and their water reflections are both
focused on.

Original
Video

Original
Video

V Channel

MobileNet-v2

MobileNet-v2

MobileNet-v2

MobileNet-v2

MobileNet-v2

MobileNet-v2

LSTM Flashing
Label

Color
Label

Network-F

Network-C
Combination

Figure 1: Network structure of model-based binary relevance.

Require: the training features (a set of video frames), X.
XV: the V-channel format of X.
XRGB: the RGB format of X.
XVorRGB
i : frame i of X.

Ensure: the target value (the label of navigation mark’s lights), Y.
YF: the label of Network-F.
YC: the label of Network-C.

Network-F:
(1) for i ∈ 1, 2, 3, . . . ,n{ }do
(2) XV

i � MobileNet − v2(XV
i )

(3) end for
(4) XV � LSTM(XV)

(5) YF � Softmax(XV)

Network-C:
(6) for i ∈ 1, 2, 3, . . . ,n{ }do
(7) XRGB

i � MobileNet − v2(XRGB
i )

(8) end for
(9) YC � Softmax(XRGB)

NMLNet:
(10) Y � [YF,YC]

(11) returnY

ALGORITHM 1: NMLNet
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*e calculation formula is shown in equation (2):

y1 � F1(x) + x,

y2 � F1(x) + F2(x),
(2)

where y1is original module, y2 is improved module, F1 is
conv1× 1(Relu6) +D wise3× 3(Relu6) + conv1× 1(Linear),
and F2 is MaxPool +AvgPool +D wise3× 3(Sigmoid).

3.3.Model Based onLabel Power Set. In this model, the color
and flashing label are combined into a unique light label
associated to one class such as “Fl R (2) 10s,” and only one
network is needed to train all unique light labels. As
Figure 5 shows, the network also has a two parts structure
of MobileNet-v2 + LSTM.*e MobileNet-v2 has 3-channel
RGB images as input, and it is also improved with spatial
attention mechanism.*e LSTM has an input of a sequence
of color output from all MobileNet-v2 parts, and a final

Add

conv 1×1, Linear

D wise 3×3, Relu6

conv 1×1, Relu6

Input

Add

conv 1×1, Linear conv 3×3, Sigmoid

D wise 3×3, Relu6

conv 1×1, Relu6

Input

attention branch

AvgPool

MaxPool

(a) (b)

Figure 3: Improvement of Inverted residual module with attention branch. (a) Original module. (b) Improved module.

Figure 2: V-channel of video frames.
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light label probability vector is output through a softmax
layer.

3.4. Model Based on Adaptive Algorithm. *is model has the
same network structure as the one based on label power set.
However, the output vector of softmax layer is not about all
combination labels but the concat of color label and flashing
label.

Figure 6 shows the diagram of the softmax layer. Color
labels and flashing labels (see Table 2) are concated to form
an array, and the sum of probability generated by softmax
for each elements is 1. *e maximum probabilities of color
and flashing parts in the array are leveraged, respectively, to
pick up the final color label and flashing label.

4. Experiments and Results

4.1. Data Set of Navigation Mark’s Lights

4.1.1. Data Set Information. 8000minutes video of 9 types of
navigation mark’s light have been collected. *e 9 lights, FI

R(1) 4s, FI G(1) 4s, FI R(2) 5s, FI G(2) 5s, FI R(2 + 1) 6s, FI
G(2 + 1), Mo(Q) Y 12s, Mo(P) Y 12s, and IsoW 4s are shown
in Figure 7. *e videos of each type are then divided into
training and validation data set, with a ratio of 8 : 2, about
7200 minute video was used for model training, and about
1800minute videos was used to verify accuracy.

4.1.2. Video Cutting and Slice. As the lights are periodic in
the videos, in order to get uniform input format for the
classification models, all video samples are cut into segments
with 12s. 12s is the longest period of lights in the data set. So,
every segment includes at least one whole period of a light
but may not always from its initial phase.

Furthermore, in order to speed up training and increase
generalization capability, the models are not trained with
every frame of the video segments. As the shortest flashing
period is 0.4s in the data set and the videos have a frame rate
of 25, every video segment is sliced every 8 (0.4×25) frames
and formed a 38 images sequence as input. Also, every image
has a size of 224× 224 layer.

Original
Video

MobileNet-v2

MobileNet-v2

MobileNet-v2

LSTM
Light
Label

Figure 5: Model based on label power set.

Figure 4: Effect of the spatial attention mechanism.
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4.2. Experimental Design. All the proposed models are
implemented by Python3.7 and the deep learning frame-
work of Pytorch1.7.1 and trained in a workstation with one
graphics card of NVIDIA GeForce GTX 2070 SUPER.

In the training process, all models use the same opti-
mizer of SGD and the same loss function of CrossEntroy and
utilize the Pytorch’s pretrained weights on Imagenet, which
was verified and can speed up the convergence in practice.

For the experiment, we use four evaluation indexes to
access the model: Acc, Params, Latency_time (CPU), and
Latency_time (GPU). Acc represents the accuracy of the
model, Params represents the number of parameters of the
model, Latency_time (CPU) represents the running speed of
the model in the CPU environment, and the Latency_time
(GPU) is in the GPU environment.

4.3. Experimental Processing. Figure 8 shows the training
curves, respectively, of the model based on binary relevance,
the model based on label power set and the model based on

adaptive algorithm. In the model based on binary relevance,
Network-C and Network-F were trained independently.

From the training curves, it can be found that the con-
vergence speed of the Network-C is slower that other models
with LSTM part. As a special recurrent neural networkmodel,
LSTM can learn effectively the semantic relationship between
frames. However, in Network-C, without LSTM, there is not
semantic related feature to help its classification.

4.4. Results. *e test results on the validation set are
compared in Table 3.

It can be found that the model based on binary relevance
is better than others in all evaluation indicators, including
accuracy (Acc), parameter numbers (params), and com-
putation speed (latency time). Also, in order to investigate
the effect of spatial attention mechanism, with the model
structure that based on binary relevance, the performance of
three different backbone networks was compared. *e ex-
periment results are shown in Table 4.
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max

0.45
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{ [0.42

R

0.002

G

0.008 0.008

Y W

0.0085] [0.45

None F-1 F-2

0.001

F-3

0.006

F-4

0.001

F-5

0.003

F-6

0.003

F-7

0.001

F-8

0.001

F-9

0.001

F-10

0.002

F-11

0.002

F-12

0.006]}

Softmax

Figure 6: Softmax layer of the model based on adaptive algorithm.
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Figure 7: Data set of navigation mark’s lights.
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*e following can be observed from the comparison: (1)
due to its compact network structure, MobileNet-v2 has
lower accuracy than ResNet-50, but it has less parameters
and higher computation speed, and (2) with spatial attention
mechanism, the improved MobilesNet-v2 achieves the same
level accuracy as Resnet-50 while keeping its high efficiency.

Obviously, from the comprehensively consideration of
accuracy and speed, the multilabel model based on binary
relevance and improved MobilesNet-v2 with spatial atten-
tion mechanism has the best performance. Also, it was

selected as the final model called NMLNet to classify the
navigation mark’s lights.

4.5. Analysis. *e binary relevance approach has obvious
disadvantages in many cases. But for the classification of
navigation mark’s lights, the two labels about navigation
mark’s light have no obvious correlation. Instead of in-
creasing the complexity and reducing accuracy, the separate
training of color and flashing label brings several merits.

Acc
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20

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Network-F
the model based on label powerset
the model based on binary relevance

(a)

Loss
3

2

1

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Network-F
the model based on label powerset
the model based on binary relevance

(b)
Acc of Network-C
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1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

(c)

Loss of Network-C
2

1

0
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

(d)

Figure 8: Training curves: (a, b) the Acc and Loss curves of Network-F, the model based on label power set and the model based on adaptive
algorithm. (c, d) *e Acc and Loss curve, respectively, of Network-C.

Table 3: Comparison of different models.

Classification Acc Params (M) Latency_time (CPU) Latency_time (GPU)
Binary relevance 99.23± 0.2 33.66 1155± 50ms 398± 50ms
Label power set 96.05± 0.2 35.74 1394± 50ms 750± 50ms
Adapted algorithm 97.08± 0.2 35.75 1365± 50ms 759± 50ms

Table 4: Comparison of different backbone networks.

Backbone Acc Params (M) Latency_time (CPU) Latency_time (GPU)
ResNet-50 99.40± 0.2 118.31 5098± 50ms 1755± 50ms
Mobilenet-v2 96.15± 0.2 33.76 1133± 50ms 390± 50ms
Improved Mobilenet-v2 99.23± 0.2 33.66 1155± 50ms 398± 50ms
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(1) It reduces complexity of the network for capturing
flashing characteristic by simplifying input from
three RGB channels to one V-channel, which is also
helpful to improve accuracy of flashing classification.

(2) It increases accuracy of color classification by
training samples from all types of lights of which
result can be combined with any flashing phase.

(3) *e label combination mechanism makes that it has
higher generalization ability, which means even if
there is no any data sample of a new light, but when
the light has same flashing with an existing light and
same color with another light, it still can be recog-
nized correctly. *is merit is very practical especially
when there are not sufficient samples of all types of
lights.

Figure 9 shows the confusion matrix on the validation
set, of NMLNet and the model based on label power set,
respectively. It can be found that, in NMLNet, there is few
color misclassification; however, in the model based on
power set, there are much more color misclassifications such
as from FI R(1) 4S to FI G(1) 4S and from FI R(2 + 1) to FI
G(2 + 1).

In NMLNet, there are several misclassifications of
flashing phase for example from FI G(1) 4s to FI G(2) 5s or
from FI G(1) 4s to FI G(2 + 1) 5s. By investigating into the

video segments in detail, it was found that the light was
blocked by moving vessel in some frames as Figure 10
shown. However, this scenario was not considered in
NMLnet, in order to further promote the classification
accuracy, how to treat this kind of occasional event effi-
ciently should be studied in the future works.

Aiming to run on mobile devices or computers with
weak computing capabilities on vessel, instead of ordinary
classification models such as Resnet-50, a lightweight net-
work with smaller parameters, MolibleNet-v2, was selected
as the backbone of NMLNet. Although MolibeNet-V2 has
lower accuracy than Resnet-50, the improvedMobilesNet-v2
with spatial attention mechanism can achieve the accuracy
near Resnet-50 while keeping its high recognition speed.
Lightweight will continue to be the main direction of
optimization.

5. Conclusion

At night, the familiar scene of buoys and other navigation
marks disappear to be replaced by fixed and flashing lights.
Navigation marks are seen as a set of lights in various colors
rather than their familiar outline. Instead of natural visual
interpretation that can be seen in daylight, marks are code at
night. So, navigation at night means that navigator must
decipher the meaning of the lights. Translating the code of
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Figure 9: Confusion matrix of misclassified lights. (a) NMLNet. (b) Model based on label power set.

Figure 10: Light is blocked by moving vessel.
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the lights into meaningful information adds to the navi-
gator’s workload considerably, and especially, it is a big
challenge for the less experienced.

*is article studied the intelligent recognition of lights
on navigation marks at night based on deep learning
methods. As the characteristics of navigation mark’s lights
include both color and flashing, the recognition problemwas
treated as a multilabel classification problem based on video.
*ree different multilabel classification models, based on
binary relevance, label power set, and adapted algorithm,
respectively, are investigated and compared.

Experiment was performed on a data set with 8000
minutes video, and the results show that the model based on
binary relevance has the highest accuracy about 99.23% to
classify 9 types of navigation mark’s lights, it also has the
fastest computation speed with least network parameters. So,
for navigation mark’s lights, the model based on binary
relevance called NMLNet is the best choice especially when
there are not sufficient samples.

6. Future

*is article is the first part of our researches about the in-
telligent recognition of navigational environment at night.
In the future works, following directions will be studied
further. Because the light on frames of video shoot from long
distance is always small, although spatial attention mecha-
nism is helpful to locate the position of light, when reso-
lution of the light part is too low, it is still difficult for models
to extract the features of light. So, super resolution based on
GAN (Generative Adversarial Network) will be utilized as
enhancement method to preprocess the low-resolution
image of navigation mark’s light. In addition, there are other
adverse factors lowering the quality of video, light pollution
from shore, and temporary block by moving vessel; they also
should be treated carefully to increase the practicability of
model. Furthermore, in addition to navigation marks,
vessels also should be identified at night by their navigation
lights, which comply with a set of complex regulations to
represent different vessel’s behaviors. So, it is another big
challenge to recognize vessel’s navigation lights and dis-
tinguish them from the lights on navigation marks.
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